google-cloud-pipeline-components 2.13.0__py3-none-any.whl → 2.14.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (68) hide show
  1. google_cloud_pipeline_components/__init__.py +5 -6
  2. google_cloud_pipeline_components/_implementation/llm/deployment_graph.py +4 -10
  3. google_cloud_pipeline_components/_implementation/llm/env.py +1 -1
  4. google_cloud_pipeline_components/_implementation/llm/function_based.py +14 -48
  5. google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
  6. google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py +27 -36
  7. google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py +26 -41
  8. google_cloud_pipeline_components/_implementation/llm/rlhf_preprocessor.py +60 -0
  9. google_cloud_pipeline_components/_implementation/llm/validate_pipeline.py +11 -0
  10. google_cloud_pipeline_components/_placeholders.py +30 -1
  11. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  12. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  13. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  14. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
  15. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
  16. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
  17. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
  18. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  19. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  20. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  21. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  22. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  23. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  24. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  25. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  26. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +17 -17
  27. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  28. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +15 -15
  29. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  30. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +16 -16
  31. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  32. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +15 -15
  33. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  34. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  35. google_cloud_pipeline_components/preview/automl/vision/data_converter.py +3 -1
  36. google_cloud_pipeline_components/preview/custom_job/component.py +2 -2
  37. google_cloud_pipeline_components/preview/custom_job/utils.py +3 -2
  38. google_cloud_pipeline_components/preview/llm/rlhf/component.py +60 -8
  39. google_cloud_pipeline_components/preview/model_evaluation/__init__.py +1 -1
  40. google_cloud_pipeline_components/proto/template_metadata_pb2.py +80 -52
  41. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  42. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  43. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  44. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  45. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  46. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  47. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  48. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  49. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  50. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  51. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  52. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  53. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  54. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  55. google_cloud_pipeline_components/v1/model_evaluation/__init__.py +3 -1
  56. google_cloud_pipeline_components/v1/model_evaluation/classification_component.py +2 -2
  57. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_classification_pipeline.py +10 -1
  58. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +13 -4
  59. google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/__init__.py +2 -2
  60. google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +2 -2
  61. google_cloud_pipeline_components/version.py +1 -1
  62. {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/METADATA +3 -3
  63. {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/RECORD +67 -68
  64. {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/WHEEL +1 -1
  65. google_cloud_pipeline_components/proto/preflight_validations_pb2.py +0 -47
  66. /google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py +0 -0
  67. {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/LICENSE +0 -0
  68. {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/top_level.txt +0 -0
@@ -3399,7 +3399,7 @@ deploymentSpec:
3399
3399
  \ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
3400
3400
  \ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
3401
3401
  \ ref.project, ref.dataset_id)\n\n"
3402
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3402
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3403
3403
  exec-bigquery-create-dataset-2:
3404
3404
  container:
3405
3405
  args:
@@ -3434,7 +3434,7 @@ deploymentSpec:
3434
3434
  \ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
3435
3435
  \ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
3436
3436
  \ ref.project, ref.dataset_id)\n\n"
3437
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3437
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3438
3438
  exec-bigquery-create-model-job:
3439
3439
  container:
3440
3440
  args:
@@ -3494,7 +3494,7 @@ deploymentSpec:
3494
3494
  \ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
3495
3495
  \ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
3496
3496
  \n"
3497
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3497
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3498
