google-cloud-pipeline-components 2.13.0__py3-none-any.whl → 2.14.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (68) hide show
  1. google_cloud_pipeline_components/__init__.py +5 -6
  2. google_cloud_pipeline_components/_implementation/llm/deployment_graph.py +4 -10
  3. google_cloud_pipeline_components/_implementation/llm/env.py +1 -1
  4. google_cloud_pipeline_components/_implementation/llm/function_based.py +14 -48
  5. google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
  6. google_cloud_pipeline_components/_implementation/llm/reinforcement_learning_graph.py +27 -36
  7. google_cloud_pipeline_components/_implementation/llm/reward_model_graph.py +26 -41
  8. google_cloud_pipeline_components/_implementation/llm/rlhf_preprocessor.py +60 -0
  9. google_cloud_pipeline_components/_implementation/llm/validate_pipeline.py +11 -0
  10. google_cloud_pipeline_components/_placeholders.py +30 -1
  11. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  12. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  13. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  14. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +34 -34
  15. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +34 -34
  16. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +34 -34
  17. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +34 -34
  18. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  19. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  20. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  21. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  22. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  23. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  24. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  25. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  26. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +17 -17
  27. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  28. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +15 -15
  29. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  30. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +16 -16
  31. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  32. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +15 -15
  33. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  34. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  35. google_cloud_pipeline_components/preview/automl/vision/data_converter.py +3 -1
  36. google_cloud_pipeline_components/preview/custom_job/component.py +2 -2
  37. google_cloud_pipeline_components/preview/custom_job/utils.py +3 -2
  38. google_cloud_pipeline_components/preview/llm/rlhf/component.py +60 -8
  39. google_cloud_pipeline_components/preview/model_evaluation/__init__.py +1 -1
  40. google_cloud_pipeline_components/proto/template_metadata_pb2.py +80 -52
  41. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  42. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  43. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  44. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  45. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  46. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  47. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  48. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  49. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  50. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  51. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  52. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  53. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  54. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  55. google_cloud_pipeline_components/v1/model_evaluation/__init__.py +3 -1
  56. google_cloud_pipeline_components/v1/model_evaluation/classification_component.py +2 -2
  57. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_classification_pipeline.py +10 -1
  58. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +13 -4
  59. google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/__init__.py +2 -2
  60. google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/autosxs/autosxs_pipeline.py +2 -2
  61. google_cloud_pipeline_components/version.py +1 -1
  62. {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/METADATA +3 -3
  63. {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/RECORD +67 -68
  64. {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/WHEEL +1 -1
  65. google_cloud_pipeline_components/proto/preflight_validations_pb2.py +0 -47
  66. /google_cloud_pipeline_components/{preview → v1}/model_evaluation/model_based_llm_evaluation/autosxs/__init__.py +0 -0
  67. {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/LICENSE +0 -0
  68. {google_cloud_pipeline_components-2.13.0.dist-info → google_cloud_pipeline_components-2.14.0.dist-info}/top_level.txt +0 -0
@@ -97,14 +97,14 @@ def automl_forecasting_stage_2_tuner(
97
97
  ' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
98
98
  ' "container_spec": {"image_uri":"'
99
99
  ),
100
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325',
100
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625',
101
101
  '", "args": ["forecasting_mp_l2l_stage_2_tuner',
102
102
  '", "--region=',
103
103
  location,
104
104
  '", "--transform_output_path=',
105
105
  transform_output.uri,
106
106
  '", "--training_docker_uri=',
107
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325',
107
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625',
108
108
  f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
109
109
  '", "--training_base_dir=',
110
110
  root_dir,
@@ -5573,7 +5573,7 @@ deploymentSpec:
5573
5573
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5574
5574
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5575
5575
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5576
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5576
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5577
5577
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5578
5578
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5579
5579
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5607,7 +5607,7 @@ deploymentSpec:
5607
5607
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5608
5608
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5609
5609
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5610
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5610
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5611
5611
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5612
5612
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5613
5613
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5642,11 +5642,11 @@ deploymentSpec:
5642
5642
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5643
5643
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5644
5644
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5645
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5645
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5646
5646
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5647
5647
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5648
5648
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5649
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5649
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5650
5650
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5651
5651
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5652
5652
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5685,11 +5685,11 @@ deploymentSpec:
5685
5685
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5686
5686
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5687
5687
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5688
