gebpy 1.1.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gebpy/__init__.py +55 -0
- gebpy/__pycache__/__init__.cpython-310.pyc +0 -0
- gebpy/adapters/__init__.py +0 -0
- gebpy/cli/__init__.py +0 -0
- gebpy/core/__init__.py +0 -0
- gebpy/core/chemistry/__init__.py +0 -0
- gebpy/core/chemistry/common.py +1369 -0
- gebpy/core/chemistry/elements.py +317 -0
- gebpy/core/chemistry/geochemistry.py +1728 -0
- gebpy/core/fluids/__init__.py +0 -0
- gebpy/core/io/__init__.py +0 -0
- gebpy/core/mathematics/__init__.py +0 -0
- gebpy/core/minerals/__init__.py +0 -0
- gebpy/core/minerals/carbonates.py +412 -0
- gebpy/core/minerals/common.py +555 -0
- gebpy/core/minerals/config.py +77 -0
- gebpy/core/minerals/cyclosilicates.py +0 -0
- gebpy/core/minerals/halides.py +0 -0
- gebpy/core/minerals/inosilicates.py +0 -0
- gebpy/core/minerals/nesosilicates.py +0 -0
- gebpy/core/minerals/organics.py +0 -0
- gebpy/core/minerals/oxides.py +589 -0
- gebpy/core/minerals/phosphates.py +0 -0
- gebpy/core/minerals/phospides.py +0 -0
- gebpy/core/minerals/phyllosilicates.py +436 -0
- gebpy/core/minerals/sorosilicates.py +0 -0
- gebpy/core/minerals/sulfates.py +0 -0
- gebpy/core/minerals/sulfides.py +459 -0
- gebpy/core/minerals/synthesis.py +201 -0
- gebpy/core/minerals/tectosilicates.py +433 -0
- gebpy/core/physics/__init__.py +0 -0
- gebpy/core/physics/common.py +53 -0
- gebpy/core/physics/geophysics.py +351 -0
- gebpy/core/rocks/__init__.py +0 -0
- gebpy/core/rocks/anisotropic_rocks.py +395 -0
- gebpy/core/rocks/common.py +95 -0
- gebpy/core/rocks/config.py +77 -0
- gebpy/core/rocks/isotropic_rocks.py +395 -0
- gebpy/core/rocks/sedimentary.py +385 -0
- gebpy/core/subsurface/__init__.py +0 -0
- gebpy/data_minerals/__init__.py +0 -0
- gebpy/data_minerals/albite.yaml +59 -0
- gebpy/data_minerals/anatase.yaml +43 -0
- gebpy/data_minerals/ankerite.yaml +47 -0
- gebpy/data_minerals/annite.yaml +57 -0
- gebpy/data_minerals/anorthite.yaml +59 -0
- gebpy/data_minerals/antigorite.yaml +53 -0
- gebpy/data_minerals/aragonite.yaml +48 -0
- gebpy/data_minerals/argutite.yaml +43 -0
- gebpy/data_minerals/arsenolite.yaml +40 -0
- gebpy/data_minerals/au3oxide.yaml +46 -0
- gebpy/data_minerals/avicennite.yaml +40 -0
- gebpy/data_minerals/azurite.yaml +53 -0
- gebpy/data_minerals/baddeleyite.yaml +49 -0
- gebpy/data_minerals/bismite.yaml +49 -0
- gebpy/data_minerals/boehmite.yaml +48 -0
- gebpy/data_minerals/brookite.yaml +46 -0
- gebpy/data_minerals/brucite.yaml +45 -0
- gebpy/data_minerals/bunsenite.yaml +40 -0
- gebpy/data_minerals/calcite.yaml +45 -0
- gebpy/data_minerals/cassiterite.yaml +43 -0
- gebpy/data_minerals/cerussite.yaml +48 -0
- gebpy/data_minerals/chamosite.yaml +56 -0
- gebpy/data_minerals/chlorite.yaml +75 -0
- gebpy/data_minerals/chromite.yaml +42 -0
- gebpy/data_minerals/chrysotile.yaml +53 -0
- gebpy/data_minerals/claudetite.yaml +49 -0
- gebpy/data_minerals/clinochlore.yaml +55 -0
- gebpy/data_minerals/cochromite.yaml +42 -0
- gebpy/data_minerals/corundum.yaml +43 -0
- gebpy/data_minerals/crocoite.yaml +51 -0
- gebpy/data_minerals/cuprite.yaml +40 -0
- gebpy/data_minerals/cuprospinel.yaml +42 -0
- gebpy/data_minerals/diaspore.yaml +48 -0
- gebpy/data_minerals/dolomite.yaml +47 -0
- gebpy/data_minerals/eastonite.yaml +57 -0
- gebpy/data_minerals/eskolaite.yaml +43 -0
- gebpy/data_minerals/fechlorite.yaml +61 -0
- gebpy/data_minerals/fecolumbite.yaml +48 -0
- gebpy/data_minerals/ferberite.yaml +51 -0
- gebpy/data_minerals/fetantalite.yaml +48 -0
- gebpy/data_minerals/franklinite.yaml +42 -0
- gebpy/data_minerals/gahnite.yaml +42 -0
- gebpy/data_minerals/galaxite.yaml +42 -0
- gebpy/data_minerals/geikielite.yaml +45 -0
- gebpy/data_minerals/gibbsite.yaml +51 -0
- gebpy/data_minerals/glauconite.yaml +69 -0
- gebpy/data_minerals/goethite.yaml +48 -0
- gebpy/data_minerals/groutite.yaml +48 -0
- gebpy/data_minerals/hematite.yaml +43 -0
- gebpy/data_minerals/hercynite.yaml +42 -0
- gebpy/data_minerals/huebnerite.yaml +51 -0
- gebpy/data_minerals/ikaite.yaml +53 -0
- gebpy/data_minerals/illite.yaml +55 -0
- gebpy/data_minerals/ilmenite.yaml +45 -0
- gebpy/data_minerals/jacobsite.yaml +42 -0
- gebpy/data_minerals/kalsilite.yaml +47 -0
- gebpy/data_minerals/kaolinite.yaml +59 -0
- gebpy/data_minerals/karelianite.yaml +43 -0
- gebpy/data_minerals/lime.yaml +40 -0
- gebpy/data_minerals/litharge.yaml +43 -0
- gebpy/data_minerals/magnesiochromite.yaml +42 -0
- gebpy/data_minerals/magnesioferrite.yaml +42 -0
- gebpy/data_minerals/magnesite.yaml +45 -0
- gebpy/data_minerals/magnetite.yaml +41 -0
- gebpy/data_minerals/malachite.yaml +53 -0
- gebpy/data_minerals/manganite.yaml +51 -0
- gebpy/data_minerals/manganochromite.yaml +42 -0
- gebpy/data_minerals/manganosite.yaml +40 -0
- gebpy/data_minerals/marialite.yaml +49 -0
- gebpy/data_minerals/massicot.yaml +46 -0
- gebpy/data_minerals/meionite.yaml +49 -0
- gebpy/data_minerals/mgchlorite.yaml +61 -0
- gebpy/data_minerals/mgcolumbite.yaml +48 -0
- gebpy/data_minerals/mgtantalite.yaml +48 -0
- gebpy/data_minerals/microcline.yaml +59 -0
- gebpy/data_minerals/minium.yaml +44 -0
- gebpy/data_minerals/mnchlorite.yaml +61 -0
- gebpy/data_minerals/mncolumbite.yaml +48 -0
- gebpy/data_minerals/mntantalite.yaml +48 -0
- gebpy/data_minerals/monteponite.yaml +40 -0
- gebpy/data_minerals/montmorillonite.yaml +77 -0
- gebpy/data_minerals/muscovite.yaml +55 -0
- gebpy/data_minerals/nanepheline.yaml +47 -0
- gebpy/data_minerals/nichlorite.yaml +61 -0
- gebpy/data_minerals/nichromite.yaml +42 -0
- gebpy/data_minerals/nimite.yaml +55 -0
- gebpy/data_minerals/nontronite.yaml +73 -0
- gebpy/data_minerals/orthoclase.yaml +53 -0
- gebpy/data_minerals/paratellurite.yaml +43 -0
- gebpy/data_minerals/pennantite.yaml +61 -0
- gebpy/data_minerals/periclase.yaml +40 -0
- gebpy/data_minerals/phlogopite.yaml +57 -0
- gebpy/data_minerals/plattnerite.yaml +43 -0
- gebpy/data_minerals/powellite.yaml +45 -0
- gebpy/data_minerals/pyrite.yaml +40 -0
- gebpy/data_minerals/pyrolusite.yaml +43 -0
- gebpy/data_minerals/pyrophanite.yaml +45 -0
- gebpy/data_minerals/pyrophyllite.yaml +59 -0
- gebpy/data_minerals/quartz.yaml +43 -0
- gebpy/data_minerals/rhodochrosite.yaml +45 -0
- gebpy/data_minerals/rutile.yaml +43 -0
- gebpy/data_minerals/saponite.yaml +77 -0
- gebpy/data_minerals/scheelite.yaml +45 -0
- gebpy/data_minerals/scrutinyite.yaml +46 -0
- gebpy/data_minerals/senarmontite.yaml +40 -0
- gebpy/data_minerals/siderite.yaml +45 -0
- gebpy/data_minerals/siderophyllite.yaml +57 -0
- gebpy/data_minerals/smithsonite.yaml +45 -0
- gebpy/data_minerals/spinel.yaml +42 -0
- gebpy/data_minerals/stishovite.yaml +43 -0
- gebpy/data_minerals/stolzite.yaml +45 -0
- gebpy/data_minerals/talc.yaml +53 -0
- gebpy/data_minerals/tistarite.yaml +43 -0
- gebpy/data_minerals/trevorite.yaml +42 -0
- gebpy/data_minerals/ulvoespinel.yaml +42 -0
- gebpy/data_minerals/uraninite.yaml +40 -0
- gebpy/data_minerals/valentinite.yaml +46 -0
- gebpy/data_minerals/vermiculite.yaml +69 -0
- gebpy/data_minerals/wulfenite.yaml +45 -0
- gebpy/data_minerals/wustite.yaml +40 -0
- gebpy/data_minerals/zincite.yaml +43 -0
- gebpy/data_minerals/zincochromite.yaml +42 -0
- gebpy/data_rocks/__init__.py +0 -0
- gebpy/data_rocks/dolostone.yaml +40 -0
- gebpy/data_rocks/limestone.yaml +40 -0
- gebpy/data_rocks/marl.yaml +50 -0
- gebpy/data_rocks/sandstone.yaml +39 -0
- gebpy/data_rocks/shale.yaml +50 -0
- gebpy/gebpy_app.py +8732 -0
- gebpy/gui/__init__.py +0 -0
- gebpy/lib/images/GebPy_Header.png +0 -0
- gebpy/lib/images/GebPy_Icon.png +0 -0
- gebpy/lib/images/GebPy_Logo.png +0 -0
- gebpy/main.py +29 -0
- gebpy/modules/__init__.py +0 -0
- gebpy/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- gebpy/modules/__pycache__/metamorphics.cpython-310.pyc +0 -0
- gebpy/modules/__pycache__/silicates.cpython-310.pyc +0 -0
- gebpy/modules/carbonates.py +2658 -0
- gebpy/modules/chemistry.py +1369 -0
- gebpy/modules/core.py +1805 -0
- gebpy/modules/elements.py +317 -0
- gebpy/modules/evaporites.py +1299 -0
- gebpy/modules/exploration.py +1145 -0
- gebpy/modules/fluids.py +339 -0
- gebpy/modules/geochemistry.py +1727 -0
- gebpy/modules/geophysics.py +351 -0
- gebpy/modules/gui.py +9093 -0
- gebpy/modules/gui_elements.py +145 -0
- gebpy/modules/halides.py +485 -0
- gebpy/modules/igneous.py +2241 -0
- gebpy/modules/metamorphics.py +3222 -0
- gebpy/modules/mineralogy.py +442 -0
- gebpy/modules/minerals.py +7954 -0
- gebpy/modules/ore.py +1648 -0
- gebpy/modules/organics.py +530 -0
- gebpy/modules/oxides.py +9057 -0
- gebpy/modules/petrophysics.py +98 -0
- gebpy/modules/phosphates.py +589 -0
- gebpy/modules/phospides.py +194 -0
- gebpy/modules/plotting.py +619 -0
- gebpy/modules/pyllosilicates.py +380 -0
- gebpy/modules/sedimentary_rocks.py +908 -0
- gebpy/modules/sequences.py +2166 -0
- gebpy/modules/series.py +1625 -0
- gebpy/modules/silicates.py +11102 -0
- gebpy/modules/siliciclastics.py +1846 -0
- gebpy/modules/subsurface_2d.py +179 -0
- gebpy/modules/sulfates.py +1629 -0
- gebpy/modules/sulfides.py +4786 -0
- gebpy/plotting/__init__.py +0 -0
- gebpy/ui_nb/__init__.py +0 -0
- gebpy/user_data/.gitkeep +0 -0
- gebpy-1.1.3.dist-info/LICENSE +165 -0
- gebpy-1.1.3.dist-info/METADATA +207 -0
- gebpy-1.1.3.dist-info/RECORD +254 -0
- gebpy-1.1.3.dist-info/WHEEL +5 -0
- gebpy-1.1.3.dist-info/entry_points.txt +2 -0
- gebpy-1.1.3.dist-info/top_level.txt +1 -0
- modules/__init__.py +0 -0
- modules/carbonates.py +2658 -0
- modules/chemistry.py +1369 -0
- modules/core.py +1805 -0
- modules/elements.py +317 -0
- modules/evaporites.py +1299 -0
- modules/exploration.py +765 -0
- modules/fluids.py +339 -0
- modules/geochemistry.py +1727 -0
- modules/geophysics.py +337 -0
- modules/gui.py +9093 -0
- modules/gui_elements.py +145 -0
- modules/halides.py +485 -0
- modules/igneous.py +2196 -0
- modules/metamorphics.py +2699 -0
- modules/mineralogy.py +442 -0
- modules/minerals.py +7954 -0
- modules/ore.py +1628 -0
- modules/organics.py +530 -0
- modules/oxides.py +9057 -0
- modules/petrophysics.py +98 -0
- modules/phosphates.py +589 -0
- modules/phospides.py +194 -0
- modules/plotting.py +619 -0
- modules/pyllosilicates.py +380 -0
- modules/sedimentary_rocks.py +908 -0
- modules/sequences.py +2166 -0
- modules/series.py +1625 -0
- modules/silicates.py +11102 -0
- modules/siliciclastics.py +1830 -0
- modules/subsurface_2d.py +179 -0
- modules/sulfates.py +1629 -0
- modules/sulfides.py +4786 -0
- notebooks/__init__.py +0 -0
|
@@ -0,0 +1,1830 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# -*-coding: utf-8 -*-
|
|
3
|
+
|
|
4
|
+
#-----------------------------------------------
|
|
5
|
+
|
|
6
|
+
# Name: siliciclastics.py
|
|
7
|
+
# Author: Maximilian A. Beeskow
|
|
8
|
+
# Version: 1.0
|
|
9
|
+
# Date: 10.12.2024
|
|
10
|
+
|
|
11
|
+
#-----------------------------------------------
|
|
12
|
+
|
|
13
|
+
## MODULES
|
|
14
|
+
import datetime
|
|
15
|
+
import sys
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
from numpy import round
|
|
19
|
+
from random import *
|
|
20
|
+
import random as rd
|
|
21
|
+
from modules import minerals, oxides, fluids
|
|
22
|
+
from modules.geophysics import Elasticity as elast
|
|
23
|
+
from modules import oxides, carbonates, silicates
|
|
24
|
+
from modules.chemistry import PeriodicSystem, OxideCompounds
|
|
25
|
+
from modules.oxides import Oxides
|
|
26
|
+
from modules.carbonates import Carbonates
|
|
27
|
+
from modules.silicates import Phyllosilicates
|
|
28
|
+
from modules.silicates import Tectosilicates
|
|
29
|
+
from modules.sulfides import Sulfides
|
|
30
|
+
from modules.organics import Organics
|
|
31
|
+
from modules.phosphates import Phosphates
|
|
32
|
+
from modules.fluids import Water, Hydrocarbons
|
|
33
|
+
from modules.petrophysics import SeismicVelocities
|
|
34
|
+
|
|
35
|
+
class Geophysics:
|
|
36
|
+
#
|
|
37
|
+
def __init__(self, var_data):
|
|
38
|
+
self.var_data = var_data
|
|
39
|
+
#
|
|
40
|
+
def calculate_seismic_velocity(self):
|
|
41
|
+
results = {"vP": 0, "vS": 0}
|
|
42
|
+
var_porosity = self.var_data["porosity"]
|
|
43
|
+
#
|
|
44
|
+
for var_type in results.keys():