3498
  exec-bigquery-list-rows:
3499
3499
  container:
3500
3500
  args:
@@ -3532,7 +3532,7 @@ deploymentSpec:
3532
3532
  \ metadata['datasetId'], metadata['tableId']]))\n result = []\n for row\
3533
3533
  \ in rows:\n result.append({col: str(value) for col, value in dict(row).items()})\n\
3534
3534
  \ return result\n\n"
3535
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3535
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3536
3536
  exec-bigquery-list-rows-2:
3537
3537
  container:
3538
3538
  args:
@@ -3570,7 +3570,7 @@ deploymentSpec:
3570
3570
  \ metadata['datasetId'], metadata['tableId']]))\n result = []\n for row\
3571
3571
  \ in rows:\n result.append({col: str(value) for col, value in dict(row).items()})\n\
3572
3572
  \ return result\n\n"
3573
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3573
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3574
3574
  exec-bigquery-query-job:
3575
3575
  container:
3576
3576
  args:
@@ -3739,7 +3739,7 @@ deploymentSpec:
3739
3739
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3740
3740
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3741
3741
  \ return config\n\n"
3742
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3742
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3743
3743
  exec-build-job-configuration-query-2:
3744
3744
  container:
3745
3745
  args:
@@ -3773,7 +3773,7 @@ deploymentSpec:
3773
3773
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3774
3774
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3775
3775
  \ return config\n\n"
3776
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3776
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3777
3777
  exec-build-job-configuration-query-3:
3778
3778
  container:
3779
3779
  args:
@@ -3807,7 +3807,7 @@ deploymentSpec:
3807
3807
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3808
3808
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3809
3809
  \ return config\n\n"
3810
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3810
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3811
3811
  exec-build-job-configuration-query-4:
3812
3812
  container:
3813
3813
  args:
@@ -3841,7 +3841,7 @@ deploymentSpec:
3841
3841
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3842
3842
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3843
3843
  \ return config\n\n"
3844
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3844
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3845
3845
  exec-build-job-configuration-query-5:
3846
3846
  container:
3847
3847
  args:
@@ -3875,7 +3875,7 @@ deploymentSpec:
3875
3875
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3876
3876
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3877
3877
  \ return config\n\n"
3878
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3878
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3879
3879
  exec-build-job-configuration-query-6:
3880
3880
  container:
3881
3881
  args:
@@ -3909,7 +3909,7 @@ deploymentSpec:
3909
3909
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
3910
3910
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
3911
3911
  \ return config\n\n"
3912
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3912
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3913
3913
  exec-build-serialized-query-parameters:
3914
3914
  container:
3915
3915
  args:
@@ -3980,7 +3980,7 @@ deploymentSpec:
3980
3980
  \ 'name': 'start_time',\n 'parameterType': {\n 'type':\
3981
3981
  \ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
3982
3982
  \ },\n })\n return query_parameters\n\n"
3983
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
3983
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
3984
3984
  exec-build-serialized-query-parameters-2:
3985
3985
  container:
3986
3986
  args:
@@ -4051,7 +4051,7 @@ deploymentSpec:
4051
4051
  \ 'name': 'start_time',\n 'parameterType': {\n 'type':\
4052
4052
  \ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
4053
4053
  \ },\n })\n return query_parameters\n\n"
4054
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4054
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4055
4055
  exec-build-serialized-query-parameters-3:
4056
4056
  container:
4057
4057
  args:
@@ -4122,7 +4122,7 @@ deploymentSpec:
4122
4122
  \ 'name': 'start_time',\n 'parameterType': {\n 'type':\
4123
4123
  \ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
4124
4124
  \ },\n })\n return query_parameters\n\n"
4125
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4125
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4126
4126
  exec-cond:
4127
4127
  container:
4128
4128
  args:
@@ -4144,7 +4144,7 @@ deploymentSpec:
4144
4144
  \ *\n\ndef cond(predicate: bool, true_str: str, false_str: str) -> str:\n\
4145
4145
  \ \"\"\"Returns true_str if predicate is true, else false_str.\"\"\"\n\
4146
4146
  \ return true_str if predicate else false_str\n\n"
4147
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4147
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4148
4148
  exec-create-metrics-artifact:
4149
4149
  container:
4150
4150
  args:
@@ -4170,7 +4170,7 @@ deploymentSpec:
4170
4170
  \ 'MAPE': 'meanAbsolutePercentageError',\n }\n metrics = {metric_name_map[k]:\
4171
4171
  \ v for k, v in dict(metrics_rows[0]).items()}\n evaluation_metrics.metadata\
4172
4172
  \ = metrics\n\n"
4173
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4173
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4174
4174
  exec-feature-transform-engine:
4175
4175
  container:
4176
4176
  args:
@@ -4255,8 +4255,8 @@ deploymentSpec:
4255
4255
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
4256
4256
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
4257
4257
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