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5688
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5689
5689
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5690
5690
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5691
5691
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5692
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5692
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5693
5693
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5694
5694
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5695
5695
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5728,7 +5728,7 @@ deploymentSpec:
5728
5728
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5729
5729
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5730
5730
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5731
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240214_1325", "\",
5731
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
5732
5732
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5733
5733
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5734
5734
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5793,7 +5793,7 @@ deploymentSpec:
5793
5793
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5794
5794
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5795
5795
  \ stage_2_single_run_max_secs,\n )\n\n"
5796
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
5796
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5797
5797
  exec-calculate-training-parameters-2:
5798
5798
  container:
5799
5799
  args:
@@ -5849,7 +5849,7 @@ deploymentSpec:
5849
5849
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5850
5850
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5851
5851
  \ stage_2_single_run_max_secs,\n )\n\n"
5852
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
5852
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5853
5853
  exec-feature-attribution:
5854
5854
  container:
5855
5855
  args:
@@ -6040,8 +6040,8 @@ deploymentSpec:
6040
6040
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6041
6041
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6042
6042
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6043
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325
6044
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6043
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6044
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6045
6045
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6046
6046
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6047
6047
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6058,7 +6058,7 @@ deploymentSpec:
6058
6058
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6059
6059
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6060
6060
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6061
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6061
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6062
6062
  resources:
6063
6063
  cpuLimit: 8.0
6064
6064
  memoryLimit: 30.0
@@ -6089,7 +6089,7 @@ deploymentSpec:
6089
6089
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6090
6090
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6091
6091
  \ ),\n )(forecasting_type, quantiles)\n\n"
6092
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6092
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6093
6093
  exec-finalize-eval-quantile-parameters-2:
6094
6094
  container:
6095
6095
  args:
@@ -6117,7 +6117,7 @@ deploymentSpec:
6117
6117
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6118
6118
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6119
6119
  \ ),\n )(forecasting_type, quantiles)\n\n"
6120
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6120
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6121
6121
  exec-get-or-create-model-description:
6122
6122
  container:
6123
6123
  args:
@@ -6146,7 +6146,7 @@ deploymentSpec:
6146
6146
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6147
6147
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6148
6148
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6149
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6149
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6150
6150
  exec-get-or-create-model-description-2:
6151
6151
  container:
6152
6152
  args:
@@ -6175,7 +6175,7 @@ deploymentSpec:
6175
6175
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6176
6176
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6177
6177
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6178
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6178
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6179
6179
  exec-get-prediction-image-uri:
6180
6180
  container:
6181
6181
  args:
@@ -6198,14 +6198,14 @@ deploymentSpec:
6198
6198
  Returns the prediction image corresponding to the given model type.\"\"\"\
6199
6199
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6200
6200
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6201
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240214_1325',\n\
6202
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240214_1325',\n\
6203
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240214_1325',\n\
6204
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240214_1325',\n\
6201
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6202
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6203
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6204
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6205
6205
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6206
6206
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6207
6207
  \ )\n return images[model_type]\n\n"
6208
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6208
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6209
6209
  exec-get-prediction-image-uri-2:
6210
6210
  container:
6211
6211
  args:
@@ -6228,14 +6228,14 @@ deploymentSpec:
6228
6228
  Returns the prediction image corresponding to the given model type.\"\"\"\
6229
6229
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6230
6230
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6231
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240214_1325',\n\
6232
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240214_1325',\n\
6233
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240214_1325',\n\
6234
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240214_1325',\n\
6231
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6232
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6233
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6234
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6235
6235
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6236
6236
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6237
6237
  \ )\n return images[model_type]\n\n"
6238
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6238
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6239
6239
  exec-get-predictions-column:
6240
6240
  container:
6241
6241
  args:
@@ -6258,7 +6258,7 @@ deploymentSpec:
6258
6258
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6259
6259
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6260
6260
  \ return f'predicted_{target_column}.value'\n\n"
6261
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6261
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6262
6262
  exec-get-predictions-column-2:
6263
6263
  container:
6264
6264
  args:
@@ -6281,7 +6281,7 @@ deploymentSpec:
6281
6281
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6282
6282
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6283
6283
  \ return f'predicted_{target_column}.value'\n\n"