|
|
45
|
+
inv_v = 0
|
|
46
|
+
for key, velocity in self.var_data["v"].items():
|
|
47
|
+
fraction = self.var_data["Phi"][key]
|
|
48
|
+
inv_v += fraction/velocity[var_type]
|
|
49
|
+
#inv_v += fraction/(velocity[var_type]**(1 - var_porosity))
|
|
50
|
+
#inv_v += ((1 - var_porosity)*fraction)/velocity[var_type]
|
|
51
|
+
results[var_type] = round((1/inv_v)**(1 - var_porosity), 3)
|
|
52
|
+
#results[var_type] = round((1/inv_v), 3)
|
|
53
|
+
#
|
|
54
|
+
return results
|
|
55
|
+
|
|
56
|
+
class Soil:
|
|
57
|
+
#
|
|
58
|
+
def __init__(self):
|
|
59
|
+
pass
|
|
60
|
+
#
|
|
61
|
+
def create_simple_soil(self, w_C=None, amounts=None, grainsize_list=False):
|
|
62
|
+
self.w_C = w_C
|
|
63
|
+
self.amounts = amounts
|
|
64
|
+
#
|
|
65
|
+
# [chemical formula, molar mass, density, bulk modulus, shear modulus, vP, vS]
|
|
66
|
+
quartz = minerals.oxides.quartz("")
|
|
67
|
+
illite = minerals.phyllosilicates.illite("")
|
|
68
|
+
kaolinite = minerals.phyllosilicates.kaolinite("")
|
|
69
|
+
organic = minerals.natives.organic_matter("")
|
|
70
|
+
#
|
|
71
|
+
mineralogy = [quartz, illite, kaolinite, organic]
|
|
72
|
+
#
|
|
73
|
+
# [molar mass, density, bulk modulus, vP]
|
|
74
|
+
water = fluids.Water.water("")
|
|
75
|
+
air = fluids.Gas.air("")
|
|
76
|
+
#
|
|
77
|
+
data = []
|
|
78
|
+
#
|
|
79
|
+
cond = False
|
|
80
|
+
composition = []
|
|
81
|
+
while cond == False:
|
|
82
|
+
if self.w_C == None and self.amounts == None:
|
|
83
|
+
w_org = 0.05
|
|
84
|
+
w_qz = round(abs(rd.uniform(0.5, 0.95)), 4)
|
|
85
|
+
w_ilt = round(abs(rd.uniform(0.0, (1-w_org-w_qz))), 4)
|
|
86
|
+
w_kln = round(abs(1-w_qz-w_ilt-w_org), 4)
|
|
87
|
+
elif self.w_C != None:
|
|
88
|
+
w_org = round(self.w_C, 4)
|
|
89
|
+
w_mineral = round(1-w_org, 4)
|
|
90
|
+
w_qz = round(abs(w_mineral*rd.uniform(0.25, 1)), 4)
|
|
91
|
+
w_ilt = round(abs(w_mineral*rd.uniform(0, (1-w_qz))), 4)
|
|
92
|
+
w_kln = round(abs(w_mineral*(1-w_qz-w_ilt)), 4)
|
|
93
|
+
elif type(self.amounts) is list:
|
|
94
|
+
w_qz = round(abs(np.random.normal(self.amounts[0], 0.025)), 4)
|
|
95
|
+
w_ilt = round(abs(np.random.normal(self.amounts[1], 0.025)), 4)
|
|
96
|
+
w_kln = round(abs(np.random.normal(self.amounts[2], 0.025)), 4)
|
|
97
|
+
w_org = round(1-w_qz-w_ilt-w_kln, 4)
|
|
98
|
+
#
|
|
99
|
+
if 0.0 <= w_qz <= 1.0 and 0.0 <= w_ilt <= 1.0 and 0.0 <= w_kln <= 1.0 and 0.0 <= w_org <= 1.0:
|
|
100
|
+
sumMin = round(w_qz + w_ilt + w_kln + w_org, 4)
|
|
101
|
+
else:
|
|
102
|
+
sumMin = 0
|
|
103
|
+
#
|
|
104
|
+
w_H = round(w_ilt*illite[6][0] + w_kln*kaolinite[6][0], 4)
|
|
105
|
+
w_C = round(w_org, 4)
|
|
106
|
+
w_O = round(w_qz*quartz[6][0] + w_ilt*illite[6][1] + w_kln*kaolinite[6][1], 4)
|
|
107
|
+
w_Mg = round(w_ilt*illite[6][2], 4)
|
|
108
|
+
w_Al = round(w_ilt*illite[6][3] + w_kln*kaolinite[6][2], 4)
|
|
109
|
+
w_Si = round(w_qz*quartz[6][1] + w_ilt*illite[6][4] + w_kln*kaolinite[6][3], 4)
|
|
110
|
+
w_K = round(w_ilt*illite[6][5], 4)
|
|
111
|
+
w_Fe = round(w_ilt*illite[6][6], 4)
|
|
112
|
+
sumConc = w_H + w_C + w_O + w_Mg + w_Al + w_Si + w_K + w_Fe
|
|
113
|
+
#
|
|
114
|
+
if sumMin == 1 and sumConc == 1:
|
|
115
|
+
cond = True
|
|
116
|
+
composition.extend((["Qz", "Ilt", "Kln", "Org"]))
|
|
117
|
+
concentrations = [w_H, w_C, w_O, w_Mg, w_Al, w_Si, w_K, w_Fe]
|
|
118
|
+
amounts = [w_qz, w_ilt, w_kln, w_org]
|
|
119
|
+
else:
|
|
120
|
+
cond = False
|
|
121
|
+
#
|
|
122
|
+
grainsize = []
|
|
123
|
+
n_Grains = 100
|
|
124
|
+
if w_qz > 0:
|
|
125
|
+
grainsize.append([rd.randint(2, 2000) for i in range(int(round(w_qz*n_Grains, 0)))])
|
|
126
|
+
if w_ilt > 0:
|
|
127
|
+
grainsize.append(list(np.around([rd.uniform(1, 2) for i in range(int(round(w_ilt*n_Grains, 0)))], 2)))
|
|
128
|
+
if w_kln > 0:
|
|
129
|
+
grainsize.append(list(np.around([rd.uniform(1, 2) for i in range(int(round(w_kln*n_Grains, 0)))], 2)))
|
|
130
|
+
if w_org > 0:
|
|
131
|
+
grainsize.append([rd.randint(2, 63) for i in range(int(round(w_org*n_Grains, 0)))])
|
|
132
|
+
#
|
|
133
|
+
rhoSolid = (w_qz*quartz[2] + w_ilt*illite[2] + w_kln*kaolinite[2] + w_org*organic[2])/1000
|
|
134
|
+
X = [w_qz, w_ilt, w_kln, w_org]
|
|
135
|
+
K_list = [mineralogy[i][3][0] for i in range(len(mineralogy))]
|
|
136
|
+
G_list = [mineralogy[i][3][1] for i in range(len(mineralogy))]
|
|
137
|
+
K_geo = elast.calc_geometric_mean(self, X, K_list)
|
|
138
|
+
G_geo = elast.calc_geometric_mean(self, X, G_list)
|
|
139
|
+
K_solid = K_geo
|
|
140
|
+
G_solid = G_geo
|
|
141
|
+
#vP_solid = np.sqrt((K_solid*10**9+4/3*G_solid*10**9)/(rhoSolid*10**3))
|
|
142
|
+
#vS_solid = np.sqrt((G_solid*10**9)/(rhoSolid*10**3))
|
|
143
|
+
vP_solid = w_qz*quartz[4][0] + w_ilt*illite[4][0] + w_kln*kaolinite[4][0] + w_org*organic[4][0]
|
|
144
|
+
vS_solid = w_qz*quartz[4][1] + w_ilt*illite[4][1] + w_kln*kaolinite[4][1] + w_org*organic[4][1]
|
|
145
|
+
E_solid = (9*K_solid*G_solid)/(3*K_solid+G_solid)
|
|
146
|
+
nu_solid = (3*K_solid-2*G_solid)/(2*(3*K_solid+G_solid))
|
|
147
|
+
#
|
|
148
|
+
phi = rd.uniform(0.5, 0.65)
|
|
149
|
+
#
|
|
150
|
+
rho = (1 - phi) * rhoSolid + phi * (0.5*water[2]+0.5*air[2]/1000) / 1000
|
|
151
|
+
vP = ((1-phi)*vP_solid + phi*(0.5*water[4][0] + 0.5*air[4][0]))/3
|
|
152
|
+
vS = ((1 - phi) * vS_solid)/3
|
|
153
|
+
G_bulk = vS**2 * rho
|
|
154
|
+
K_bulk = vP**2 * rho - 4/3*G_bulk
|
|
155
|
+
E_bulk = (9*K_bulk*G_bulk)/(3*K_bulk+G_bulk)
|
|
156
|
+
phiD = (rhoSolid - rho) / (rhoSolid - (0.5*water[2]+0.5*air[2]/1000) / 1000)
|
|
157
|
+
phiN = (2 * phi ** 2 - phiD ** 2) ** (0.5)
|
|
158
|
+
GR = w_qz*quartz[5][0] + w_ilt*illite[5][0] + w_kln*kaolinite[5][0] + w_org*organic[5][0]
|
|
159
|
+
PE = w_qz*quartz[5][1] + w_ilt*illite[5][1] + w_kln*kaolinite[5][1] + w_org*organic[5][1]
|
|
160
|
+
poisson_seismic = 0.5*(vP**2 - 2*vS**2)/(vP**2 - vS**2)
|
|
161
|
+
poisson_elastic = (3*K_bulk - 2*G_bulk)/(6*K_bulk + 2*G_bulk)
|
|
162
|
+
poisson_mineralogical = w_qz*quartz[3][3] + w_ilt*illite[3][3] + w_kln*kaolinite[3][3] + w_org*organic[3][3]
|
|
163
|
+
#
|
|
164
|
+
data.append(composition)
|
|
165
|
+
data.append([round(rho, 3), round(rhoSolid, 3), round(water[2] / 1000, 6), round(air[2]/1000, 3)])
|
|
166
|
+
data.append([round(K_bulk*10**(-6), 2), round(G_bulk*10**(-6), 2), round(E_bulk*10**(-6), 2), round(poisson_mineralogical, 3)])
|
|
167
|
+
data.append([round(vP, 2), round(vS, 2), round(vP_solid, 2), round(water[4][0], 2), round(air[4][0], 2)])
|
|
168
|
+
data.append([round(phi, 3), round(phiD, 3), round(phiN, 3)])
|
|
169
|
+
data.append(["water", "air"])
|
|
170
|
+
data.append([round(GR, 3), round(PE, 3)])
|
|
171
|
+
data.append(concentrations)
|
|
172
|
+
data.append(amounts)
|
|
173
|
+
if grainsize_list == True:
|
|
174
|
+
data.append(grainsize)
|
|
175
|
+
#
|
|
176
|
+
return data
|
|
177
|
+
#
|
|
178
|
+
def create_simple_sand(self, w_C=None, amounts=None, grainsize_list=False):
|
|
179
|
+
self.w_C = w_C
|
|
180
|
+
self.amounts = amounts
|
|
181
|
+
#
|
|
182
|
+
# [chemical formula, molar mass, density, bulk modulus, shear modulus, vP, vS]
|
|
183
|
+
quartz = minerals.oxides.quartz("")
|
|
184
|
+
illite = minerals.phyllosilicates.illite("")
|
|
185
|
+
kaolinite = minerals.phyllosilicates.kaolinite("")
|
|
186
|
+
organic = minerals.natives.organic_matter("")
|
|
187
|
+
#
|
|
188
|
+
mineralogy = [quartz, illite, kaolinite, organic]
|
|
189
|
+
#
|
|
190
|
+
# [molar mass, density, bulk modulus, vP]
|
|
191
|
+
water = fluids.Water.water("")
|
|
192
|
+
air = fluids.Gas.air("")
|
|
193
|
+
#
|
|
194
|
+
data = []
|
|
195
|
+
#
|
|
196
|
+
cond = False
|
|
197
|
+
composition = []
|
|
198
|
+
while cond == False:
|
|
199
|
+
if self.w_C == None and self.amounts == None:
|
|
200
|
+
w_org = 0.025
|
|
201
|
+
w_qz = round(abs(rd.uniform(0.85, 0.975)), 4)
|
|
202
|
+
w_ilt = round(abs(rd.uniform(0.0, (1-w_org-w_qz))), 4)
|
|
203
|
+
w_kln = round(abs(1-w_qz-w_ilt-w_org), 4)
|
|
204
|
+
elif self.w_C != None:
|
|
205
|
+
w_org = round(self.w_C, 4)
|
|
206
|
+
w_mineral = round(1-w_org, 4)
|
|
207
|
+
w_qz = round(abs(w_mineral*rd.uniform(0.25, 1)), 4)
|
|
208
|
+
w_ilt = round(abs(w_mineral*rd.uniform(0, (1-w_qz))), 4)
|
|
209
|
+
w_kln = round(abs(w_mineral*(1-w_qz-w_ilt)), 4)
|
|
210
|
+
elif type(self.amounts) is list:
|
|
211
|
+
w_qz = round(abs(np.random.normal(self.amounts[0], 0.025)), 4)
|
|
212
|
+
w_ilt = round(abs(np.random.normal(self.amounts[1], 0.025)), 4)
|
|
213
|
+
w_kln = round(abs(np.random.normal(self.amounts[2], 0.025)), 4)
|
|
214
|
+
w_org = round(1-w_qz-w_ilt-w_kln, 4)
|
|
215
|
+
#
|
|
216
|
+
if 0.0 <= w_qz <= 1.0 and 0.0 <= w_ilt <= 1.0 and 0.0 <= w_kln <= 1.0 and 0.0 <= w_org <= 1.0:
|
|
217
|
+
sumMin = round(w_qz + w_ilt + w_kln + w_org, 4)
|
|
218
|
+
else:
|
|
219
|
+
sumMin = 0
|
|
220
|
+
#
|
|
221
|
+
w_H = round(w_ilt*illite[6][0] + w_kln*kaolinite[6][0], 4)
|
|
222
|
+
w_C = round(w_org, 4)
|
|
223
|
+
w_O = round(w_qz*quartz[6][0] + w_ilt*illite[6][1] + w_kln*kaolinite[6][1], 4)
|
|
224
|
+
w_Mg = round(w_ilt*illite[6][2], 4)
|
|
225
|
+
w_Al = round(w_ilt*illite[6][3] + w_kln*kaolinite[6][2], 4)
|
|
226
|
+
w_Si = round(w_qz*quartz[6][1] + w_ilt*illite[6][4] + w_kln*kaolinite[6][3], 4)
|
|
227
|
+
w_K = round(w_ilt*illite[6][5], 4)
|
|
228
|
+
w_Fe = round(w_ilt*illite[6][6], 4)
|
|
229
|
+
sumConc = w_H + w_C + w_O + w_Mg + w_Al + w_Si + w_K + w_Fe
|
|
230
|
+
#
|
|
231
|
+
if sumMin == 1 and sumConc == 1:
|
|
232
|
+
cond = True
|
|
233
|
+
composition.extend((["Qz", "Ilt", "Kln", "Org"]))
|
|
234
|
+
concentrations = [w_H, w_C, w_O, w_Mg, w_Al, w_Si, w_K, w_Fe]
|
|
235
|
+
amounts = [w_qz, w_ilt, w_kln, w_org]
|
|
236
|
+
else:
|
|
237
|
+
cond = False
|
|
238
|
+
#
|
|
239
|
+
grainsize = []
|
|
240
|
+
n_Grains = 100
|
|
241
|
+
if w_qz > 0:
|
|
242
|
+
grainsize.append([rd.randint(2, 2000) for i in range(int(round(w_qz*n_Grains, 0)))])
|
|
243
|
+
if w_ilt > 0:
|
|
244
|
+
grainsize.append(list(np.around([rd.uniform(1, 2) for i in range(int(round(w_ilt*n_Grains, 0)))], 2)))
|
|
245
|
+
if w_kln > 0:
|
|
246
|
+
grainsize.append(list(np.around([rd.uniform(1, 2) for i in range(int(round(w_kln*n_Grains, 0)))], 2)))
|
|
247
|
+
if w_org > 0:
|
|
248
|
+
grainsize.append([rd.randint(2, 63) for i in range(int(round(w_org*n_Grains, 0)))])
|
|
249
|
+
#
|
|
250
|
+
rhoSolid = (w_qz*quartz[2] + w_ilt*illite[2] + w_kln*kaolinite[2] + w_org*organic[2])/1000
|
|
251
|
+
X = [w_qz, w_ilt, w_kln, w_org]
|
|
252
|
+
K_list = [mineralogy[i][3][0] for i in range(len(mineralogy))]
|
|
253
|
+
G_list = [mineralogy[i][3][1] for i in range(len(mineralogy))]
|
|
254
|
+
K_geo = elast.calc_geometric_mean(self, X, K_list)
|
|
255
|
+
G_geo = elast.calc_geometric_mean(self, X, G_list)
|
|
256
|
+
K_solid = K_geo
|
|
257
|
+
G_solid = G_geo
|
|
258
|
+
#vP_solid = np.sqrt((K_solid*10**9+4/3*G_solid*10**9)/(rhoSolid*10**3))
|
|
259
|
+
#vS_solid = np.sqrt((G_solid*10**9)/(rhoSolid*10**3))
|
|
260
|
+
vP_solid = w_qz*quartz[4][0] + w_ilt*illite[4][0] + w_kln*kaolinite[4][0] + w_org*organic[4][0]
|
|
261
|
+
vS_solid = w_qz*quartz[4][1] + w_ilt*illite[4][1] + w_kln*kaolinite[4][1] + w_org*organic[4][1]
|
|
262
|
+
E_solid = (9*K_solid*G_solid)/(3*K_solid+G_solid)
|
|
263
|
+
nu_solid = (3*K_solid-2*G_solid)/(2*(3*K_solid+G_solid))
|
|
264
|
+
#
|
|
265
|
+
phi = rd.uniform(0.45, 0.55)
|
|
266
|
+
#
|
|
267
|
+
rho = (1 - phi) * rhoSolid + phi * water[2] / 1000
|
|
268
|
+
vP = ((1-phi)*vP_solid + phi*water[4][0])/3
|
|
269
|
+
vS = ((1 - phi) * vS_solid)/3
|
|
270
|
+
G_bulk = vS**2 * rho
|
|
271
|
+
K_bulk = vP**2 * rho - 4/3*G_bulk
|
|
272
|
+
E_bulk = (9*K_bulk*G_bulk)/(3*K_bulk+G_bulk)
|
|
273
|
+
phiD = (rhoSolid - rho) / (rhoSolid - water[2]/1000)
|
|
274
|
+
phiN = (2 * phi ** 2 - phiD ** 2) ** (0.5)
|
|
275
|
+
GR = w_qz*quartz[5][0] + w_ilt*illite[5][0] + w_kln*kaolinite[5][0] + w_org*organic[5][0]
|
|
276
|
+
PE = w_qz*quartz[5][1] + w_ilt*illite[5][1] + w_kln*kaolinite[5][1] + w_org*organic[5][1]
|
|
277
|
+
poisson_seismic = 0.5*(vP**2 - 2*vS**2)/(vP**2 - vS**2)
|
|
278
|
+
poisson_elastic = (3*K_bulk - 2*G_bulk)/(6*K_bulk + 2*G_bulk)
|
|
279