4258
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325
4259
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
4258
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
4259
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
4260
4260
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
4261
4261
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
4262
4262
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -4273,7 +4273,7 @@ deploymentSpec:
4273
4273
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
4274
4274
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
4275
4275
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
4276
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
4276
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
4277
4277
  exec-get-fte-suffix:
4278
4278
  container:
4279
4279
  args:
@@ -4301,7 +4301,7 @@ deploymentSpec:
4301
4301
  \ table.table_id.startswith(fte_table):\n return table.table_id[len(fte_table)\
4302
4302
  \ + 1:]\n raise ValueError(\n f'No FTE output tables found in {bigquery_staging_full_dataset_id}.')\n\
4303
4303
  \n"
4304
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4304
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4305
4305
  exec-get-table-location:
4306
4306
  container:
4307
4307
  args:
@@ -4337,7 +4337,7 @@ deploymentSpec:
4337
4337
  \ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
4338
4338
  \ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
4339
4339
  \ return client.get_table(table).location\n\n"
4340
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4340
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4341
4341
  exec-get-value:
4342
4342
  container:
4343
4343
  args:
@@ -4358,7 +4358,7 @@ deploymentSpec:
4358
4358
  - "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
4359
4359
  \ *\n\ndef get_value(d: Dict[str, str], key: str) -> str:\n return d[key]\n\
4360
4360
  \n"
4361
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4361
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4362
4362
  exec-get-window-query-priority:
4363
4363
  container:
4364
4364
  args:
@@ -4382,7 +4382,7 @@ deploymentSpec:
4382
4382
  \ depending on the window number.\"\"\"\n if int(window['window_number'])\
4383
4383
  \ <= max_interactive:\n return 'INTERACTIVE'\n else:\n return 'BATCH'\n\
4384
4384
  \n"
4385
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4385
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4386
4386
  exec-maybe-replace-with-default:
4387
4387
  container:
4388
4388
  args:
@@ -4404,7 +4404,7 @@ deploymentSpec:
4404
4404
  \ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
4405
4405
  \ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
4406
4406
  \n return default if not value else value\n\n"
4407
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4407
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4408
4408
  exec-query-with-retry:
4409
4409
  container:
4410
4410
  args:
@@ -4458,7 +4458,7 @@ deploymentSpec:
4458
4458
  \ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
4459
4459
  \ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
4460
4460
  \n"
4461
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4461
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4462
4462
  exec-query-with-retry-2:
4463
4463
  container:
4464
4464
  args:
@@ -4512,7 +4512,7 @@ deploymentSpec:
4512
4512
  \ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
4513
4513
  \ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
4514
4514
  \n"
4515
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4515
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4516
4516
  exec-query-with-retry-3:
4517
4517
  container:
4518
4518
  args:
@@ -4566,7 +4566,7 @@ deploymentSpec:
4566
4566
  \ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
4567
4567
  \ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
4568
4568
  \n"
4569
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4569
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4570
4570
  exec-table-to-uri:
4571
4571
  container:
4572
4572
  args:
@@ -4596,7 +4596,7 @@ deploymentSpec:
4596
4596
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
4597
4597
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
4598
4598
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
4599
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4599
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4600
4600
  exec-table-to-uri-2:
4601
4601
  container:
4602
4602
  args:
@@ -4626,7 +4626,7 @@ deploymentSpec:
4626
4626
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
4627
4627
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
4628
4628
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
4629
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4629
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4630
4630
  exec-validate-inputs:
4631
4631
  container:
4632
4632
  args:
@@ -4722,7 +4722,7 @@ deploymentSpec:
4722
4722
  \ raise ValueError(\n 'Granularity unit should be one of the\
4723
4723
  \ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
4724
4724
  \n"
4725
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4725
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4726
4726
  exec-wrapped-in-list:
4727
4727
  container:
4728
4728
  args:
@@ -4743,7 +4743,7 @@ deploymentSpec:
4743
4743
  - "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
4744
4744
  \ *\n\ndef wrapped_in_list(value: str) -> List[str]:\n \"\"\"Wraps a string\
4745
4745
  \ in a list.\"\"\"\n return [value]\n\n"
4746
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
4746
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
4747
4747
  pipelineInfo:
4748
4748
  description: Trains a BQML ARIMA_PLUS model.