6284
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6284
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6285
6285
  exec-importer:
6286
6286
  importer:
6287
6287
  artifactUri:
@@ -6813,7 +6813,7 @@ deploymentSpec:
6813
6813
  \ 'model_display_name',\n 'transformations',\n ],\n\
6814
6814
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6815
6815
  \ model_display_name,\n transformations,\n )\n\n"
6816
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6816
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6817
6817
  exec-split-materialized-data:
6818
6818
  container:
6819
6819
  args:
@@ -6859,7 +6859,7 @@ deploymentSpec:
6859
6859
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6860
6860
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6861
6861
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6862
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325
6862
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6863
6863
  exec-string-not-empty:
6864
6864
  container:
6865
6865
  args:
@@ -6883,7 +6883,7 @@ deploymentSpec:
6883
6883
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6884
6884
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6885
6885
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6886
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6886
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6887
6887
  exec-table-to-uri:
6888
6888
  container:
6889
6889
  args:
@@ -6913,7 +6913,7 @@ deploymentSpec:
6913
6913
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6914
6914
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6915
6915
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6916
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6916
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6917
6917
  exec-table-to-uri-2:
6918
6918
  container:
6919
6919
  args:
@@ -6943,7 +6943,7 @@ deploymentSpec:
6943
6943
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6944
6944
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6945
6945
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6946
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6946
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6947
6947
  exec-training-configurator-and-validator:
6948
6948
  container:
6949
6949
  args:
@@ -6988,7 +6988,7 @@ deploymentSpec:
6988
6988
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6989
6989
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6990
6990
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6991
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6991
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6992
6992
  pipelineInfo:
6993
6993
  description: The AutoML Forecasting pipeline.
6994
6994
  name: learn-to-learn-forecasting
@@ -5555,7 +5555,7 @@ deploymentSpec:
5555
5555
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5556
5556
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5557
5557
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5558
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5558
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5559
5559
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5560
5560
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5561
5561
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5589,7 +5589,7 @@ deploymentSpec:
5589
5589
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5590
5590
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5591
5591
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5592
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5592
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5593
5593
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5594
5594
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5595
5595
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5624,11 +5624,11 @@ deploymentSpec:
5624
5624
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5625
5625
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5626
5626
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5627
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5627
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5628
5628
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5629
5629
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5630
5630
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5631
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5631
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5632
5632
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5633
5633
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5634
5634
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5667,11 +5667,11 @@ deploymentSpec:
5667
5667
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5668
5668
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5669
5669
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5670
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5670
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5671
5671
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5672
5672
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5673
5673
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5674
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240214_1325",
5674
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5675
5675
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5676
5676
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5677
5677
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5710,7 +5710,7 @@ deploymentSpec:
5710
5710
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5711
5711
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5712
5712
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5713
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240214_1325", "\",
5713
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
5714
5714
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5715
5715
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5716
5716
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5775,7 +5775,7 @@ deploymentSpec:
5775
5775
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5776
5776
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5777
5777
  \ stage_2_single_run_max_secs,\n )\n\n"
5778
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
5778
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5779
5779
  exec-calculate-training-parameters-2:
5780
5780
  container:
5781
5781
  args:
@@ -5831,7 +5831,7 @@ deploymentSpec:
5831
5831
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5832
5832
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5833
5833
  \ stage_2_single_run_max_secs,\n )\n\n"
5834
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
5834
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5835
5835
  exec-feature-attribution:
5836
5836
  container:
5837
5837
  args:
@@ -6022,8 +6022,8 @@ deploymentSpec:
6022
6022
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6023
6023
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6024
6024
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6025
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325
6026
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6025
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6026
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6027
6027
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6028
6028
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6029
6029
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6040,7 +6040,7 @@ deploymentSpec:
6040
6040
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6041
6041
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6042
6042