|
+
poisson_mineralogical = w_qz*quartz[3][3] + w_ilt*illite[3][3] + w_kln*kaolinite[3][3] + w_org*organic[3][3]
|
|
280
|
+
#
|
|
281
|
+
data.append(composition)
|
|
282
|
+
data.append([round(rho, 3), round(rhoSolid, 3), round(water[2] / 1000, 6)])
|
|
283
|
+
data.append([round(K_bulk*10**(-6), 2), round(G_bulk*10**(-6), 2), round(E_bulk*10**(-6), 2), round(poisson_mineralogical, 3)])
|
|
284
|
+
data.append([round(vP, 2), round(vS, 2), round(vP_solid, 2), round(water[4][0], 2)])
|
|
285
|
+
data.append([round(phi, 3), round(phiD, 3), round(phiN, 3)])
|
|
286
|
+
data.append("water")
|
|
287
|
+
data.append([round(GR, 3), round(PE, 3)])
|
|
288
|
+
data.append(concentrations)
|
|
289
|
+
data.append(amounts)
|
|
290
|
+
if grainsize_list == True:
|
|
291
|
+
data.append(grainsize)
|
|
292
|
+
#
|
|
293
|
+
return data
|
|
294
|
+
|
|
295
|
+
#########################
|
|
296
|
+
## SILICICLASTIC ROCKS ##
|
|
297
|
+
#########################
|
|
298
|
+
class SiliciclasticRocks:
|
|
299
|
+
#
|
|
300
|
+
def __init__(self, fluid="water", actualThickness=100):
|
|
301
|
+
self.fluid = fluid
|
|
302
|
+
self.actualThickness = actualThickness
|
|
303
|
+
self.data_quartz = Oxides(impurity="pure", data_type=True).create_quartz()
|
|
304
|
+
self.data_calcite = Carbonates(impurity="pure", data_type=True).create_calcite()
|
|
305
|
+
self.data_hematite = Oxides(impurity="pure", data_type=True).create_hematite()
|
|
306
|
+
self.data_pyrite = Sulfides(impurity="pure", data_type=True).create_pyrite()
|
|
307
|
+
self.data_uraninite = Oxides(impurity="pure", data_type=True).create_uraninite()
|
|
308
|
+
self.data_kaolinite = Phyllosilicates(impurity="pure", data_type=True).create_kaolinite()
|
|
309
|
+
#
|
|
310
|
+
self.data_water = Water.water("")
|
|
311
|
+
self.data_oil = Hydrocarbons.oil("")
|
|
312
|
+
self.data_gas = Hydrocarbons.natural_gas("")
|
|
313
|
+
#
|
|
314
|
+
def create_sandstone(self, rock="Sandstone", number=1, composition=None, classification="Sandstone", porosity=None):
|
|
315
|
+
results_container = {}
|
|
316
|
+
results_container["rock"] = rock
|
|
317
|
+
results_container["mineralogy"] = {}
|
|
318
|
+
results_container["chemistry"] = {}
|
|
319
|
+
results_container["compounds"] = {}
|
|
320
|
+
results_container["phi"] = []
|
|
321
|
+
results_container["phi_true"] = []
|
|
322
|
+
results_container["fluid"] = self.fluid
|
|
323
|
+
results_container["rho_s"] = []
|
|
324
|
+
results_container["rho"] = []
|
|
325
|
+
results_container["vP"] = []
|
|
326
|
+
results_container["vS"] = []
|
|
327
|
+
results_container["vP/vS"] = []
|
|
328
|
+
results_container["K"] = []
|
|
329
|
+
results_container["G"] = []
|
|
330
|
+
results_container["E"] = []
|
|
331
|
+
results_container["nu"] = []
|
|
332
|
+
results_container["GR"] = []
|
|
333
|
+
results_container["PE"] = []
|
|
334
|
+
|
|
335
|
+
n = 0
|
|
336
|
+
while n < number:
|
|
337
|
+
data_alkalifeldspar = Tectosilicates(impurity="pure", data_type=True).create_alkalifeldspar()
|
|
338
|
+
data_plagioclase = Tectosilicates(impurity="pure", data_type=True).create_plagioclase()
|
|
339
|
+
mineralogy = {"Qz": self.data_quartz, "Kfs": data_alkalifeldspar, "Pl": data_plagioclase,
|
|
340
|
+
"Kln": self.data_kaolinite, "Hem": self.data_hematite}
|
|
341
|
+
minerals_list = list(mineralogy.keys())
|
|
342
|
+
|
|
343
|
+
if minerals_list[0] not in results_container["mineralogy"]:
|
|
344
|
+
for mineral in minerals_list:
|
|
345
|
+
results_container["mineralogy"][mineral] = []
|
|
346
|
+
|
|
347
|
+
condition = False
|
|
348
|
+
while condition == False:
|
|
349
|
+
elements_list = []
|
|
350
|
+
phi_minerals = {}
|
|
351
|
+
w_minerals = {}
|
|
352
|
+
w_elements = {}
|
|
353
|
+
|
|
354
|
+
if composition != None:
|
|
355
|
+
phi_qz = composition["Qz"]
|
|
356
|
+
phi_kfs = composition["Kfs"]
|
|
357
|
+
phi_pl = composition["Pl"]
|
|
358
|
+
phi_kln = composition["Kln"]
|
|
359
|
+
phi_hem = composition["Hem"]
|
|
360
|
+
|
|
361
|
+
phi_minerals["Qz"] = phi_qz
|
|
362
|
+
phi_minerals["Kfs"] = phi_kfs
|
|
363
|
+
phi_minerals["Pl"] = phi_pl
|
|
364
|
+
phi_minerals["Kln"] = phi_kln
|
|
365
|
+
phi_minerals["Hem"] = phi_hem
|
|
366
|
+
|
|
367
|
+
else:
|
|
368
|
+
condition_2 = False
|
|
369
|
+
while condition_2 == False:
|
|
370
|
+
if classification == "Sandstone":
|
|
371
|
+
qz_limits = [0.7, 1.0]
|
|
372
|
+
kfs_limits = [0.0, 0.25]
|
|
373
|
+
pl_limits = [0.0, 0.25]
|
|
374
|
+
kln_limits = [0.0, 0.25]
|
|
375
|
+
hem_limits = [0.0, 0.05]
|
|
376
|
+
|
|
377
|
+
phi_qz = round(rd.uniform(qz_limits[0], qz_limits[1]), 4)
|
|
378
|
+
phi_kfs = round(rd.uniform(kfs_limits[0], (1 - phi_qz)), 4)
|
|
379
|
+
phi_pl = round(rd.uniform(pl_limits[0], (1 - phi_qz - phi_kfs)), 4)
|
|
380
|
+
phi_kln = round(rd.uniform(kln_limits[0], (1 - phi_qz - phi_kfs - phi_pl)), 4)
|
|
381
|
+
phi_hem = round(1 - phi_qz - phi_kfs - phi_pl - phi_kln, 4)
|
|
382
|
+
|
|
383
|
+
phi_total = phi_qz + phi_kfs + phi_pl + phi_kln + phi_hem
|
|
384
|
+
|
|
385
|
+
if np.isclose(phi_total, 1.0000) == True:
|
|
386
|
+
if qz_limits[0] <= phi_qz <= qz_limits[1] \
|
|
387
|
+
and kfs_limits[0] <= phi_kfs <= kfs_limits[1] \
|
|
388
|
+
and pl_limits[0] <= phi_pl <= pl_limits[1] \
|
|
389
|
+
and kln_limits[0] <= phi_kln <= kln_limits[1] \
|
|
390
|
+
and hem_limits[0] <= phi_hem <= hem_limits[1]:
|
|
391
|
+
condition_2 = True
|
|
392
|
+
|
|
393
|
+
phi_minerals["Qz"] = phi_qz
|
|
394
|
+
phi_minerals["Kfs"] = phi_kfs
|
|
395
|
+
phi_minerals["Pl"] = phi_pl
|
|
396
|
+
phi_minerals["Kln"] = phi_kln
|
|
397
|
+
phi_minerals["Hem"] = phi_hem
|
|
398
|
+
|
|
399
|
+
rho_s = 0
|
|
400
|
+
for key, value in phi_minerals.items():
|
|
401
|
+
rho_s += phi_minerals[key]*mineralogy[key]["rho"]
|
|
402
|
+
for element, value in mineralogy[key]["chemistry"].items():
|
|
403
|
+
if element not in elements_list:
|
|
404
|
+
elements_list.append(element)
|
|
405
|
+
w_elements[element] = 0.0
|
|
406
|
+
|
|
407
|
+
if elements_list[0] not in results_container["chemistry"]:
|
|
408
|
+
for element in elements_list:
|
|
409
|
+
results_container["chemistry"][element] = []
|
|
410
|
+
|
|
411
|
+
rho_s = round(rho_s, 3)
|
|
412
|
+
for key, value in phi_minerals.items():
|
|
413
|
+
if key == "Urn":
|
|
414
|
+
n_digits = 4
|
|
415
|
+
else:
|
|
416
|
+
n_digits = 4
|
|
417
|
+
|
|
418
|
+
w_minerals[key] = round((phi_minerals[key]*mineralogy[key]["rho"])/rho_s, n_digits)
|
|
419
|
+
|
|
420
|
+
if self.fluid == "water":
|
|
421
|
+
data_fluid = self.data_water
|
|
422
|
+
|
|
423
|
+
old_index = elements_list.index("O")
|
|
424
|
+
elements_list += [elements_list.pop(old_index)]
|
|
425
|
+
|
|
426
|
+
w_elements_total = 0.0
|
|
427
|
+
for element in elements_list:
|
|
428
|
+
if element != "O":
|
|
429
|
+
for mineral, w_mineral in w_minerals.items():
|
|
430
|
+
if element in mineralogy[mineral]["chemistry"]:
|
|
431
|
+
if element == "U":
|
|
432
|
+
n_digits = 4
|
|
433
|
+
else:
|
|
434
|
+
n_digits = 4
|
|
435
|
+
|
|
436
|
+
value = round(w_mineral*mineralogy[mineral]["chemistry"][element], n_digits)
|
|
437
|
+
w_elements[element] += value
|
|
438
|
+
w_elements_total += value
|
|
439
|
+
w_elements[element] = round(w_elements[element], n_digits)
|
|
440
|
+
elif element == "O":
|
|
441
|
+
w_elements[element] += round(1 - w_elements_total, 4)
|
|
442
|
+
w_elements[element] = round(w_elements[element], 4)
|
|
443
|
+
|
|
444
|
+
total_w_minerals = round(sum(w_minerals.values()), 4)
|
|
445
|
+
total_w_elements = round(sum(w_elements.values()), 4)
|
|
446
|
+
if total_w_minerals == 1.0 and total_w_elements == 1.0:
|
|
447
|
+
for key, value in w_minerals.items():
|
|
448
|
+
w_minerals[key] = abs(value)
|
|
449
|
+
for key, value in w_elements.items():
|
|
450
|
+
w_elements[key] = abs(value)
|
|
451
|
+
condition = True
|
|
452
|
+
|
|
453
|
+
velocity_solid = {"vP": 0, "vS": 0}
|
|
454
|
+
gamma_ray = 0.0
|
|
455
|
+
photoelectricity = 0.0
|
|
456
|
+
for key, value in phi_minerals.items():
|
|
457
|
+
velocity_solid["vP"] += phi_minerals[key]*mineralogy[key]["vP"]
|
|
458
|
+
velocity_solid["vS"] += phi_minerals[key]*mineralogy[key]["vS"]
|
|
459
|
+
gamma_ray += phi_minerals[key]*mineralogy[key]["GR"]
|
|
460
|
+
photoelectricity += phi_minerals[key]*mineralogy[key]["PE"]
|
|
461
|
+
|
|
462
|
+
## Bulk Density, Porosity, Seismic Velocities
|
|
463
|
+
rho_solid = round(rho_s, 3)
|
|
464
|
+
vP, vS, vPvS, rho, var_porosity = SeismicVelocities(
|
|
465
|
+
rho_solid=rho_solid, rho_fluid=self.data_water[2]).calculate_seismic_velocities(
|
|
466
|
+
rho_limits=[1800, 2800], vP_limits=[2800, 4800], vS_limits=[1500, 2500], delta=0.05,
|
|
467
|
+
porosity=porosity)
|
|
468
|
+
phi_neutron = round((1900/rho)*0.15, 4)
|
|
469
|
+
## Elastic Parameters
|
|
470
|
+
bulk_modulus, shear_modulus, youngs_modulus, poisson_ratio = SeismicVelocities(
|
|
471
|
+
rho_solid=None, rho_fluid=None).calculate_elastic_properties(
|
|
472
|
+
rho=rho, vP=vP, vS=vS)
|
|
473
|
+
## Gamma Ray
|
|
474
|
+
gamma_ray = round(gamma_ray, 3)
|
|
475
|
+
## Photoelectricity
|
|
476
|
+
photoelectricity = round(photoelectricity, 3)
|
|
477
|
+
# Composition data
|
|
478
|
+
for key, value in w_minerals.items():
|
|
479
|
+
results_container["mineralogy"][key].append(value)
|
|
480
|
+
|
|
481
|
+
amounts = []
|
|
482
|
+
for key, value in w_elements.items():
|
|
483
|
+
results_container["chemistry"][key].append(value)
|
|
484
|
+
chem_data = PeriodicSystem(name=key).get_data()
|
|
485
|
+
amounts.append([key, chem_data[1], value])
|
|
486
|
+
|
|
487
|
+
list_oxides = ["H2O", "Na2O", "Al2O3", "SiO2", "K2O", "CaO", "Fe2O3"]
|
|
488
|
+
composition_oxides = {}
|
|
489
|
+
for var_oxide in list_oxides:
|
|
490
|
+
oxide_data = OxideCompounds(var_compound=var_oxide, var_amounts=amounts).get_composition()
|
|
491
|
+
composition_oxides[var_oxide] = round(oxide_data["Oxide"][1], 4)
|
|
492
|
+
|
|
493
|
+
if list_oxides[0] not in results_container["compounds"]:
|
|
494
|
+
for oxide in list_oxides:
|
|
495
|
+
results_container["compounds"][oxide] = []
|
|
496
|
+
|
|
497
|
+
for key, value in composition_oxides.items():
|
|
498
|
+
results_container["compounds"][key].append(value)
|
|
499
|
+
|
|
500
|
+
results_container["mineralogy"] = dict(sorted(
|
|
501
|
+
results_container["mineralogy"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
502
|
+
results_container["chemistry"] = dict(sorted(
|
|
503
|
+
results_container["chemistry"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
504
|
+
results_container["compounds"] = dict(sorted(
|
|
505
|
+
results_container["compounds"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
506
|
+
|
|
507
|
+
# Results
|
|
508
|
+
results_container["phi"].append(phi_neutron)
|
|
509
|
+
results_container["phi_true"].append(var_porosity)
|
|
510
|
+
results_container["rho_s"].append(rho_s)
|
|
511
|
+
results_container["rho"].append(rho)
|
|
512
|
+
results_container["vP"].append(vP)
|
|
513
|
+
results_container["vS"].append(vS)
|
|
514
|
+
results_container["vP/vS"].append(vPvS)
|
|
515
|
+
results_container["K"].append(bulk_modulus)
|
|
516
|
+
results_container["G"].append(shear_modulus)
|
|
517
|
+
results_container["E"].append(youngs_modulus)
|
|
518
|
+
results_container["nu"].append(poisson_ratio)
|
|
519
|
+
results_container["GR"].append(gamma_ray)
|
|
520
|
+
results_container["PE"].append(photoelectricity)
|
|
521
|
+
n += 1
|
|
522
|
+
|
|
523
|
+
return results_container
|
|
524
|
+
|
|
525
|
+
def create_siltstone(self, rock="Siltstone", number=1, composition=None, classification="Siltstone", porosity=None):
|
|
526
|
+
results_container = {}
|
|
527
|
+
results_container["rock"] = rock
|
|
528
|
+
results_container["mineralogy"] = {}
|
|
529
|
+
results_container["chemistry"] = {}
|
|
530
|
+
results_container["compounds"] = {}
|
|
531
|
+
results_container["phi"] = []
|
|
532
|
+
results_container["phi_true"] = []
|
|
533
|
+
results_container["fluid"] = self.fluid
|
|
534
|
+
results_container["rho_s"] = []
|
|
535
|
+
results_container["rho"] = []
|
|
536
|
+
