google-cloud-pipeline-components 2.13.0__py3-none-any.whl → 2.14.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/__init__.py +5 -6
- google_cloud_pipeline_components/_implementation/llm/deployment_graph.py +4 -10
- google_cloud_pipeline_components/_implementation/llm/env.py +1 -1
- google_cloud_pipeline_components/_implementation/llm/function_based.py +14 -48
- google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
- google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py +27 -36
- google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py +26 -41
- google_cloud_pipeline_components/_implementation/llm/rlhf_preprocessor.py +60 -0
- google_cloud_pipeline_components/_implementation/llm/validate_pipeline.py +11 -0
- google_cloud_pipeline_components/_placeholders.py +30 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +17 -17
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +16 -16
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/vision/data_converter.py +3 -1
- google_cloud_pipeline_components/preview/custom_job/component.py +2 -2
- google_cloud_pipeline_components/preview/custom_job/utils.py +3 -2
- google_cloud_pipeline_components/preview/llm/rlhf/component.py +60 -8
- google_cloud_pipeline_components/preview/model_evaluation/__init__.py +1 -1
- google_cloud_pipeline_components/proto/template_metadata_pb2.py +80 -52
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/__init__.py +3 -1
- google_cloud_pipeline_components/v1/model_evaluation/classification_component.py +2 -2
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_classification_pipeline.py +10 -1
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +13 -4
- google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/__init__.py +2 -2
- google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +2 -2
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/METADATA +3 -3
- {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/RECORD +67 -68
- {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/WHEEL +1 -1
- google_cloud_pipeline_components/proto/preflight_validations_pb2.py +0 -47
- /google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py +0 -0
- {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/top_level.txt +0 -0
|
@@ -5548,7 +5548,7 @@ deploymentSpec:
|
|
|
5548
5548
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5549
5549
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5550
5550
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5551
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5551
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5552
5552
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5553
5553
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5554
5554
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5582,7 +5582,7 @@ deploymentSpec:
|
|
|
5582
5582
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5583
5583
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5584
5584
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5585
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5585
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5586
5586
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5587
5587
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5588
5588
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5617,11 +5617,11 @@ deploymentSpec:
|
|
|
5617
5617
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5618
5618
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5619
5619
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5620
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5620
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5621
5621
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5622
5622
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5623
5623
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5624
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5624
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5625
5625
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5626
5626
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5627
5627
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5660,11 +5660,11 @@ deploymentSpec:
|
|
|
5660
5660
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5661
5661
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5662
5662
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5663
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5663
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5664
5664
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5665
5665
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5666
5666
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5667
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5667
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5668
5668
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5669
5669
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5670
5670
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5703,7 +5703,7 @@ deploymentSpec:
|
|
|
5703
5703
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5704
5704
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5705
5705
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5706
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5706
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
|
|
5707
5707
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5708
5708
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5709
5709
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5768,7 +5768,7 @@ deploymentSpec:
|
|
|
5768
5768
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5769
5769
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5770
5770
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5771
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5771
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
5772
5772
|
exec-calculate-training-parameters-2:
|
|
5773
5773
|
container:
|
|
5774
5774
|
args:
|
|
@@ -5824,7 +5824,7 @@ deploymentSpec:
|
|
|
5824
5824
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5825
5825
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5826
5826
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5827
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5827
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
5828
5828
|
exec-feature-attribution:
|
|
5829
5829
|
container:
|
|
5830
5830
|
args:
|
|
@@ -6015,8 +6015,8 @@ deploymentSpec:
|
|
|
6015
6015
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6016
6016
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6017
6017
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6018
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6019
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6018
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
|
|
6019
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6020
6020
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6021
6021
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6022
6022
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6033,7 +6033,7 @@ deploymentSpec:
|
|
|
6033
6033
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6034
6034
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6035
6035
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6036
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6036
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6037
6037
|
resources:
|
|
6038
6038
|
cpuLimit: 8.0
|
|
6039
6039
|
memoryLimit: 30.0
|
|
@@ -6064,7 +6064,7 @@ deploymentSpec:
|
|
|
6064
6064
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6065
6065
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6066
6066
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6067
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6067
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6068
6068
|
exec-finalize-eval-quantile-parameters-2:
|
|
6069
6069
|
container:
|
|
6070
6070
|
args:
|
|
@@ -6092,7 +6092,7 @@ deploymentSpec:
|
|
|
6092
6092
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6093
6093
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6094
6094
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6095
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6095
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6096
6096
|
exec-get-or-create-model-description:
|
|
6097
6097
|
container:
|
|
6098
6098
|
args:
|
|
@@ -6121,7 +6121,7 @@ deploymentSpec:
|
|
|
6121
6121
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6122
6122
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6123
6123
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6124
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6124
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6125
6125
|
exec-get-or-create-model-description-2:
|
|
6126
6126
|
container:
|
|
6127
6127
|
args:
|
|
@@ -6150,7 +6150,7 @@ deploymentSpec:
|
|
|
6150
6150
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6151
6151
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6152
6152
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6153
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6153
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6154
6154
|
exec-get-prediction-image-uri:
|
|
6155
6155
|
container:
|
|
6156
6156
|
args:
|
|
@@ -6173,14 +6173,14 @@ deploymentSpec:
|
|
|
6173
6173
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6174
6174
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6175
6175
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6176
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6177
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6178
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6179
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6176
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
|
|
6177
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
|
|
6178
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
|
|
6179
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
|
|
6180
6180
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6181
6181
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6182
6182
|
\ )\n return images[model_type]\n\n"
|
|
6183
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6183
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6184
6184
|
exec-get-prediction-image-uri-2:
|
|
6185
6185
|
container:
|
|
6186
6186
|
args:
|
|
@@ -6203,14 +6203,14 @@ deploymentSpec:
|
|
|
6203
6203
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6204
6204
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6205
6205
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6206
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6207
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6208
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6209
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6206
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
|
|
6207
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
|
|
6208
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
|
|
6209
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
|
|
6210
6210
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6211
6211
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6212
6212
|
\ )\n return images[model_type]\n\n"
|
|
6213
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6213
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6214
6214
|
exec-get-predictions-column:
|
|
6215
6215
|
container:
|
|
6216
6216
|
args:
|
|
@@ -6233,7 +6233,7 @@ deploymentSpec:
|
|
|
6233
6233
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6234
6234
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6235
6235
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6236
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6236
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6237
6237
|
exec-get-predictions-column-2:
|
|
6238
6238
|
container:
|
|
6239
6239
|
args:
|
|
@@ -6256,7 +6256,7 @@ deploymentSpec:
|
|
|
6256
6256
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6257
6257
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6258
6258
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6259
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6259
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6260
6260
|
exec-importer:
|
|
6261
6261
|
importer:
|
|
6262
6262
|
artifactUri:
|
|
@@ -6788,7 +6788,7 @@ deploymentSpec:
|
|
|
6788
6788
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6789
6789
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6790
6790
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6791
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6791
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6792
6792
|
exec-split-materialized-data:
|
|
6793
6793
|
container:
|
|
6794
6794
|
args:
|
|
@@ -6834,7 +6834,7 @@ deploymentSpec:
|
|
|
6834
6834
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6835
6835
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6836
6836
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6837
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6837
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
|
|
6838
6838
|
exec-string-not-empty:
|
|
6839
6839
|
container:
|
|
6840
6840
|
args:
|
|
@@ -6858,7 +6858,7 @@ deploymentSpec:
|
|
|
6858
6858
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6859
6859
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6860
6860
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6861
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6861
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6862
6862
|
exec-table-to-uri:
|
|
6863
6863
|
container:
|
|
6864
6864
|
args:
|
|
@@ -6888,7 +6888,7 @@ deploymentSpec:
|
|
|
6888
6888
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6889
6889
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6890
6890
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6891
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6891
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6892
6892
|
exec-table-to-uri-2:
|
|
6893
6893
|
container:
|
|
6894
6894
|
args:
|
|
@@ -6918,7 +6918,7 @@ deploymentSpec:
|
|
|
6918
6918
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6919
6919
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6920
6920
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6921
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6921
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6922
6922
|
exec-training-configurator-and-validator:
|
|
6923
6923
|
container:
|
|
6924
6924
|
args:
|
|
@@ -6963,7 +6963,7 @@ deploymentSpec:
|
|
|
6963
6963
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6964
6964
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6965
6965
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6966
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6966
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6967
6967
|
pipelineInfo:
|
|
6968
6968
|
description: The Temporal Fusion Transformer (TFT) Forecasting pipeline.