4749
4749
  name: automl-tabular-bqml-arima-train
@@ -108,17 +108,17 @@ def prophet_trainer(
108
108
  '"machine_spec": {"machine_type": "n1-standard-4"}, ',
109
109
  (
110
110
  '"container_spec":'
111
- ' {"image_uri":"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240214_1325", '
111
+ ' {"image_uri":"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", '
112
112
  ),
113
113
  '"args": ["prophet_trainer", "',
114
114
  (
115
115
  f'--job_name=dataflow-{dsl.PIPELINE_JOB_NAME_PLACEHOLDER}", "'
116
116
  ),
117
117
  (
118
- '--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325", "'
118
+ '--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625", "'
119
119
  ),
120
120
  (
121
- '--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20240214_1325", "'
121
+ '--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20240419_0625", "'
122
122
  ),
123
123
  '--artifacts_dir=',
124
124
  root_dir,
@@ -2021,7 +2021,7 @@ deploymentSpec:
2021
2021
  \ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
2022
2022
  \ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
2023
2023
  \ ref.project, ref.dataset_id)\n\n"
2024
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
2024
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
2025
2025
  exec-bigquery-delete-dataset-with-prefix:
2026
2026
  container:
2027
2027
  args:
@@ -2055,7 +2055,7 @@ deploymentSpec:
2055
2055
  \ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
2056
2056
  \ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
2057
2057
  \n"
2058
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
2058
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
2059
2059
  exec-bigquery-query-job:
2060
2060
  container:
2061
2061
  args:
@@ -2116,7 +2116,7 @@ deploymentSpec:
2116
2116
  \ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
2117
2117
  \ if write_disposition:\n config['write_disposition'] = write_disposition\n\
2118
2118
  \ return config\n\n"
2119
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
2119
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
2120
2120
  exec-feature-transform-engine:
2121
2121
  container:
2122
2122
  args:
@@ -2201,8 +2201,8 @@ deploymentSpec:
2201
2201
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
2202
2202
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
2203
2203
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
2204
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325
2205
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
2204
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
2205
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
2206
2206
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
2207
2207
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
2208
2208
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -2219,7 +2219,7 @@ deploymentSpec:
2219
2219
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
2220
2220
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
2221
2221
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
2222
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
2222
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
2223
2223
  exec-get-fte-suffix:
2224
2224
  container:
2225
2225
  args:
@@ -2247,7 +2247,7 @@ deploymentSpec:
2247
2247
  \ table.table_id.startswith(fte_table):\n return table.table_id[len(fte_table)\
2248
2248
  \ + 1:]\n raise ValueError(\n f'No FTE output tables found in {bigquery_staging_full_dataset_id}.')\n\
2249
2249
  \n"
2250
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
2250
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
2251
2251
  exec-get-table-location:
2252
2252
  container:
2253
2253
  args:
@@ -2283,7 +2283,7 @@ deploymentSpec:
2283
2283
  \ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
2284
2284
  \ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
2285
2285
  \ return client.get_table(table).location\n\n"
2286
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
2286
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
2287
2287
  exec-model-evaluation-regression:
2288
2288
  container:
2289
2289
  args:
@@ -2394,10 +2394,10 @@ deploymentSpec:
2394
2394
  ", "\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
2395
2395
  "\"}, ", "\"job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"1\",
2396
2396
  ", "\"machine_spec\": {\"machine_type\": \"n1-standard-4\"}, ", "\"container_spec\":
2397
- {\"image_uri\":\"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240214_1325\",
2397
+ {\"image_uri\":\"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625\",
2398
2398
  ", "\"args\": [\"prophet_trainer\", \"", "--job_name=dataflow-{{$.pipeline_job_name}}\",
2399
- \"", "--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325\",
2400
- \"", "--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20240214_1325\",
2399
+ \"", "--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625\",
2400
+ \"", "--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20240419_0625\",
2401
2401
  \"", "--artifacts_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/model/\",
2402
2402
  \"", "--evaluated_examples_dir=", "{{$.inputs.parameters[''root_dir'']}}",
2403
2403
  "/{{$.pipeline_job_uuid}}/eval/\", \"", "--region=", "{{$.inputs.parameters[''location'']}}",
@@ -2455,7 +2455,7 @@ deploymentSpec:
2455
2455
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
2456
2456
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
2457
2457
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
2458
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
2458
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
2459
2459
  exec-validate-inputs:
2460
2460
  container:
2461
2461
  args:
@@ -2551,7 +2551,7 @@ deploymentSpec:
2551
2551
  \ raise ValueError(\n 'Granularity unit should be one of the\
2552
2552
  \ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
2553
2553
  \n"
2554
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
2554
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
2555
2555
  exec-wrapped-in-list:
2556
2556
  container:
2557
2557
  args:
@@ -2572,7 +2572,7 @@ deploymentSpec:
2572
2572
  - "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
2573
2573
  \ *\n\ndef wrapped_in_list(value: str) -> List[str]:\n \"\"\"Wraps a string\
2574
2574
  \ in a list.\"\"\"\n return [value]\n\n"
2575
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
2575
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
2576
2576
  pipelineInfo:
2577
2577
  description: Trains one Prophet model per time series.
2578
2578
  name: prophet-train