results_container["vP"] = []
|
|
537
|
+
results_container["vS"] = []
|
|
538
|
+
results_container["vP/vS"] = []
|
|
539
|
+
results_container["K"] = []
|
|
540
|
+
results_container["G"] = []
|
|
541
|
+
results_container["E"] = []
|
|
542
|
+
results_container["nu"] = []
|
|
543
|
+
results_container["GR"] = []
|
|
544
|
+
results_container["PE"] = []
|
|
545
|
+
|
|
546
|
+
n = 0
|
|
547
|
+
while n < number:
|
|
548
|
+
data_alkalifeldspar = Tectosilicates(impurity="pure", data_type=True).create_alkalifeldspar()
|
|
549
|
+
data_plagioclase = Tectosilicates(impurity="pure", data_type=True).create_plagioclase()
|
|
550
|
+
data_apatite = Phosphates(data_type=True).create_aptite()
|
|
551
|
+
mineralogy = {"Qz": self.data_quartz, "Kfs": data_alkalifeldspar, "Pl": data_plagioclase,
|
|
552
|
+
"Kln": self.data_kaolinite, "Ap": data_apatite}
|
|
553
|
+
minerals_list = list(mineralogy.keys())
|
|
554
|
+
|
|
555
|
+
if minerals_list[0] not in results_container["mineralogy"]:
|
|
556
|
+
for mineral in minerals_list:
|
|
557
|
+
results_container["mineralogy"][mineral] = []
|
|
558
|
+
|
|
559
|
+
condition = False
|
|
560
|
+
while condition == False:
|
|
561
|
+
elements_list = []
|
|
562
|
+
phi_minerals = {}
|
|
563
|
+
w_minerals = {}
|
|
564
|
+
w_elements = {}
|
|
565
|
+
|
|
566
|
+
if composition != None:
|
|
567
|
+
phi_qz = composition["Qz"]
|
|
568
|
+
phi_kfs = composition["Kfs"]
|
|
569
|
+
phi_pl = composition["Pl"]
|
|
570
|
+
phi_kln = composition["Kln"]
|
|
571
|
+
phi_ap = composition["Ap"]
|
|
572
|
+
|
|
573
|
+
phi_minerals["Qz"] = phi_qz
|
|
574
|
+
phi_minerals["Kfs"] = phi_kfs
|
|
575
|
+
phi_minerals["Pl"] = phi_pl
|
|
576
|
+
phi_minerals["Kln"] = phi_kln
|
|
577
|
+
phi_minerals["Ap"] = phi_ap
|
|
578
|
+
|
|
579
|
+
else:
|
|
580
|
+
condition_2 = False
|
|
581
|
+
while condition_2 == False:
|
|
582
|
+
if classification == "Siltstone":
|
|
583
|
+
qz_limits = [0.7, 1.0]
|
|
584
|
+
kfs_limits = [0.0, 0.25]
|
|
585
|
+
pl_limits = [0.0, 0.25]
|
|
586
|
+
kln_limits = [0.0, 0.25]
|
|
587
|
+
ap_limits = [0.0, 0.025]
|
|
588
|
+
|
|
589
|
+
phi_qz = round(rd.uniform(qz_limits[0], qz_limits[1]), 4)
|
|
590
|
+
phi_kfs = round(rd.uniform(kfs_limits[0], (1 - phi_qz)), 4)
|
|
591
|
+
phi_pl = round(rd.uniform(pl_limits[0], (1 - phi_qz - phi_kfs)), 4)
|
|
592
|
+
phi_kln = round(rd.uniform(kln_limits[0], (1 - phi_qz - phi_kfs - phi_pl)), 4)
|
|
593
|
+
phi_ap = round(1 - phi_qz - phi_kfs - phi_pl - phi_kln, 4)
|
|
594
|
+
|
|
595
|
+
phi_total = phi_qz + phi_kfs + phi_pl + phi_kln + phi_ap
|
|
596
|
+
|
|
597
|
+
if np.isclose(phi_total, 1.0000) == True:
|
|
598
|
+
if qz_limits[0] <= phi_qz <= qz_limits[1] \
|
|
599
|
+
and kfs_limits[0] <= phi_kfs <= kfs_limits[1] \
|
|
600
|
+
and pl_limits[0] <= phi_pl <= pl_limits[1] \
|
|
601
|
+
and kln_limits[0] <= phi_kln <= kln_limits[1] \
|
|
602
|
+
and ap_limits[0] <= phi_ap <= ap_limits[1]:
|
|
603
|
+
condition_2 = True
|
|
604
|
+
|
|
605
|
+
phi_minerals["Qz"] = phi_qz
|
|
606
|
+
phi_minerals["Kfs"] = phi_kfs
|
|
607
|
+
phi_minerals["Pl"] = phi_pl
|
|
608
|
+
phi_minerals["Kln"] = phi_kln
|
|
609
|
+
phi_minerals["Ap"] = phi_ap
|
|
610
|
+
|
|
611
|
+
rho_s = 0
|
|
612
|
+
for key, value in phi_minerals.items():
|
|
613
|
+
rho_s += phi_minerals[key]*mineralogy[key]["rho"]
|
|
614
|
+
for element, value in mineralogy[key]["chemistry"].items():
|
|
615
|
+
if element not in elements_list:
|
|
616
|
+
elements_list.append(element)
|
|
617
|
+
w_elements[element] = 0.0
|
|
618
|
+
|
|
619
|
+
if elements_list[0] not in results_container["chemistry"]:
|
|
620
|
+
for element in elements_list:
|
|
621
|
+
results_container["chemistry"][element] = []
|
|
622
|
+
|
|
623
|
+
rho_s = round(rho_s, 3)
|
|
624
|
+
for key, value in phi_minerals.items():
|
|
625
|
+
if key == "Urn":
|
|
626
|
+
n_digits = 4
|
|
627
|
+
else:
|
|
628
|
+
n_digits = 4
|
|
629
|
+
|
|
630
|
+
w_minerals[key] = round((phi_minerals[key]*mineralogy[key]["rho"])/rho_s, n_digits)
|
|
631
|
+
|
|
632
|
+
if self.fluid == "water":
|
|
633
|
+
data_fluid = self.data_water
|
|
634
|
+
|
|
635
|
+
old_index = elements_list.index("O")
|
|
636
|
+
elements_list += [elements_list.pop(old_index)]
|
|
637
|
+
|
|
638
|
+
w_elements_total = 0.0
|
|
639
|
+
for element in elements_list:
|
|
640
|
+
if element != "O":
|
|
641
|
+
for mineral, w_mineral in w_minerals.items():
|
|
642
|
+
if element in mineralogy[mineral]["chemistry"]:
|
|
643
|
+
if element == "U":
|
|
644
|
+
n_digits = 4
|
|
645
|
+
else:
|
|
646
|
+
n_digits = 4
|
|
647
|
+
|
|
648
|
+
value = round(w_mineral*mineralogy[mineral]["chemistry"][element], n_digits)
|
|
649
|
+
w_elements[element] += value
|
|
650
|
+
w_elements_total += value
|
|
651
|
+
w_elements[element] = round(w_elements[element], n_digits)
|
|
652
|
+
elif element == "O":
|
|
653
|
+
w_elements[element] += round(1 - w_elements_total, 4)
|
|
654
|
+
w_elements[element] = round(w_elements[element], 4)
|
|
655
|
+
|
|
656
|
+
total_w_minerals = round(sum(w_minerals.values()), 4)
|
|
657
|
+
total_w_elements = round(sum(w_elements.values()), 4)
|
|
658
|
+
if total_w_minerals == 1.0 and total_w_elements == 1.0:
|
|
659
|
+
for key, value in w_minerals.items():
|
|
660
|
+
w_minerals[key] = abs(value)
|
|
661
|
+
for key, value in w_elements.items():
|
|
662
|
+
w_elements[key] = abs(value)
|
|
663
|
+
condition = True
|
|
664
|
+
|
|
665
|
+
velocity_solid = {"vP": 0, "vS": 0}
|
|
666
|
+
gamma_ray = 0.0
|
|
667
|
+
photoelectricity = 0.0
|
|
668
|
+
for key, value in phi_minerals.items():
|
|
669
|
+
velocity_solid["vP"] += phi_minerals[key]*mineralogy[key]["vP"]
|
|
670
|
+
velocity_solid["vS"] += phi_minerals[key]*mineralogy[key]["vS"]
|
|
671
|
+
gamma_ray += phi_minerals[key]*mineralogy[key]["GR"]
|
|
672
|
+
photoelectricity += phi_minerals[key]*mineralogy[key]["PE"]
|
|
673
|
+
|
|
674
|
+
## Bulk Density, Porosity, Seismic Velocities
|
|
675
|
+
rho_solid = round(rho_s, 3)
|
|
676
|
+
vP, vS, vPvS, rho, var_porosity = SeismicVelocities(
|
|
677
|
+
rho_solid=rho_solid, rho_fluid=self.data_water[2]).calculate_seismic_velocities(
|
|
678
|
+
rho_limits=[1800, 2800], vP_limits=[2800, 4800], vS_limits=[1500, 2500], delta=0.05,
|
|
679
|
+
porosity=porosity)
|
|
680
|
+
phi_neutron = round((1900/rho)*0.15, 4)
|
|
681
|
+
## Elastic Parameters
|
|
682
|
+
bulk_modulus, shear_modulus, youngs_modulus, poisson_ratio = SeismicVelocities(
|
|
683
|
+
rho_solid=None, rho_fluid=None).calculate_elastic_properties(
|
|
684
|
+
rho=rho, vP=vP, vS=vS)
|
|
685
|
+
## Gamma Ray
|
|
686
|
+
gamma_ray = round(gamma_ray, 3)
|
|
687
|
+
## Photoelectricity
|
|
688
|
+
photoelectricity = round(photoelectricity, 3)
|
|
689
|
+
# Composition data
|
|
690
|
+
for key, value in w_minerals.items():
|
|
691
|
+
results_container["mineralogy"][key].append(value)
|
|
692
|
+
|
|
693
|
+
amounts = []
|
|
694
|
+
for key, value in w_elements.items():
|
|
695
|
+
results_container["chemistry"][key].append(value)
|
|
696
|
+
chem_data = PeriodicSystem(name=key).get_data()
|
|
697
|
+
amounts.append([key, chem_data[1], value])
|
|
698
|
+
|
|
699
|
+
list_oxides = ["H2O", "F", "Na2O", "Al2O3", "SiO2", "P2O5", "Cl", "K2O", "CaO"]
|
|
700
|
+
composition_oxides = {}
|
|
701
|
+
for var_oxide in list_oxides:
|
|
702
|
+
oxide_data = OxideCompounds(var_compound=var_oxide, var_amounts=amounts).get_composition()
|
|
703
|
+
composition_oxides[var_oxide] = round(oxide_data["Oxide"][1], 4)
|
|
704
|
+
|
|
705
|
+
if list_oxides[0] not in results_container["compounds"]:
|
|
706
|
+
for oxide in list_oxides:
|
|
707
|
+
results_container["compounds"][oxide] = []
|
|
708
|
+
|
|
709
|
+
for key, value in composition_oxides.items():
|
|
710
|
+
results_container["compounds"][key].append(value)
|
|
711
|
+
|
|
712
|
+
results_container["mineralogy"] = dict(sorted(
|
|
713
|
+
results_container["mineralogy"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
714
|
+
results_container["chemistry"] = dict(sorted(
|
|
715
|
+
results_container["chemistry"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
716
|
+
results_container["compounds"] = dict(sorted(
|
|
717
|
+
results_container["compounds"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
718
|
+
|
|
719
|
+
# Results
|
|
720
|
+
results_container["phi"].append(phi_neutron)
|
|
721
|
+
results_container["phi_true"].append(var_porosity)
|
|
722
|
+
results_container["rho_s"].append(rho_s)
|
|
723
|
+
results_container["rho"].append(rho)
|
|
724
|
+
results_container["vP"].append(vP)
|
|
725
|
+
results_container["vS"].append(vS)
|
|
726
|
+
results_container["vP/vS"].append(vPvS)
|
|
727
|
+
results_container["K"].append(bulk_modulus)
|
|
728
|
+
results_container["G"].append(shear_modulus)
|
|
729
|
+
results_container["E"].append(youngs_modulus)
|
|
730
|
+
results_container["nu"].append(poisson_ratio)
|
|
731
|
+
results_container["GR"].append(gamma_ray)
|
|
732
|
+
results_container["PE"].append(photoelectricity)
|
|
733
|
+
n += 1
|
|
734
|
+
|
|
735
|
+
return results_container
|
|
736
|
+
|
|
737
|
+
def create_mudstone_alt(self, rock="Mudstone", number=1, composition=None, classification="Mudstone",
|
|
738
|
+
porosity=None):
|
|
739
|
+
#
|
|
740
|
+
results_container = {}
|
|
741
|
+
results_container["rock"] = rock
|
|
742
|
+
results_container["mineralogy"] = {}
|
|
743
|
+
results_container["chemistry"] = {}
|
|
744
|
+
results_container["compounds"] = {}
|
|
745
|
+
results_container["phi"] = []
|
|
746
|
+
results_container["fluid"] = self.fluid
|
|
747
|
+
results_container["rho_s"] = []
|
|
748
|
+
results_container["rho"] = []
|
|
749
|
+
results_container["vP"] = []
|
|
750
|
+
results_container["vS"] = []
|
|
751
|
+
results_container["vP/vS"] = []
|
|
752
|
+
results_container["K"] = []
|
|
753
|
+
results_container["G"] = []
|
|
754
|
+
results_container["E"] = []
|
|
755
|
+
results_container["nu"] = []
|
|
756
|
+
results_container["GR"] = []
|
|
757
|
+
results_container["PE"] = []
|
|
758
|
+
#
|
|
759
|
+
n = 0
|
|
760
|
+
helper = [[], []]
|
|
761
|
+
while n < number:
|
|
762
|
+
data_illite = Phyllosilicates(impurity="pure", data_type=True).create_illite_simple()
|
|
763
|
+
data_alkalifeldspar = Tectosilicates(impurity="pure", data_type=True).create_alkalifeldspar()
|
|
764
|
+
data_plagioclase = Tectosilicates(impurity="pure", data_type=True).create_plagioclase()
|
|
765
|
+
data_organics = Organics(data_type=True).create_organic_matter()
|
|
766
|
+
#
|
|
767
|
+
mineralogy = {
|
|
768
|
+
"Kln": self.data_kaolinite, "Ilt": data_illite, "Qz": self.data_quartz, "Kfs": data_alkalifeldspar,
|
|
769
|
+
"Pl": data_plagioclase, "Org": data_organics, "Py": self.data_pyrite}
|
|
770
|
+
#
|
|
771
|
+
minerals_list = list(mineralogy.keys())
|
|
772
|
+
#
|
|
773
|
+
if minerals_list[0] not in results_container["mineralogy"]:
|
|
774
|
+
for mineral in minerals_list:
|
|
775
|
+
results_container["mineralogy"][mineral] = []
|
|
776
|
+
#
|
|
777
|
+
condition = False
|
|
778
|
+
#
|
|
779
|
+
while condition == False:
|
|
780
|
+
elements_list = []
|
|
781
|
+
phi_minerals = {}
|
|
782
|
+
w_minerals = {}
|
|
783
|
+
w_elements = {}
|
|
784
|
+
#
|
|
785
|
+
if composition != None:
|
|
786
|
+
phi_kln = composition["Kln"]
|
|
787
|
+
phi_ilt = composition["Ilt"]
|
|
788
|
+
phi_qz = composition["Qz"]
|
|
789
|
+
phi_kfs = composition["Kfs"]
|
|
790
|
+
phi_pl = composition["Pl"]
|
|
791
|
+
phi_org = composition["Org"]
|
|
792
|
+
phi_py = composition["Py"]
|
|
793
|
+
#
|
|
794
|
+
phi_minerals["Kln"] = phi_kln
|
|
795
|
+
phi_minerals["Ilt"] = phi_ilt
|
|
796
|
+
phi_minerals["Qz"] = phi_qz
|
|
797
|
+
phi_minerals["Kfs"] = phi_kfs
|
|
798
|
+
phi_minerals["Pl"] = phi_pl
|
|
799
|
+
phi_minerals["Org"] = phi_org
|
|
800
|
+
phi_minerals["Py"] = phi_py
|
|
801
|
+
#
|
|
802
|
+
else:
|
|
803
|
+
condition_2 = False
|
|
804
|
+
while condition_2 == False:
|
|
805
|
+
if classification == "Mudstone":
|
|
806
|
+
kln_limits = [0.4, 0.5]
|
|
807
|
+
ilt_limits = [0.0, 0.1]
|
|
808
|
+
qz_limits = [0.1, 0.3]
|
|
809
|
+
kfs_limits = [0.0, 0.1]
|
|
810
|
+