|
|
6969
6969
|
name: temporal-fusion-transformer-forecasting
|
|
@@ -5573,7 +5573,7 @@ deploymentSpec:
|
|
|
5573
5573
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5574
5574
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5575
5575
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5576
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5576
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5577
5577
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5578
5578
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5579
5579
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5607,7 +5607,7 @@ deploymentSpec:
|
|
|
5607
5607
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5608
5608
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5609
5609
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5610
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5610
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5611
5611
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5612
5612
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5613
5613
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5642,11 +5642,11 @@ deploymentSpec:
|
|
|
5642
5642
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5643
5643
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5644
5644
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5645
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5645
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5646
5646
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5647
5647
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5648
5648
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5649
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5649
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5650
5650
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5651
5651
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5652
5652
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5685,11 +5685,11 @@ deploymentSpec:
|
|
|
5685
5685
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5686
5686
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5687
5687
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5688
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5688
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5689
5689
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5690
5690
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5691
5691
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5692
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5692
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
|
|
5693
5693
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5694
5694
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5695
5695
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5728,7 +5728,7 @@ deploymentSpec:
|
|
|
5728
5728
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5729
5729
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5730
5730
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5731
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5731
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
|
|
5732
5732
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5733
5733
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5734
5734
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5793,7 +5793,7 @@ deploymentSpec:
|
|
|
5793
5793
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5794
5794
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5795
5795
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5796
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5796
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
5797
5797
|
exec-calculate-training-parameters-2:
|
|
5798
5798
|
container:
|
|
5799
5799
|
args:
|
|
@@ -5849,7 +5849,7 @@ deploymentSpec:
|
|
|
5849
5849
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5850
5850
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5851
5851
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5852
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5852
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
5853
5853
|
exec-feature-attribution:
|
|
5854
5854
|
container:
|
|
5855
5855
|
args:
|
|
@@ -6040,8 +6040,8 @@ deploymentSpec:
|
|
|
6040
6040
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6041
6041
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6042
6042
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6043
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6044
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6043
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
|
|
6044
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6045
6045
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6046
6046
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6047
6047
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6058,7 +6058,7 @@ deploymentSpec:
|
|
|
6058
6058
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6059
6059
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6060
6060
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6061
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6061
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6062
6062
|
resources:
|
|
6063
6063
|
cpuLimit: 8.0
|
|
6064
6064
|
memoryLimit: 30.0
|
|
@@ -6089,7 +6089,7 @@ deploymentSpec:
|
|
|
6089
6089
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6090
6090
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6091
6091
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6092
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6092
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6093
6093
|
exec-finalize-eval-quantile-parameters-2:
|
|
6094
6094
|
container:
|
|
6095
6095
|
args:
|
|
@@ -6117,7 +6117,7 @@ deploymentSpec:
|
|
|
6117
6117
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6118
6118
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6119
6119
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6120
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6120
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6121
6121
|
exec-get-or-create-model-description:
|
|
6122
6122
|
container:
|
|
6123
6123
|
args:
|
|
@@ -6146,7 +6146,7 @@ deploymentSpec:
|
|
|
6146
6146
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6147
6147
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6148
6148
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6149
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6149
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6150
6150
|
exec-get-or-create-model-description-2:
|
|
6151
6151
|
container:
|
|
6152
6152
|
args:
|
|
@@ -6175,7 +6175,7 @@ deploymentSpec:
|
|
|