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6043
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6043
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6044
6044
  resources:
6045
6045
  cpuLimit: 8.0
6046
6046
  memoryLimit: 30.0
@@ -6071,7 +6071,7 @@ deploymentSpec:
6071
6071
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6072
6072
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6073
6073
  \ ),\n )(forecasting_type, quantiles)\n\n"
6074
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6074
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6075
6075
  exec-finalize-eval-quantile-parameters-2:
6076
6076
  container:
6077
6077
  args:
@@ -6099,7 +6099,7 @@ deploymentSpec:
6099
6099
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6100
6100
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6101
6101
  \ ),\n )(forecasting_type, quantiles)\n\n"
6102
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6102
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6103
6103
  exec-get-or-create-model-description:
6104
6104
  container:
6105
6105
  args:
@@ -6128,7 +6128,7 @@ deploymentSpec:
6128
6128
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6129
6129
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6130
6130
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6131
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6131
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6132
6132
  exec-get-or-create-model-description-2:
6133
6133
  container:
6134
6134
  args:
@@ -6157,7 +6157,7 @@ deploymentSpec:
6157
6157
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6158
6158
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6159
6159
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6160
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6160
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6161
6161
  exec-get-prediction-image-uri:
6162
6162
  container:
6163
6163
  args:
@@ -6180,14 +6180,14 @@ deploymentSpec:
6180
6180
  Returns the prediction image corresponding to the given model type.\"\"\"\
6181
6181
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6182
6182
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6183
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240214_1325',\n\
6184
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240214_1325',\n\
6185
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240214_1325',\n\
6186
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240214_1325',\n\
6183
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6184
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6185
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6186
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6187
6187
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6188
6188
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6189
6189
  \ )\n return images[model_type]\n\n"
6190
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6190
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6191
6191
  exec-get-prediction-image-uri-2:
6192
6192
  container:
6193
6193
  args:
@@ -6210,14 +6210,14 @@ deploymentSpec:
6210
6210
  Returns the prediction image corresponding to the given model type.\"\"\"\
6211
6211
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6212
6212
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6213
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240214_1325',\n\
6214
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240214_1325',\n\
6215
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240214_1325',\n\
6216
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240214_1325',\n\
6213
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6214
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6215
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6216
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6217
6217
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6218
6218
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6219
6219
  \ )\n return images[model_type]\n\n"
6220
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6220
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6221
6221
  exec-get-predictions-column:
6222
6222
  container:
6223
6223
  args:
@@ -6240,7 +6240,7 @@ deploymentSpec:
6240
6240
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6241
6241
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6242
6242
  \ return f'predicted_{target_column}.value'\n\n"
6243
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6243
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6244
6244
  exec-get-predictions-column-2:
6245
6245
  container:
6246
6246
  args:
@@ -6263,7 +6263,7 @@ deploymentSpec:
6263
6263
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6264
6264
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6265
6265
  \ return f'predicted_{target_column}.value'\n\n"
6266
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6266
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6267
6267
  exec-importer:
6268
6268
  importer:
6269
6269
  artifactUri:
@@ -6795,7 +6795,7 @@ deploymentSpec:
6795
6795
  \ 'model_display_name',\n 'transformations',\n ],\n\
6796
6796
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6797
6797
  \ model_display_name,\n transformations,\n )\n\n"
6798
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6798
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6799
6799
  exec-split-materialized-data:
6800
6800
  container:
6801
6801
  args:
@@ -6841,7 +6841,7 @@ deploymentSpec:
6841
6841
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6842
6842
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6843
6843
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6844
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240214_1325
6844
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6845
6845
  exec-string-not-empty:
6846
6846
  container:
6847
6847
  args:
@@ -6865,7 +6865,7 @@ deploymentSpec:
6865
6865
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6866
6866
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6867
6867
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6868
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6868
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6869
6869
  exec-table-to-uri:
6870
6870
  container:
6871
6871
  args:
@@ -6895,7 +6895,7 @@ deploymentSpec:
6895
6895
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6896
6896
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6897
6897
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6898
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6898
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6899
6899
  exec-table-to-uri-2:
6900
6900
  container:
6901
6901
  args:
@@ -6925,7 +6925,7 @@ deploymentSpec:
6925
6925
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6926
6926
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6927
6927
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6928
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
6928
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6929
6929
  exec-training-configurator-and-validator:
6930
6930
  container:
6931
6931
  args:
@@ -6970,7 +6970,7 @@ deploymentSpec:
6970
6970
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6971
6971
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6972
6972
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6973
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240214_1325
6973
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6974
6974
  pipelineInfo:
6975
6975
  description: The Sequence to Sequence (Seq2Seq) Forecasting pipeline.
6976
6976
  name: sequence-to-sequence-forecasting