pl_limits = [0.0, 0.1]
|
|
811
|
+
org_limits = [0.0, 0.1]
|
|
812
|
+
py_limits = [0.0, 0.05]
|
|
813
|
+
#
|
|
814
|
+
phi_kln = round(rd.uniform(kln_limits[0], kln_limits[1]), 4)
|
|
815
|
+
#
|
|
816
|
+
condition_ilt = False
|
|
817
|
+
while condition_ilt == False:
|
|
818
|
+
phi_ilt = round(rd.uniform(ilt_limits[0], (1 - phi_kln)), 4)
|
|
819
|
+
if ilt_limits[0] <= phi_ilt <= ilt_limits[1]:
|
|
820
|
+
condition_ilt = True
|
|
821
|
+
#
|
|
822
|
+
condition_qz = False
|
|
823
|
+
while condition_qz == False:
|
|
824
|
+
phi_qz = round(rd.uniform(qz_limits[0], (1 - phi_kln - phi_ilt)), 4)
|
|
825
|
+
if qz_limits[0] <= phi_qz <= qz_limits[1]:
|
|
826
|
+
condition_qz = True
|
|
827
|
+
#
|
|
828
|
+
condition_kfs = False
|
|
829
|
+
while condition_kfs == False:
|
|
830
|
+
phi_kfs = round(rd.uniform(kfs_limits[0], (1 - phi_kln - phi_ilt - phi_qz)), 4)
|
|
831
|
+
if kfs_limits[0] <= phi_kfs <= kfs_limits[1]:
|
|
832
|
+
condition_kfs = True
|
|
833
|
+
#
|
|
834
|
+
condition_pl = False
|
|
835
|
+
while condition_pl == False:
|
|
836
|
+
phi_pl = round(rd.uniform(pl_limits[0], (1 - phi_kln - phi_ilt - phi_qz - phi_kfs)), 4)
|
|
837
|
+
if pl_limits[0] <= phi_pl <= pl_limits[1]:
|
|
838
|
+
condition_pl = True
|
|
839
|
+
#
|
|
840
|
+
condition_org = False
|
|
841
|
+
while condition_org == False:
|
|
842
|
+
phi_org = round(rd.uniform(
|
|
843
|
+
org_limits[0], (1 - phi_kln - phi_ilt - phi_qz - phi_kfs - phi_pl)), 4)
|
|
844
|
+
if org_limits[0] <= phi_org <= org_limits[1]:
|
|
845
|
+
condition_org = True
|
|
846
|
+
#
|
|
847
|
+
phi_py = round(1 - phi_kln - phi_ilt - phi_qz - phi_kfs - phi_pl - phi_org, 4)
|
|
848
|
+
#
|
|
849
|
+
phi_total = phi_kln + phi_ilt + phi_qz + phi_kfs + phi_pl + phi_org + phi_py
|
|
850
|
+
#
|
|
851
|
+
if np.isclose(phi_total, 1.0000) == True:
|
|
852
|
+
if kln_limits[0] <= phi_kln <= kln_limits[1] \
|
|
853
|
+
and ilt_limits[0] <= phi_ilt <= ilt_limits[1] \
|
|
854
|
+
and qz_limits[0] <= phi_qz <= qz_limits[1] \
|
|
855
|
+
and kfs_limits[0] <= phi_kfs <= kfs_limits[1] \
|
|
856
|
+
and pl_limits[0] <= phi_pl <= pl_limits[1] \
|
|
857
|
+
and org_limits[0] <= phi_org <= org_limits[1] \
|
|
858
|
+
and py_limits[0] <= phi_py <= py_limits[1]:
|
|
859
|
+
condition_2 = True
|
|
860
|
+
#
|
|
861
|
+
phi_minerals["Kln"] = phi_kln
|
|
862
|
+
phi_minerals["Ilt"] = phi_ilt
|
|
863
|
+
phi_minerals["Qz"] = phi_qz
|
|
864
|
+
phi_minerals["Kfs"] = phi_kfs
|
|
865
|
+
phi_minerals["Pl"] = phi_pl
|
|
866
|
+
phi_minerals["Org"] = phi_org
|
|
867
|
+
phi_minerals["Py"] = phi_py
|
|
868
|
+
#
|
|
869
|
+
rho_s = 0
|
|
870
|
+
for key, value in phi_minerals.items():
|
|
871
|
+
rho_s += phi_minerals[key]*mineralogy[key]["rho"]
|
|
872
|
+
#
|
|
873
|
+
for element, value in mineralogy[key]["chemistry"].items():
|
|
874
|
+
if element not in elements_list:
|
|
875
|
+
elements_list.append(element)
|
|
876
|
+
w_elements[element] = 0.0
|
|
877
|
+
#
|
|
878
|
+
if elements_list[0] not in results_container["chemistry"]:
|
|
879
|
+
for element in elements_list:
|
|
880
|
+
results_container["chemistry"][element] = []
|
|
881
|
+
#
|
|
882
|
+
rho_s = round(rho_s, 3)
|
|
883
|
+
for key, value in phi_minerals.items():
|
|
884
|
+
if key == "Urn":
|
|
885
|
+
n_digits = 4
|
|
886
|
+
else:
|
|
887
|
+
n_digits = 4
|
|
888
|
+
#
|
|
889
|
+
w_minerals[key] = round((phi_minerals[key]*mineralogy[key]["rho"])/rho_s, n_digits)
|
|
890
|
+
#
|
|
891
|
+
if self.fluid == "water":
|
|
892
|
+
data_fluid = self.data_water
|
|
893
|
+
#
|
|
894
|
+
old_index = elements_list.index("O")
|
|
895
|
+
elements_list += [elements_list.pop(old_index)]
|
|
896
|
+
#
|
|
897
|
+
w_elements_total = 0.0
|
|
898
|
+
for element in elements_list:
|
|
899
|
+
if element != "O":
|
|
900
|
+
for mineral, w_mineral in w_minerals.items():
|
|
901
|
+
if element in mineralogy[mineral]["chemistry"]:
|
|
902
|
+
if element == "U":
|
|
903
|
+
n_digits = 4
|
|
904
|
+
else:
|
|
905
|
+
n_digits = 4
|
|
906
|
+
#
|
|
907
|
+
value = round(w_mineral*mineralogy[mineral]["chemistry"][element], n_digits)
|
|
908
|
+
w_elements[element] += value
|
|
909
|
+
w_elements_total += value
|
|
910
|
+
#
|
|
911
|
+
w_elements[element] = round(w_elements[element], n_digits)
|
|
912
|
+
elif element == "O":
|
|
913
|
+
w_elements[element] += round(1 - w_elements_total, 4)
|
|
914
|
+
#
|
|
915
|
+
w_elements[element] = round(w_elements[element], 4)
|
|
916
|
+
#
|
|
917
|
+
total_w_minerals = round(sum(w_minerals.values()), 4)
|
|
918
|
+
total_w_elements = round(sum(w_elements.values()), 4)
|
|
919
|
+
if total_w_minerals == 1.0 and total_w_elements == 1.0:
|
|
920
|
+
for key, value in w_minerals.items():
|
|
921
|
+
w_minerals[key] = abs(value)
|
|
922
|
+
#
|
|
923
|
+
for key, value in w_elements.items():
|
|
924
|
+
w_elements[key] = abs(value)
|
|
925
|
+
#
|
|
926
|
+
condition = True
|
|
927
|
+
|
|
928
|
+
velocity_solid = {"vP": 0, "vS": 0}
|
|
929
|
+
gamma_ray = 0.0
|
|
930
|
+
photoelectricity = 0.0
|
|
931
|
+
for key, value in phi_minerals.items():
|
|
932
|
+
velocity_solid["vP"] += phi_minerals[key]*mineralogy[key]["vP"]
|
|
933
|
+
velocity_solid["vS"] += phi_minerals[key]*mineralogy[key]["vS"]
|
|
934
|
+
gamma_ray += phi_minerals[key]*mineralogy[key]["GR"]
|
|
935
|
+
photoelectricity += phi_minerals[key]*mineralogy[key]["PE"]
|
|
936
|
+
#
|
|
937
|
+
## Bulk Density, Porosity, Seismic Velocities
|
|
938
|
+
rho_solid = round(rho_s, 3)
|
|
939
|
+
vP, vS, vPvS, rho, var_porosity = SeismicVelocities(
|
|
940
|
+
rho_solid=rho_solid, rho_fluid=self.data_water[2]).calculate_seismic_velocities(
|
|
941
|
+
rho_limits=[1800, 2800], vP_limits=[3000, 4500], vS_limits=[2000, 2600], delta=0.05,
|
|
942
|
+
porosity=porosity)
|
|
943
|
+
## Elastic Parameters
|
|
944
|
+
bulk_modulus, shear_modulus, youngs_modulus, poisson_ratio = SeismicVelocities(
|
|
945
|
+
rho_solid=None, rho_fluid=None).calculate_elastic_properties(
|
|
946
|
+
rho=rho, vP=vP, vS=vS)
|
|
947
|
+
## Gamma Ray
|
|
948
|
+
gamma_ray = round(gamma_ray, 3)
|
|
949
|
+
## Photoelectricity
|
|
950
|
+
photoelectricity = round(photoelectricity, 3)
|
|
951
|
+
# Composition data
|
|
952
|
+
for key, value in w_minerals.items():
|
|
953
|
+
results_container["mineralogy"][key].append(value)
|
|
954
|
+
|
|
955
|
+
amounts = []
|
|
956
|
+
for key, value in w_elements.items():
|
|
957
|
+
results_container["chemistry"][key].append(value)
|
|
958
|
+
chem_data = PeriodicSystem(name=key).get_data()
|
|
959
|
+
amounts.append([key, chem_data[1], value])
|
|
960
|
+
|
|
961
|
+
list_oxides = ["H2O", "CO2", "N2O5", "Na2O", "Al2O3", "SiO2", "SO3", "K2O", "CaO", "Fe2O3"]
|
|
962
|
+
composition_oxides = {}
|
|
963
|
+
for var_oxide in list_oxides:
|
|
964
|
+
oxide_data = OxideCompounds(var_compound=var_oxide, var_amounts=amounts).get_composition()
|
|
965
|
+
composition_oxides[var_oxide] = round(oxide_data["Oxide"][1], 4)
|
|
966
|
+
|
|
967
|
+
if list_oxides[0] not in results_container["compounds"]:
|
|
968
|
+
for oxide in list_oxides:
|
|
969
|
+
results_container["compounds"][oxide] = []
|
|
970
|
+
|
|
971
|
+
for key, value in composition_oxides.items():
|
|
972
|
+
results_container["compounds"][key].append(value)
|
|
973
|
+
|
|
974
|
+
results_container["mineralogy"] = dict(sorted(
|
|
975
|
+
results_container["mineralogy"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
976
|
+
results_container["chemistry"] = dict(sorted(
|
|
977
|
+
results_container["chemistry"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
978
|
+
results_container["compounds"] = dict(sorted(
|
|
979
|
+
results_container["compounds"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
980
|
+
|
|
981
|
+
# Results
|
|
982
|
+
results_container["phi"].append(var_porosity)
|
|
983
|
+
results_container["rho_s"].append(rho_s)
|
|
984
|
+
results_container["rho"].append(rho)
|
|
985
|
+
results_container["vP"].append(vP)
|
|
986
|
+
results_container["vS"].append(vS)
|
|
987
|
+
results_container["vP/vS"].append(vPvS)
|
|
988
|
+
results_container["K"].append(bulk_modulus)
|
|
989
|
+
results_container["G"].append(shear_modulus)
|
|
990
|
+
results_container["E"].append(youngs_modulus)
|
|
991
|
+
results_container["nu"].append(poisson_ratio)
|
|
992
|
+
results_container["GR"].append(gamma_ray)
|
|
993
|
+
results_container["PE"].append(photoelectricity)
|
|
994
|
+
#
|
|
995
|
+
n += 1
|
|
996
|
+
#
|
|
997
|
+
return results_container
|
|
998
|
+
|
|
999
|
+
def create_conglomerate(self, number, porosity=None):
|
|
1000
|
+
#
|
|
1001
|
+
data_alkalifeldspar = Tectosilicates(impurity="pure", data_type=True).create_alkalifeldspar()
|
|
1002
|
+
data_plagioclase = Tectosilicates(impurity="pure", data_type=True).create_plagioclase()
|
|
1003
|
+
data_biotite = Phyllosilicates(impurity="pure", data_type=True).create_biotite()
|
|
1004
|
+
#
|
|
1005
|
+
assemblage = [self.data_quartz, data_alkalifeldspar, data_plagioclase, data_biotite, self.data_calcite,
|
|
1006
|
+
self.data_hematite]
|
|
1007
|
+
#
|
|
1008
|
+
amounts_mineralogy = {}
|
|
1009
|
+
amounts_chemistry = {}
|
|
1010
|
+
amounts_compounds = {}
|
|
1011
|
+
bulk_properties = {}
|
|
1012
|
+
properties = ["rho_s", "rho", "K", "G", "E", "nu", "vP", "vS", "vPvS", "GR", "PE", "phi"]
|
|
1013
|
+
for property in properties:
|
|
1014
|
+
bulk_properties[property] = []
|
|
1015
|
+
mineral_list = []
|
|
1016
|
+
elements = []
|
|
1017
|
+
for mineral in assemblage:
|
|
1018
|
+
amounts_mineralogy[mineral["mineral"]] = []
|
|
1019
|
+
mineral_list.append(mineral["mineral"])
|
|
1020
|
+
elements_mineral = list(mineral["chemistry"].keys())
|
|
1021
|
+
for element in elements_mineral:
|
|
1022
|
+
if element not in elements:
|
|
1023
|
+
elements.append(element)
|
|
1024
|
+
amounts_chemistry[element] = []
|
|
1025
|
+
mineral_list.sort()
|
|
1026
|
+
elements.sort()
|
|
1027
|
+
#
|
|
1028
|
+
n = 0
|
|
1029
|
+
amounts_helper = []
|
|
1030
|
+
while n < number:
|
|
1031
|
+
w_total = 0
|
|
1032
|
+
n_minerals = 0
|
|
1033
|
+
for mineral in mineral_list:
|
|
1034
|
+
if mineral == "Qz":
|
|
1035
|
+
if n_minerals < len(mineral_list) - 1:
|
|
1036
|
+
value = round(1 - w_total, 4)
|
|
1037
|
+
else:
|
|
1038
|
+
value = round(1 - w_total, 4)
|
|
1039
|
+
if value >= 0.0 and 0.5 <= value <= 0.8:
|
|
1040
|
+
amounts_helper.append(value)
|
|
1041
|
+
w_total += value
|
|
1042
|
+
n_minerals += 1
|
|
1043
|
+
elif mineral == "Kfs":
|
|
1044
|
+
if n_minerals < len(mineral_list) - 1:
|
|
1045
|
+
value = round(rd.uniform(0.0, 0.2), 4)
|
|
1046
|
+
else:
|
|
1047
|
+
value = round(1 - w_total, 4)
|
|
1048
|
+
if value >= 0.0 and 0.0 <= value <= 0.2:
|
|
1049
|
+
amounts_helper.append(value)
|
|
1050
|
+
w_total += value
|
|
1051
|
+
n_minerals += 1
|
|
1052
|
+
elif mineral == "Pl":
|
|
1053
|
+
if n_minerals < len(mineral_list) - 1:
|
|
1054
|
+
value = round(rd.uniform(0.0, 0.2), 4)
|
|
1055
|
+
else:
|
|
1056
|
+
value = round(1 - w_total, 4)
|
|
1057
|
+
if value >= 0.0 and 0.0 <= value <= 0.2:
|
|
1058
|
+
amounts_helper.append(value)
|
|
1059
|
+
w_total += value
|
|
1060
|
+
n_minerals += 1
|
|
1061
|
+
elif mineral == "Cal":
|
|
1062
|
+
if n_minerals < len(mineral_list) - 1:
|
|
1063
|
+
value = round(rd.uniform(0.1, 0.2), 4)
|
|
1064
|
+
else:
|
|
1065
|
+
value = round(1 - w_total, 4)
|
|
1066
|
+
if value >= 0.0 and 0.1 <= value <= 0.2:
|
|
1067
|
+
amounts_helper.append(value)
|
|
1068
|
+
w_total += value
|
|
1069
|
+
n_minerals += 1
|
|
1070
|
+
elif mineral == "Bt":
|
|
1071
|
+
if n_minerals < len(mineral_list) - 1:
|
|
1072
|
+
value = round(rd.uniform(0.0, 0.05), 4)
|
|
1073
|
+
else:
|
|
1074
|
+
value = round(1 - w_total, 4)
|
|
1075
|
+
if value >= 0.0 and 0.0 <= value <= 0.05:
|
|
1076
|
+
amounts_helper.append(value)
|
|
1077
|
+
w_total += value
|
|
1078
|
+
n_minerals += 1
|
|
1079
|
+
elif mineral == "Hem":
|
|
1080
|
+
if n_minerals < len(mineral_list) - 1:
|
|
1081
|
+
value = round(rd.uniform(0.0, 0.05), 4)
|
|
1082
|
+
else:
|
|
1083
|
+
value = round(1 - w_total, 4)
|
|
1084
|
+
if value >= 0.0 and 0.0 <= value <= 0.05:
|
|
1085
|
+