6175
6175
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6176
6176
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6177
6177
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6178
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6178
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6179
6179
|
exec-get-prediction-image-uri:
|
|
6180
6180
|
container:
|
|
6181
6181
|
args:
|
|
@@ -6198,14 +6198,14 @@ deploymentSpec:
|
|
|
6198
6198
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6199
6199
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6200
6200
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6201
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6202
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6203
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6204
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6201
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
|
|
6202
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
|
|
6203
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
|
|
6204
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
|
|
6205
6205
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6206
6206
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6207
6207
|
\ )\n return images[model_type]\n\n"
|
|
6208
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6208
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6209
6209
|
exec-get-prediction-image-uri-2:
|
|
6210
6210
|
container:
|
|
6211
6211
|
args:
|
|
@@ -6228,14 +6228,14 @@ deploymentSpec:
|
|
|
6228
6228
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6229
6229
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6230
6230
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6231
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6232
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6233
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6234
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6231
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
|
|
6232
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
|
|
6233
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
|
|
6234
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
|
|
6235
6235
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6236
6236
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6237
6237
|
\ )\n return images[model_type]\n\n"
|
|
6238
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6238
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6239
6239
|
exec-get-predictions-column:
|
|
6240
6240
|
container:
|
|
6241
6241
|
args:
|
|
@@ -6258,7 +6258,7 @@ deploymentSpec:
|
|
|
6258
6258
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6259
6259
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6260
6260
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6261
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6261
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6262
6262
|
exec-get-predictions-column-2:
|
|
6263
6263
|
container:
|
|
6264
6264
|
args:
|
|
@@ -6281,7 +6281,7 @@ deploymentSpec:
|
|
|
6281
6281
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6282
6282
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6283
6283
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6284
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6284
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6285
6285
|
exec-importer:
|
|
6286
6286
|
importer:
|
|
6287
6287
|
artifactUri:
|
|
@@ -6813,7 +6813,7 @@ deploymentSpec:
|
|
|
6813
6813
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6814
6814
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6815
6815
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6816
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6816
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6817
6817
|
exec-split-materialized-data:
|
|
6818
6818
|
container:
|
|
6819
6819
|
args:
|
|
@@ -6859,7 +6859,7 @@ deploymentSpec:
|
|
|
6859
6859
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6860
6860
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6861
6861
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6862
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6862
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
|
|
6863
6863
|
exec-string-not-empty:
|
|
6864
6864
|
container:
|
|
6865
6865
|
args:
|
|
@@ -6883,7 +6883,7 @@ deploymentSpec:
|
|
|
6883
6883
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6884
6884
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6885
6885
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6886
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6886
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6887
6887
|
exec-table-to-uri:
|
|
6888
6888
|
container:
|
|
6889
6889
|
args:
|
|
@@ -6913,7 +6913,7 @@ deploymentSpec:
|
|
|
6913
6913
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6914
6914
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6915
6915
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6916
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6916
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6917
6917
|
exec-table-to-uri-2:
|
|
6918
6918
|
container:
|
|
6919
6919
|
args:
|
|
@@ -6943,7 +6943,7 @@ deploymentSpec:
|
|
|
6943
6943
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6944
6944
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6945
6945
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6946
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6946
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
|
|
6947
6947
|
exec-training-configurator-and-validator:
|
|
6948
6948
|
container:
|
|
6949
6949
|
args:
|
|
@@ -6988,7 +6988,7 @@ deploymentSpec:
|
|
|
6988
6988
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6989
6989
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6990
6990
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6991
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6991
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
|
|
6992
6992
|
pipelineInfo:
|
|
6993
6993
|
description: The Timeseries Dense Encoder (TiDE) Forecasting pipeline.
|
|
6994
6994
|
name: time-series-dense-encoder-forecasting
|
|
@@ -65,7 +65,7 @@ def automated_feature_engineering(
|
|
|
65
65
|
' 1, "machine_spec": {"machine_type": "n1-standard-16"},'
|
|
66
66
|
' "container_spec": {"image_uri":"'
|
|
67
67
|
),
|
|
68
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
68
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625',
|
|
69
69
|
'", "args": ["feature_engineering", "--project=', project,
|
|
70
70
|
'", "--location=', location, '", "--data_source_bigquery_table_path=',
|
|
71
71
|
data_source_bigquery_table_path,
|