amounts_helper.append(value)
|
|
1086
|
+
w_total += value
|
|
1087
|
+
n_minerals += 1
|
|
1088
|
+
#
|
|
1089
|
+
if np.sum(amounts_helper) == 1.0 and n_minerals == len(mineral_list):
|
|
1090
|
+
for index, mineral in enumerate(mineral_list):
|
|
1091
|
+
amounts_mineralogy[mineral].append(amounts_helper[index])
|
|
1092
|
+
n += 1
|
|
1093
|
+
amounts_helper.clear()
|
|
1094
|
+
else:
|
|
1095
|
+
n += 0
|
|
1096
|
+
amounts_helper.clear()
|
|
1097
|
+
#
|
|
1098
|
+
n = 0
|
|
1099
|
+
amounts_helper = {}
|
|
1100
|
+
while n < number:
|
|
1101
|
+
w_total = 0
|
|
1102
|
+
n_elements = 0
|
|
1103
|
+
rho_s_helper = 0
|
|
1104
|
+
bulkmod_helper = 0
|
|
1105
|
+
shearmod_helper = 0
|
|
1106
|
+
gr_helper = 0
|
|
1107
|
+
pe_helper = 0
|
|
1108
|
+
if porosity == None:
|
|
1109
|
+
phi_helper = round(rd.uniform(0.0, 0.2), 4)
|
|
1110
|
+
else:
|
|
1111
|
+
phi_helper = round(rd.uniform(porosity[0], porosity[1]), 4)
|
|
1112
|
+
#
|
|
1113
|
+
data_alkalifeldspar = Tectosilicates(impurity="pure", data_type=True).create_alkalifeldspar()
|
|
1114
|
+
data_plagioclase = Tectosilicates(impurity="pure", data_type=True).create_plagioclase()
|
|
1115
|
+
data_biotite = Phyllosilicates(impurity="pure", data_type=True).create_biotite()
|
|
1116
|
+
#
|
|
1117
|
+
for element in elements:
|
|
1118
|
+
amounts_helper[element] = 0
|
|
1119
|
+
if element in self.data_quartz["chemistry"]:
|
|
1120
|
+
if n_elements < len(elements) - 1:
|
|
1121
|
+
value = round(amounts_mineralogy["Qz"][n] * self.data_quartz["chemistry"][element], 4)
|
|
1122
|
+
else:
|
|
1123
|
+
value = round(1 - w_total, 4)
|
|
1124
|
+
amounts_helper[element] += value
|
|
1125
|
+
w_total += value
|
|
1126
|
+
if element in data_alkalifeldspar["chemistry"]:
|
|
1127
|
+
if n_elements < len(elements) - 1:
|
|
1128
|
+
value = round(amounts_mineralogy["Kfs"][n] * data_alkalifeldspar["chemistry"][element], 4)
|
|
1129
|
+
else:
|
|
1130
|
+
value = round(1 - w_total, 4)
|
|
1131
|
+
amounts_helper[element] += value
|
|
1132
|
+
w_total += value
|
|
1133
|
+
if element in data_plagioclase["chemistry"]:
|
|
1134
|
+
if n_elements < len(elements) - 1:
|
|
1135
|
+
value = round(amounts_mineralogy["Pl"][n] * data_plagioclase["chemistry"][element], 4)
|
|
1136
|
+
else:
|
|
1137
|
+
value = round(1 - w_total, 4)
|
|
1138
|
+
amounts_helper[element] += value
|
|
1139
|
+
w_total += value
|
|
1140
|
+
if element in data_biotite["chemistry"]:
|
|
1141
|
+
if n_elements < len(elements) - 1:
|
|
1142
|
+
value = round(amounts_mineralogy["Bt"][n] * data_biotite["chemistry"][element], 4)
|
|
1143
|
+
else:
|
|
1144
|
+
value = round(1 - w_total, 4)
|
|
1145
|
+
amounts_helper[element] += value
|
|
1146
|
+
w_total += value
|
|
1147
|
+
if element in self.data_calcite["chemistry"]:
|
|
1148
|
+
if n_elements < len(elements) - 1:
|
|
1149
|
+
value = round(amounts_mineralogy["Cal"][n] * self.data_calcite["chemistry"][element], 4)
|
|
1150
|
+
else:
|
|
1151
|
+
value = round(1 - w_total, 4)
|
|
1152
|
+
amounts_helper[element] += value
|
|
1153
|
+
w_total += value
|
|
1154
|
+
if element in self.data_hematite["chemistry"]:
|
|
1155
|
+
if n_elements < len(elements) - 1:
|
|
1156
|
+
value = round(amounts_mineralogy["Hem"][n] * self.data_hematite["chemistry"][element], 4)
|
|
1157
|
+
else:
|
|
1158
|
+
value = round(1 - w_total, 4)
|
|
1159
|
+
amounts_helper[element] += value
|
|
1160
|
+
w_total += value
|
|
1161
|
+
#
|
|
1162
|
+
n_elements += 1
|
|
1163
|
+
#
|
|
1164
|
+
shear_factor = 1.0
|
|
1165
|
+
#
|
|
1166
|
+
if sum(amounts_helper.values()) == 1.0:
|
|
1167
|
+
for key, value in amounts_helper.items():
|
|
1168
|
+
amounts_chemistry[key].append(round(value, 4))
|
|
1169
|
+
|
|
1170
|
+
for mineral in mineral_list:
|
|
1171
|
+
if mineral == "Qz":
|
|
1172
|
+
rho_s_helper += round(amounts_mineralogy[mineral][n] * self.data_quartz["rho"], 3)
|
|
1173
|
+
bulkmod_helper += round(amounts_mineralogy[mineral][n] * self.data_quartz["K"], 3)
|
|
1174
|
+
shearmod_helper += round(shear_factor * amounts_mineralogy[mineral][n] * self.data_quartz["G"], 3)
|
|
1175
|
+
gr_helper += round(amounts_mineralogy[mineral][n] * self.data_quartz["GR"], 3)
|
|
1176
|
+
pe_helper += round(amounts_mineralogy[mineral][n] * self.data_quartz["PE"], 3)
|
|
1177
|
+
elif mineral == "Kfs":
|
|
1178
|
+
rho_s_helper += round(amounts_mineralogy[mineral][n] * data_alkalifeldspar["rho"], 3)
|
|
1179
|
+
bulkmod_helper += round(amounts_mineralogy[mineral][n] * data_alkalifeldspar["K"], 3)
|
|
1180
|
+
shearmod_helper += round(shear_factor * amounts_mineralogy[mineral][n] * data_alkalifeldspar["G"],
|
|
1181
|
+
3)
|
|
1182
|
+
gr_helper += round(amounts_mineralogy[mineral][n] * data_alkalifeldspar["GR"], 3)
|
|
1183
|
+
pe_helper += round(amounts_mineralogy[mineral][n] * data_alkalifeldspar["PE"], 3)
|
|
1184
|
+
elif mineral == "Pl":
|
|
1185
|
+
rho_s_helper += round(amounts_mineralogy[mineral][n] * data_plagioclase["rho"], 3)
|
|
1186
|
+
bulkmod_helper += round(amounts_mineralogy[mineral][n] * data_plagioclase["K"], 3)
|
|
1187
|
+
shearmod_helper += round(shear_factor * amounts_mineralogy[mineral][n] * data_plagioclase["G"], 3)
|
|
1188
|
+
gr_helper += round(amounts_mineralogy[mineral][n] * data_plagioclase["GR"], 3)
|
|
1189
|
+
pe_helper += round(amounts_mineralogy[mineral][n] * data_plagioclase["PE"], 3)
|
|
1190
|
+
elif mineral == "Bt":
|
|
1191
|
+
rho_s_helper += round(amounts_mineralogy[mineral][n] * data_biotite["rho"], 3)
|
|
1192
|
+
bulkmod_helper += round(amounts_mineralogy[mineral][n] * data_biotite["K"], 3)
|
|
1193
|
+
shearmod_helper += round(shear_factor * amounts_mineralogy[mineral][n] * data_biotite["G"], 3)
|
|
1194
|
+
gr_helper += round(amounts_mineralogy[mineral][n] * data_biotite["GR"], 3)
|
|
1195
|
+
pe_helper += round(amounts_mineralogy[mineral][n] * data_biotite["PE"], 3)
|
|
1196
|
+
elif mineral == "Cal":
|
|
1197
|
+
rho_s_helper += round(amounts_mineralogy[mineral][n] * self.data_calcite["rho"], 3)
|
|
1198
|
+
bulkmod_helper += round(amounts_mineralogy[mineral][n] * self.data_calcite["K"], 3)
|
|
1199
|
+
shearmod_helper += round(shear_factor * amounts_mineralogy[mineral][n] * self.data_calcite["G"], 3)
|
|
1200
|
+
gr_helper += round(amounts_mineralogy[mineral][n] * self.data_calcite["GR"], 3)
|
|
1201
|
+
pe_helper += round(amounts_mineralogy[mineral][n] * self.data_calcite["PE"], 3)
|
|
1202
|
+
elif mineral == "Hem":
|
|
1203
|
+
rho_s_helper += round(amounts_mineralogy[mineral][n] * self.data_hematite["rho"], 3)
|
|
1204
|
+
bulkmod_helper += round(amounts_mineralogy[mineral][n] * self.data_hematite["K"], 3)
|
|
1205
|
+
shearmod_helper += round(shear_factor * amounts_mineralogy[mineral][n] * self.data_hematite["G"], 3)
|
|
1206
|
+
gr_helper += round(amounts_mineralogy[mineral][n] * self.data_hematite["GR"], 3)
|
|
1207
|
+
pe_helper += round(amounts_mineralogy[mineral][n] * self.data_hematite["PE"], 3)
|
|
1208
|
+
#
|
|
1209
|
+
rho_helper = round((1 - phi_helper) * rho_s_helper + phi_helper * self.data_water[2] / 1000, 3)
|
|
1210
|
+
youngsmod_helper = round(
|
|
1211
|
+
(9 * bulkmod_helper * shearmod_helper) / (3 * bulkmod_helper + shearmod_helper), 3)
|
|
1212
|
+
poisson_helper = round(
|
|
1213
|
+
(3 * bulkmod_helper - 2 * shearmod_helper) / (6 * bulkmod_helper + 2 * shearmod_helper), 3)
|
|
1214
|
+
vP_helper = round(
|
|
1215
|
+
((bulkmod_helper * 10 ** 9 + 4 / 3 * shearmod_helper * 10 ** 9) / (rho_helper)) ** 0.5, 3)
|
|
1216
|
+
vS_helper = round(((shearmod_helper * 10 ** 9) / (rho_helper)) ** 0.5, 3)
|
|
1217
|
+
vPvS_helper_helper = round(vP_helper / vS_helper, 3)
|
|
1218
|
+
#
|
|
1219
|
+
bulk_properties["rho_s"].append(round(rho_s_helper, 3))
|
|
1220
|
+
bulk_properties["rho"].append(rho_helper)
|
|
1221
|
+
bulk_properties["K"].append(round(bulkmod_helper, 3))
|
|
1222
|
+
bulk_properties["G"].append(round(shearmod_helper, 3))
|
|
1223
|
+
bulk_properties["E"].append(youngsmod_helper)
|
|
1224
|
+
bulk_properties["nu"].append(poisson_helper)
|
|
1225
|
+
bulk_properties["vP"].append(vP_helper)
|
|
1226
|
+
bulk_properties["vS"].append(vS_helper)
|
|
1227
|
+
bulk_properties["vPvS"].append(vPvS_helper_helper)
|
|
1228
|
+
bulk_properties["GR"].append(round(gr_helper, 3))
|
|
1229
|
+
bulk_properties["PE"].append(round(pe_helper, 3))
|
|
1230
|
+
bulk_properties["phi"].append(round(phi_helper, 3))
|
|
1231
|
+
|
|
1232
|
+
amounts = []
|
|
1233
|
+
for key, value in amounts_chemistry.items():
|
|
1234
|
+
chem_data = PeriodicSystem(name=key).get_data()
|
|
1235
|
+
amounts.append([key, chem_data[1], value[-1]])
|
|
1236
|
+
|
|
1237
|
+
list_oxides = ["H2O", "CO2", "Na2O", "MgO", "Al2O3", "SiO2", "K2O", "CaO", "Fe2O3"]
|
|
1238
|
+
composition_oxides = {}
|
|
1239
|
+
for var_oxide in list_oxides:
|
|
1240
|
+
oxide_data = OxideCompounds(var_compound=var_oxide, var_amounts=amounts).get_composition()
|
|
1241
|
+
composition_oxides[var_oxide] = round(oxide_data["Oxide"][1], 4)
|
|
1242
|
+
|
|
1243
|
+
if list_oxides[0] not in amounts_compounds:
|
|
1244
|
+
for oxide in list_oxides:
|
|
1245
|
+
amounts_compounds[oxide] = []
|
|
1246
|
+
|
|
1247
|
+
for key, value in composition_oxides.items():
|
|
1248
|
+
amounts_compounds[key].append(value)
|
|
1249
|
+
|
|
1250
|
+
n += 1
|
|
1251
|
+
|
|
1252
|
+
amounts_mineralogy = dict(sorted(
|
|
1253
|
+
amounts_mineralogy.items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
1254
|
+
amounts_chemistry = dict(sorted(
|
|
1255
|
+
amounts_chemistry.items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
1256
|
+
amounts_compounds = dict(sorted(
|
|
1257
|
+
amounts_compounds.items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
1258
|
+
|
|
1259
|
+
results = {}
|
|
1260
|
+
results["rock"] = "Conglomerate"
|
|
1261
|
+
if number > 1:
|
|
1262
|
+
results["mineralogy"] = amounts_mineralogy
|
|
1263
|
+
results["chemistry"] = amounts_chemistry
|
|
1264
|
+
results["compounds"] = amounts_compounds
|
|
1265
|
+
results["phi"] = bulk_properties["phi"]
|
|
1266
|
+
results["fluid"] = "water"
|
|
1267
|
+
results["rho_s"] = bulk_properties["rho_s"]
|
|
1268
|
+
results["rho"] = bulk_properties["rho"]
|
|
1269
|
+
results["vP"] = bulk_properties["vP"]
|
|
1270
|
+
results["vS"] = bulk_properties["vS"]
|
|
1271
|
+
results["vP/vS"] = bulk_properties["vPvS"]
|
|
1272
|
+
results["K"] = bulk_properties["K"]
|
|
1273
|
+
results["G"] = bulk_properties["G"]
|
|
1274
|
+
results["E"] = bulk_properties["E"]
|
|
1275
|
+
results["nu"] = bulk_properties["nu"]
|
|
1276
|
+
results["GR"] = bulk_properties["GR"]
|
|
1277
|
+
results["PE"] = bulk_properties["PE"]
|
|
1278
|
+
else:
|
|
1279
|
+
single_amounts_mineralogy = {}
|
|
1280
|
+
single_amounts_chemistry = {}
|
|
1281
|
+
single_amounts_compounds = {}
|
|
1282
|
+
for mineral, value in amounts_mineralogy.items():
|
|
1283
|
+
single_amounts_mineralogy[mineral] = value[0]
|
|
1284
|
+
for element, value in amounts_chemistry.items():
|
|
1285
|
+
single_amounts_chemistry[element] = value[0]
|
|
1286
|
+
for compound, value in amounts_compounds.items():
|
|
1287
|
+
single_amounts_compounds[compound] = value[0]
|
|
1288
|
+
results["mineralogy"] = single_amounts_mineralogy
|
|
1289
|
+
results["chemistry"] = single_amounts_chemistry
|
|
1290
|
+
results["compounds"] = single_amounts_compounds
|
|
1291
|
+
results["phi"] = bulk_properties["phi"][0]
|
|
1292
|
+
results["fluid"] = "water"
|
|
1293
|
+
results["rho_s"] = bulk_properties["rho_s"][0]
|
|
1294
|
+
results["rho"] = bulk_properties["rho"][0]
|
|
1295
|
+
results["vP"] = bulk_properties["vP"][0]
|
|
1296
|
+
results["vS"] = bulk_properties["vS"][0]
|
|
1297
|
+
results["vP/vS"] = bulk_properties["vPvS"][0]
|
|
1298
|
+
results["K"] = bulk_properties["K"][0]
|
|
1299
|
+
results["G"] = bulk_properties["G"][0]
|
|
1300
|
+
results["E"] = bulk_properties["E"][0]
|
|
1301
|
+
results["nu"] = bulk_properties["nu"][0]
|
|
1302
|
+
results["GR"] = bulk_properties["GR"][0]
|
|
1303
|
+
results["PE"] = bulk_properties["PE"][0]
|
|
1304
|
+
#
|
|
1305
|
+
return results
|
|
1306
|
+
|
|
1307
|
+
def create_shale_alt(self, number=1, composition=None, porosity=None):
|
|
1308
|
+
results_container = {}
|
|
1309
|
+
results_container["rock"] = "Shale"
|
|
1310
|
+
results_container["mineralogy"] = {}
|
|
1311
|
+
results_container["chemistry"] = {}
|
|
1312
|
+
results_container["compounds"] = {}
|
|
1313
|
+
results_container["phi"] = []
|
|
1314
|
+
results_container["fluid"] = "water"
|
|
1315
|
+
results_container["rho_s"] = []
|
|
1316
|
+
results_container["rho"] = []
|
|
1317
|
+
results_container["vP"] = []
|
|
1318
|
+
results_container["vS"] = []
|
|
1319
|
+
results_container["vP/vS"] = []
|
|
1320
|
+
results_container["K"] = []
|
|
1321
|
+
results_container["G"] = []
|
|
1322
|
+
results_container["E"] = []
|
|
1323
|
+
results_container["nu"] = []
|
|
1324
|
+
results_container["GR"] = []
|
|
1325
|
+
results_container["PE"] = []
|
|
1326
|
+
#
|
|
1327
|
+
n = 0
|
|
1328
|
+
while n < number:
|
|
1329
|
+
data_montmorillonite = Phyllosilicates(impurity="pure", data_type=True).create_montmorillonite()
|
|
1330
|
+
data_illite = Phyllosilicates(impurity="pure", data_type=True).create_illite_simple()
|
|
1331
|
+
data_chlorite = Phyllosilicates(impurity="pure", data_type=True).create_chlorite()
|
|
1332
|
+
data_alkalifeldspar = Tectosilicates(impurity="pure", data_type=True).create_alkalifeldspar()
|
|
1333
|
+
data_organics = Organics(data_type=True).create_organic_matter()
|
|
1334
|
+
data_biotite = Phyllosilicates(impurity="pure", data_type=True).create_biotite()
|
|
1335
|
+
#
|
|
1336
|
+
mineralogy = {"Ilt": data_illite, "Mnt": data_montmorillonite, "Chl": data_chlorite,
|
|
1337
|
+
"Qz": self.data_quartz, "Kfs": data_alkalifeldspar, "Bt": data_biotite, "Org": data_organics,
|
|
1338
|
+
"Urn": self.data_uraninite, "Py": self.data_pyrite}
|
|
1339
|
+
#
|
|
1340
|
+
minerals_list = list(mineralogy.keys())
|
|
1341
|
+
#
|
|
1342
|
+
if minerals_list[0] not in results_container["mineralogy"]:
|
|
1343
|
+
for mineral in minerals_list:
|
|
1344
|
+
results_container["mineralogy"][mineral] = []
|
|
1345
|
+
#
|
|
1346
|
+
condition = False
|
|
1347
|
+
#
|
|
1348
|
+
while condition == False:
|
|
1349
|
+
elements_list = []
|
|
1350
|
+
phi_minerals = {}
|
|
1351
|
+
w_minerals = {}
|
|
1352
|
+
w_elements = {}
|
|
1353
|
+
#
|
|
1354
|
+
if composition != None:
|
|
1355
|
+
phi_ilt = composition["Ilt"]
|
|
1356
|
+
phi_mnt = composition["Mnt"]
|
|
1357
|
+
phi_chl = composition["Chl"]
|
|
1358
|
+
phi_qz = composition["Qz"]
|
|
1359
|
+
phi_kfs = composition["Kfs"]
|
|
1360
|
+
phi_bt = composition["Bt"]
|
|
1361
|
+
phi_org = composition["Org"]
|
|
1362
|
+
phi_urn = composition["Urn"]
|
|
1363
|
+
phi_py = composition["Py"]
|
|
1364
|
+
#
|
|
1365
|
+
phi_minerals["Ilt"] = phi_ilt
|
|
1366
|
+
phi_minerals["Mnt"] = phi_mnt
|
|
1367
|
+
phi_minerals["Chl"] = phi_chl
|
|
1368
|
+
phi_minerals["Qz"] = phi_qz
|
|
1369
|
+
phi_minerals["Kfs"] = phi_kfs
|
|
1370
|
+
phi_minerals["Bt"] = phi_bt
|
|
1371
|
+
phi_minerals["Org"] = phi_org
|
|
1372
|
+
phi_minerals["Urn"] = phi_urn
|
|
1373
|
+
phi_minerals["Py"] = phi_py
|
|
1374
|
+
#
|
|
1375
|
+
else:
|
|
1376
|
+
condition_2 = False
|
|
1377
|
+
while condition_2 == False:
|
|
1378
|
+
w_misc = round(rd.uniform(0.0, 0.2), 4)
|
|
1379
|
+
w_silic = round(rd.uniform(0.0, 0.4), 4)
|
|
1380
|
+
w_clay = round(1 - w_misc - w_silic, 4)
|
|
1381
|
+
#
|
|
1382
|
+
## Others
|
|
1383
|
+
upper_limit_urn = 0.000025
|
|
1384
|
+
phi_urn = round(rd.uniform(0.000001, upper_limit_urn), 6)
|
|
1385
|
+
phi_org = round(w_misc*rd.uniform(0.0, (1 - phi_urn)), 6)
|
|
1386
|
+
phi_py = round(w_misc*rd.uniform(0.0, (1 - phi_urn - phi_org)), 6)
|
|
1387
|
+
phi_bt = round(w_misc - phi_urn - phi_org - phi_py, 6)
|
|
1388
|
+
#
|
|
1389
|
+
## Siliciclastics
|
|
1390
|
+
phi_qz = round(w_silic*rd.uniform(0.2, 0.8), 6)
|
|
1391
|
+
phi_kfs = round(w_silic - phi_qz, 6)
|
|
1392
|
+
#
|
|
1393
|
+
## Clays
|
|
1394
|
+
phi_ilt = round(w_clay*rd.uniform(0.5, 1.0), 6)
|
|
1395
|
+
phi_mnt = round(w_clay*rd.uniform(0.0, (1 - phi_ilt)), 6)
|
|
1396
|
+
phi_chl = round(w_clay - phi_ilt - phi_mnt, 6)
|
|
1397
|
+
#
|
|
1398
|
+
phi_total = phi_urn + phi_org + phi_bt + phi_py + phi_qz + phi_kfs + phi_ilt + phi_mnt + phi_chl
|
|
1399
|
+
#
|
|
1400
|
+
if np.isclose(phi_total, 1.0000) == True:
|
|
1401
|
+
if 0.0 <= phi_urn <= upper_limit_urn and 0.0 <= phi_org <= w_misc \
|
|
1402
|
+
and 0.0 <= phi_bt <= w_misc and 0.0 <= phi_py <= 0.1 \
|
|
1403
|
+
and 0.0 <= phi_qz <= w_silic and 0.1 <= phi_kfs <= w_silic \
|
|
1404
|
+
and 0.0 <= phi_ilt <= w_clay and 0.0 <= phi_mnt <= w_clay \
|
|
1405
|
+
and 0.0 <= phi_chl <= w_clay:
|
|
1406
|
+
condition_2 = True
|
|
1407
|
+
#
|
|
1408
|
+
phi_minerals["Ilt"] = phi_ilt
|
|
1409
|
+
phi_minerals["Mnt"] = phi_mnt
|
|
1410
|
+
phi_minerals["Chl"] = phi_chl
|
|
1411
|
+
phi_minerals["Qz"] = phi_qz
|
|
1412
|
+
phi_minerals["Kfs"] = phi_kfs
|
|
1413
|
+
phi_minerals["Bt"] = phi_bt
|
|
1414
|
+
phi_minerals["Org"] = phi_org
|
|
1415
|
+
phi_minerals["Urn"] = phi_urn
|
|
1416
|
+
phi_minerals["Py"] = phi_py
|
|
1417
|
+
#
|
|
1418
|
+
rho_s = 0
|
|
1419
|
+
for key, value in phi_minerals.items():
|
|
1420
|
+
rho_s += phi_minerals[key]*mineralogy[key]["rho"]
|
|
1421
|
+
#
|
|
1422
|
+
for element, value in mineralogy[key]["chemistry"].items():
|
|
1423
|
+
if element not in elements_list:
|
|
1424
|
+
elements_list.append(element)
|
|
1425
|
+
w_elements[element] = 0.0
|
|
1426
|
+
#
|
|
1427
|
+
if elements_list[0] not in results_container["chemistry"]:
|
|
1428
|
+
for element in elements_list:
|
|
1429
|
+
results_container["chemistry"][element] = []
|
|
1430
|
+
#
|
|
1431
|
+
rho_s = round(rho_s, 3)
|
|
1432
|
+
for key, value in phi_minerals.items():
|
|
1433
|
+
if key == "Urn":
|
|
1434
|
+
n_digits = 6
|
|
1435
|
+
else:
|
|
1436
|
+
n_digits = 6
|
|
1437
|
+
#
|
|
1438
|
+
w_minerals[key] = round((phi_minerals[key]*mineralogy[key]["rho"])/rho_s, n_digits)
|
|
1439
|
+
#
|
|
1440
|
+
if self.fluid == "water":
|
|
1441
|
+
data_fluid = self.data_water
|
|
1442
|
+
elif self.fluid == "oil":
|
|
1443
|
+
data_fluid = self.data_oil
|
|
1444
|
+
elif self.fluid == "gas":
|
|
1445
|
+
data_fluid = self.data_gas
|
|
1446
|
+
#
|
|
1447
|
+
old_index = elements_list.index("O")
|
|
1448
|
+
elements_list += [elements_list.pop(old_index)]
|
|
1449
|
+
#
|
|
1450
|
+
w_elements_total = 0.0
|
|
1451
|
+
for element in elements_list:
|
|
1452
|
+
if element != "O":
|
|
1453
|
+
for mineral, w_mineral in w_minerals.items():
|
|
1454
|
+
if element in mineralogy[mineral]["chemistry"]:
|
|
1455
|
+
if element == "U":
|
|
1456
|
+
n_digits = 6
|
|
1457
|
+
else:
|
|
1458
|
+
n_digits = 6
|
|
1459
|
+
#
|
|
1460
|
+
value = round(w_mineral*mineralogy[mineral]["chemistry"][element], n_digits)
|
|
1461
|
+
w_elements[element] += value
|
|
1462
|
+
w_elements_total += value
|
|
1463
|
+
#
|
|
1464
|
+
w_elements[element] = round(w_elements[element], n_digits)
|
|
1465
|
+
elif element == "O":
|
|
1466
|
+
w_elements[element] += round(1 - w_elements_total, 6)
|
|
1467
|
+
#
|
|
1468
|
+
w_elements[element] = round(w_elements[element], 6)
|
|
1469
|
+
#
|
|
1470
|
+
if sum(w_minerals.values()) == 1.0 and sum(w_elements.values()) == 1.0:
|
|
1471
|
+
condition = True
|
|
1472
|
+
#
|
|
1473
|
+
rho_solid = 0
|
|
1474
|
+
gamma_ray = 0.0
|
|
1475
|
+
photoelectricity = 0.0
|
|
1476
|
+
for key, value in phi_minerals.items():
|
|
1477
|
+
rho_solid += phi_minerals[key] * mineralogy[key]["rho"]
|
|
1478
|
+
gamma_ray += phi_minerals[key] * mineralogy[key]["GR"]
|
|
1479
|
+
photoelectricity += phi_minerals[key] * mineralogy[key]["PE"]
|
|
1480
|
+
#
|
|
1481
|
+
## Bulk Density, Porosity, Seismic Velocities
|
|
1482
|
+
vP, vS, vPvS, rho, var_porosity = SeismicVelocities(
|
|
1483
|
+
rho_solid=rho_solid, rho_fluid=data_fluid[2]).calculate_seismic_velocities(
|
|
1484
|
+
rho_limits=[1800, 2900], vP_limits=[2000, 5000], vS_limits=[1000, 2000], delta=0.05, porosity=porosity)
|
|
1485
|
+
## Elastic Parameters
|
|
1486
|
+
bulk_modulus, shear_modulus, youngs_modulus, poisson_ratio = SeismicVelocities(
|
|
1487
|
+
rho_solid=None, rho_fluid=None).calculate_elastic_properties(
|
|
1488
|
+
rho=rho, vP=vP, vS=vS)
|
|
1489
|
+
## Gamma Ray
|
|
1490
|
+
gamma_ray = round(gamma_ray, 3)
|
|
1491
|
+
## Photoelectricity
|
|
1492
|
+
photoelectricity = round(photoelectricity, 3)
|
|
1493
|
+
phi_neutron = (2400/rho)*0.39
|
|
1494
|
+
# Composition data
|
|
1495
|
+
for key, value in w_minerals.items():
|
|
1496
|
+
results_container["mineralogy"][key].append(value)
|
|
1497
|
+
|
|
1498
|
+
amounts = []
|
|
1499
|
+
for key, value in w_elements.items():
|
|
1500
|
+
results_container["chemistry"][key].append(value)
|
|
1501
|
+
chem_data = PeriodicSystem(name=key).get_data()
|
|
1502
|
+
amounts.append([key, chem_data[1], value])
|
|
1503
|
+
|
|
1504
|
+
list_oxides = ["H2O", "CO2", "N2O5", "Na2O", "MgO", "Al2O3", "SiO2", "SO3", "K2O", "CaO", "Mn2O3", "Fe2O3",
|
|
1505
|
+
"NiO", "UO2"]
|
|
1506
|
+
composition_oxides = {}
|
|
1507
|
+
for var_oxide in list_oxides:
|
|
1508
|
+
oxide_data = OxideCompounds(var_compound=var_oxide, var_amounts=amounts).get_composition()
|
|
1509
|
+
composition_oxides[var_oxide] = round(oxide_data["Oxide"][1], 4)
|
|
1510
|
+
|
|
1511
|
+
if list_oxides[0] not in results_container["compounds"]:
|
|
1512
|
+
for oxide in list_oxides:
|
|
1513
|
+
results_container["compounds"][oxide] = []
|
|
1514
|
+
|
|
1515
|
+
for key, value in composition_oxides.items():
|
|
1516
|
+
results_container["compounds"][key].append(value)
|
|
1517
|
+
|
|
1518
|
+
results_container["mineralogy"] = dict(sorted(
|
|
1519
|
+
results_container["mineralogy"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
1520
|
+
results_container["chemistry"] = dict(sorted(
|
|
1521
|
+
results_container["chemistry"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
1522
|
+
results_container["compounds"] = dict(sorted(
|
|
1523
|
+
results_container["compounds"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
1524
|
+
|
|
1525
|
+
## Results
|
|
1526
|
+
results_container["phi"].append(var_porosity)
|
|
1527
|
+
results_container["rho_s"].append(rho_solid)
|
|
1528
|
+
results_container["rho"].append(rho)
|
|
1529
|
+
results_container["vP"].append(vP)
|
|
1530
|
+
results_container["vS"].append(vS)
|
|
1531
|
+
results_container["vP/vS"].append(vPvS)
|
|
1532
|
+
results_container["K"].append(bulk_modulus)
|
|
1533
|
+
results_container["G"].append(shear_modulus)
|
|
1534
|
+
results_container["E"].append(youngs_modulus)
|
|
1535
|
+
results_container["nu"].append(poisson_ratio)
|
|
1536
|
+
results_container["GR"].append(gamma_ray)
|
|
1537
|
+
results_container["PE"].append(photoelectricity)
|
|
1538
|
+
#
|
|
1539
|
+
n += 1
|
|
1540
|
+
#
|
|
1541
|
+
return results_container
|
|
1542
|
+
#
|
|
1543
|
+
def create_greywacke_huckenholz(self, rock="Greywacke", number=1, composition=None, enrichment_fsp="Pl",
|
|
1544
|
+
enrichment_mca="Bt", porosity=None):
|
|
1545
|
+
results_container = {}
|
|
1546
|
+
results_container["rock"] = rock
|
|
1547
|
+
results_container["mineralogy"] = {}
|
|
1548
|
+
results_container["chemistry"] = {}
|
|
1549
|
+
results_container["compounds"] = {}
|
|
1550
|
+
results_container["phi"] = []
|
|
1551
|
+
results_container["fluid"] = self.fluid
|
|
1552
|
+
results_container["rho_s"] = []
|
|
1553
|
+
results_container["rho"] = []
|
|
1554
|
+
results_container["vP"] = []
|
|
1555
|
+
results_container["vS"] = []
|
|
1556
|
+
results_container["vP/vS"] = []
|
|
1557
|
+
results_container["K"] = []
|
|
1558
|
+
results_container["G"] = []
|
|
1559
|
+
results_container["E"] = []
|
|
1560
|
+
results_container["nu"] = []
|
|
1561
|
+
results_container["GR"] = []
|
|
1562
|
+
results_container["PE"] = []
|
|
1563
|
+
#
|
|
1564
|
+
n = 0
|
|
1565
|
+
while n < number:
|
|
1566
|
+
data_alkalifeldspar = Tectosilicates(impurity="pure", data_type=True).create_alkalifeldspar()
|
|
1567
|
+
data_plagioclase = Tectosilicates(impurity="pure", data_type=True).create_plagioclase()
|
|
1568
|
+
data_biotite = Phyllosilicates(impurity="pure", data_type=True).create_biotite()
|
|
1569
|
+
data_muscovite = Phyllosilicates(impurity="pure", data_type=True).create_muscovite()
|
|
1570
|
+
data_chlorite = Phyllosilicates(impurity="pure", data_type=True).create_chlorite()
|
|
1571
|
+
#
|
|
1572
|
+
mineralogy = {
|
|
1573
|
+
"Qz": self.data_quartz, "Pl": data_plagioclase, "Kfs": data_alkalifeldspar, "Bt": data_biotite,
|
|
1574
|
+
"Ms": data_muscovite, "Chl": data_chlorite, "Cal": self.data_calcite, "Py": self.data_pyrite}
|
|
1575
|
+
#
|
|
1576
|
+
minerals_list = list(mineralogy.keys())
|
|
1577
|
+
#
|
|
1578
|
+
if minerals_list[0] not in results_container["mineralogy"]:
|
|
1579
|
+
for mineral in minerals_list:
|
|
1580
|
+
results_container["mineralogy"][mineral] = []
|
|
1581
|
+
#
|
|
1582
|
+
condition = False
|
|
1583
|
+
#
|
|
1584
|
+
while condition == False:
|
|
1585
|
+
elements_list = []
|
|
1586
|
+
phi_minerals = {}
|
|
1587
|
+
w_minerals = {}
|
|
1588
|
+
w_elements = {}
|
|
1589
|
+
#
|
|
1590
|
+
if composition != None:
|
|
1591
|
+
phi_qz = composition["Qz"]
|
|
1592
|
+
phi_pl = composition["Pl"]
|
|
1593
|
+
phi_kfs = composition["Kfs"]
|
|
1594
|
+
phi_bt = composition["Bt"]
|
|
1595
|
+
phi_ms = composition["Ms"]
|
|
1596
|
+
phi_chl = composition["Chl"]
|
|
1597
|
+
phi_cal = composition["Cal"]
|
|
1598
|
+
phi_py = composition["Py"]
|
|
1599
|
+
#
|
|
1600
|
+
phi_minerals["Qz"] = phi_qz
|
|
1601
|
+
phi_minerals["Pl"] = phi_pl
|
|
1602
|
+
phi_minerals["Kfs"] = phi_kfs
|
|
1603
|
+
phi_minerals["Bt"] = phi_bt
|
|
1604
|
+
phi_minerals["Ms"] = phi_ms
|
|
1605
|
+
phi_minerals["Chl"] = phi_chl
|
|
1606
|
+
phi_minerals["Cal"] = phi_cal
|
|
1607
|
+
phi_minerals["Py"] = phi_py
|
|
1608
|
+
#
|
|
1609
|
+
else:
|
|
1610
|
+
condition_2 = False
|
|
1611
|
+
while condition_2 == False:
|
|
1612
|
+
fsp_dominance = round(rd.uniform(0.75, 1.0), 2)
|
|
1613
|
+
mca_dominance = round(rd.uniform(0.75, 1.0), 2)
|
|
1614
|
+
#
|
|
1615
|
+
if enrichment_fsp == "Pl":
|
|
1616
|
+
qz_limits = [0.25, 0.55]
|
|
1617
|
+
#
|
|
1618
|
+
pl_limits = [round(fsp_dominance*0.25, 2), round(fsp_dominance*0.45, 2)]
|
|
1619
|
+
kfs_limits = [round((1 - fsp_dominance)*0.25, 2), round((1 - fsp_dominance)*0.47, 2)]
|
|
1620
|
+
#
|
|
1621
|
+
if enrichment_mca == "Bt":
|
|
1622
|
+
bt_limits = [round(mca_dominance*0.0, 2), round(mca_dominance*0.20, 2)]
|
|
1623
|
+
ms_limits = [round((1 - mca_dominance)*0.0, 2), round((1 - mca_dominance)*0.21, 2)]
|
|
1624
|
+
else:
|
|
1625
|
+
ms_limits = [round(mca_dominance*0.0, 2), round(mca_dominance*0.20, 2)]
|
|
1626
|
+
bt_limits = [round((1 - mca_dominance)*0.0, 2), round((1 - mca_dominance)*0.21, 2)]
|
|
1627
|
+
#
|
|
1628
|
+
chl_limits = [0.0, 0.25]
|
|
1629
|
+
cal_limits = [0.0, 0.06]
|
|
1630
|
+
py_limits = [0.0, 0.03]
|
|
1631
|
+
#
|
|
1632
|
+
else:
|
|
1633
|
+
qz_limits = [0.25, 0.55]
|
|
1634
|
+
#
|
|
1635
|
+
kfs_limits = [round(fsp_dominance*0.25, 2), round(fsp_dominance*0.45, 2)]
|
|
1636
|
+
pl_limits = [round((1 - fsp_dominance)*0.25, 2), round((1 - fsp_dominance)*0.47, 2)]
|
|
1637
|
+
#
|
|
1638
|
+
if enrichment_mca == "Bt":
|
|
1639
|
+
bt_limits = [round(mca_dominance*0.0, 2), round(mca_dominance*0.20, 2)]
|
|
1640
|
+
ms_limits = [round((1 - mca_dominance)*0.0, 2), round((1 - mca_dominance)*0.21, 2)]
|
|
1641
|
+
else:
|
|
1642
|
+
ms_limits = [round(mca_dominance*0.0, 2), round(mca_dominance*0.20, 2)]
|
|
1643
|
+
bt_limits = [round((1 - mca_dominance)*0.0, 2), round((1 - mca_dominance)*0.21, 2)]
|
|
1644
|
+
#
|
|
1645
|
+
chl_limits = [0.0, 0.22]
|
|
1646
|
+
cal_limits = [0.0, 0.05]
|
|
1647
|
+
py_limits = [0.0, 0.03]
|
|
1648
|
+
#
|
|
1649
|
+
phi_qz = round(rd.uniform(qz_limits[0], qz_limits[1]), 4)
|
|
1650
|
+
phi_pl = round(rd.uniform(pl_limits[0], (1 - phi_qz)), 4)
|
|
1651
|
+
phi_kfs = round(rd.uniform(kfs_limits[0], (1 - phi_qz - phi_pl)), 4)
|
|
1652
|
+
phi_bt = round(rd.uniform(bt_limits[0], (1 - phi_qz - phi_pl - phi_kfs)), 4)
|
|
1653
|
+
phi_ms = round(rd.uniform(ms_limits[0], (1 - phi_qz - phi_pl - phi_kfs - phi_bt)), 4)
|
|
1654
|
+
phi_chl = round(rd.uniform(chl_limits[0], (1 - phi_qz - phi_pl - phi_kfs - phi_bt - phi_ms)), 4)
|
|
1655
|
+
phi_cal = round(rd.uniform(cal_limits[0],
|
|
1656
|
+
(1 - phi_qz - phi_pl - phi_kfs - phi_bt - phi_ms - phi_chl)), 4)
|
|
1657
|
+
phi_py = round(1 - phi_qz - phi_pl - phi_kfs - phi_bt - phi_ms - phi_chl - phi_cal, 4)
|
|
1658
|
+
#
|
|
1659
|
+
phi_total = round(phi_qz + phi_pl + phi_kfs + phi_bt + phi_ms + phi_chl + phi_cal + phi_py, 4)
|
|
1660
|
+
#
|
|
1661
|
+
if np.isclose(phi_total, 1.0000) == True:
|
|
1662
|
+
if qz_limits[0] <= phi_qz <= qz_limits[1] \
|
|
1663
|
+
and pl_limits[0] <= phi_pl <= pl_limits[1] \
|
|
1664
|
+
and kfs_limits[0] <= phi_kfs <= kfs_limits[1] \
|
|
1665
|
+
and bt_limits[0] <= phi_bt <= bt_limits[1] \
|
|
1666
|
+
and ms_limits[0] <= phi_ms <= ms_limits[1] \
|
|
1667
|
+
and chl_limits[0] <= phi_chl <= chl_limits[1] \
|
|
1668
|
+
and cal_limits[0] <= phi_cal <= cal_limits[1] \
|
|
1669
|
+
and py_limits[0] <= phi_py <= py_limits[1]:
|
|
1670
|
+
condition_2 = True
|
|
1671
|
+
#
|
|
1672
|
+
phi_minerals["Qz"] = phi_qz
|
|
1673
|
+
phi_minerals["Pl"] = phi_pl
|
|
1674
|
+
phi_minerals["Kfs"] = phi_kfs
|
|
1675
|
+
phi_minerals["Bt"] = phi_bt
|
|
1676
|
+
phi_minerals["Ms"] = phi_ms
|
|
1677
|
+
phi_minerals["Chl"] = phi_chl
|
|
1678
|
+
phi_minerals["Cal"] = phi_cal
|
|
1679
|
+
phi_minerals["Py"] = phi_py
|
|
1680
|
+
#
|
|
1681
|
+
rho_s = 0
|
|
1682
|
+
velocities_minerals = {}
|
|
1683
|
+
for key, value in phi_minerals.items():
|
|
1684
|
+
rho_s += phi_minerals[key]*mineralogy[key]["rho"]
|
|
1685
|
+
#
|
|
1686
|
+
velocities_minerals[key] = {}
|
|
1687
|
+
velocities_minerals[key]["vP"] = mineralogy[key]["vP"]
|
|
1688
|
+
velocities_minerals[key]["vS"] = mineralogy[key]["vS"]
|
|
1689
|
+
#
|
|
1690
|
+
for element, value in mineralogy[key]["chemistry"].items():
|
|
1691
|
+
if element not in elements_list:
|
|
1692
|
+
elements_list.append(element)
|
|
1693
|
+
w_elements[element] = 0.0
|
|
1694
|
+
#
|
|
1695
|
+
if elements_list[0] not in results_container["chemistry"]:
|
|
1696
|
+
for element in elements_list:
|
|
1697
|
+
results_container["chemistry"][element] = []
|
|
1698
|
+
#
|
|
1699
|
+
rho_s = round(rho_s, 3)
|
|
1700
|
+
#
|
|
1701
|
+
rho_solid = rho_s
|
|
1702
|
+
for key, value in phi_minerals.items():
|
|
1703
|
+
if key == "Urn":
|
|
1704
|
+
n_digits = 4
|
|
1705
|
+
else:
|
|
1706
|
+
n_digits = 4
|
|
1707
|
+
#
|
|
1708
|
+
w_minerals[key] = round((phi_minerals[key]*mineralogy[key]["rho"])/rho_s, n_digits)
|
|
1709
|
+
#
|
|
1710
|
+
if self.fluid == "water":
|
|
1711
|
+
data_fluid = self.data_water
|
|
1712
|
+
elif self.fluid == "oil":
|
|
1713
|
+
data_fluid = self.data_oil
|
|
1714
|
+
elif self.fluid == "gas":
|
|
1715
|
+
data_fluid = self.data_gas
|
|
1716
|
+
#
|
|
1717
|
+
old_index = elements_list.index("O")
|
|
1718
|
+
elements_list += [elements_list.pop(old_index)]
|
|
1719
|
+
#
|
|
1720
|
+
w_elements_total = 0.0
|
|
1721
|
+
for element in elements_list:
|
|
1722
|
+
if element != "O":
|
|
1723
|
+
for mineral, w_mineral in w_minerals.items():
|
|
1724
|
+
if element in mineralogy[mineral]["chemistry"]:
|
|
1725
|
+
if element == "U":
|
|
1726
|
+
n_digits = 4
|
|
1727
|
+
else:
|
|
1728
|
+
n_digits = 4
|
|
1729
|
+
#
|
|
1730
|
+
value = round(w_mineral*mineralogy[mineral]["chemistry"][element], n_digits)
|
|
1731
|
+
w_elements[element] += value
|
|
1732
|
+
w_elements_total += value
|
|
1733
|
+
#
|
|
1734
|
+
w_elements[element] = round(w_elements[element], n_digits)
|
|
1735
|
+
elif element == "O":
|
|
1736
|
+
w_elements[element] += round(1 - w_elements_total, 4)
|
|
1737
|
+
#
|
|
1738
|
+
w_elements[element] = round(w_elements[element], 4)
|
|
1739
|
+
#
|
|
1740
|
+
total_w_minerals = round(sum(w_minerals.values()), 4)
|
|
1741
|
+
total_w_elements = round(sum(w_elements.values()), 4)
|
|
1742
|
+
if total_w_minerals == 1.0 and total_w_elements == 1.0:
|
|
1743
|
+
for key, value in w_minerals.items():
|
|
1744
|
+
w_minerals[key] = abs(value)
|
|
1745
|
+
#
|
|
1746
|
+
for key, value in w_elements.items():
|
|
1747
|
+
w_elements[key] = abs(value)
|
|
1748
|
+
#
|
|
1749
|
+
condition = True
|
|
1750
|
+
#
|
|
1751
|
+
gamma_ray = 0.0
|
|
1752
|
+
photoelectricity = 0.0
|
|
1753
|
+
#
|
|
1754
|
+
K_list = []
|
|
1755
|
+
G_list = []
|
|
1756
|
+
phi_list = []
|
|
1757
|
+
for key, value in phi_minerals.items():
|
|
1758
|
+
gamma_ray += phi_minerals[key]*mineralogy[key]["GR"]
|
|
1759
|
+
photoelectricity += phi_minerals[key]*mineralogy[key]["PE"]
|
|
1760
|
+
#
|
|
1761
|
+
gamma_ray = round(gamma_ray, 3)
|
|
1762
|
+
photoelectricity = round(photoelectricity, 3)
|
|
1763
|
+
#
|
|
1764
|
+
K_list.append(round(phi_minerals[key]*mineralogy[key]["K"], 3))
|
|
1765
|
+
G_list.append(round(phi_minerals[key]*mineralogy[key]["G"], 3))
|
|
1766
|
+
phi_list.append(phi_minerals[key])
|
|
1767
|
+
#
|
|
1768
|
+
## Bulk Density, Porosity, Seismic Velocities
|
|
1769
|
+
rho_solid = round(rho_s, 3)
|
|
1770
|
+
vP, vS, vPvS, rho, var_porosity = SeismicVelocities(
|
|
1771
|
+
rho_solid=rho_solid, rho_fluid=self.data_water[2]).calculate_seismic_velocities(
|
|
1772
|
+
rho_limits=[2000, 2800], vP_limits=[2500, 6000], vS_limits=[2000, 3000], delta=0.05,
|
|
1773
|
+
porosity=porosity)
|
|
1774
|
+
## Elastic Parameters
|
|
1775
|
+
bulk_modulus, shear_modulus, youngs_modulus, poisson_ratio = SeismicVelocities(
|
|
1776
|
+
rho_solid=None, rho_fluid=None).calculate_elastic_properties(
|
|
1777
|
+
rho=rho, vP=vP, vS=vS)
|
|
1778
|
+
# Composition data
|
|
1779
|
+
for key, value in w_minerals.items():
|
|
1780
|
+
results_container["mineralogy"][key].append(value)
|
|
1781
|
+
|
|
1782
|
+
amounts = []
|
|
1783
|
+
for key, value in w_elements.items():
|
|
1784
|
+
results_container["chemistry"][key].append(value)
|
|
1785
|
+
chem_data = PeriodicSystem(name=key).get_data()
|
|
1786
|
+
amounts.append([key, chem_data[1], value])
|
|
1787
|
+
|
|
1788
|
+
list_oxides = ["H2O", "CO2", "F", "Na2O", "MgO", "Al2O3", "SiO2", "SO3", "K2O", "CaO", "Mn2O3", "Fe2O3",
|
|
1789
|
+
"NiO"]
|
|
1790
|
+
composition_oxides = {}
|
|
1791
|
+
for var_oxide in list_oxides:
|
|
1792
|
+
oxide_data = OxideCompounds(var_compound=var_oxide, var_amounts=amounts).get_composition()
|
|
1793
|
+
composition_oxides[var_oxide] = round(oxide_data["Oxide"][1], 4)
|
|
1794
|
+
|
|
1795
|
+
if list_oxides[0] not in results_container["compounds"]:
|
|
1796
|
+
for oxide in list_oxides:
|
|
1797
|
+
results_container["compounds"][oxide] = []
|
|
1798
|
+
|
|
1799
|
+
for key, value in composition_oxides.items():
|
|
1800
|
+
results_container["compounds"][key].append(value)
|
|
1801
|
+
|
|
1802
|
+
results_container["mineralogy"] = dict(sorted(
|
|
1803
|
+
results_container["mineralogy"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
1804
|
+
results_container["chemistry"] = dict(sorted(
|
|
1805
|
+
results_container["chemistry"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
1806
|
+
results_container["compounds"] = dict(sorted(
|
|
1807
|
+
results_container["compounds"].items(), key=lambda item: sum(item[1])/len(item[1]), reverse=True))
|
|
1808
|
+
|
|
1809
|
+
# Results
|
|
1810
|
+
results_container["phi"].append(var_porosity)
|
|
1811
|
+
results_container["rho_s"].append(rho_s)
|
|
1812
|
+
results_container["rho"].append(rho)
|
|
1813
|
+
results_container["vP"].append(vP)
|
|
1814
|
+
results_container["vS"].append(vS)
|
|
1815
|
+
results_container["vP/vS"].append(vPvS)
|
|
1816
|
+
results_container["K"].append(bulk_modulus)
|
|
1817
|
+
results_container["G"].append(shear_modulus)
|
|
1818
|
+
results_container["E"].append(youngs_modulus)
|
|
1819
|
+
results_container["nu"].append(poisson_ratio)
|
|
1820
|
+
results_container["GR"].append(gamma_ray)
|
|
1821
|
+
results_container["PE"].append(photoelectricity)
|
|
1822
|
+
#
|
|
1823
|
+
n += 1
|
|
1824
|
+
#
|
|
1825
|
+
return results_container
|
|
1826
|
+
#
|
|
1827
|
+
#
|
|
1828
|
+
## TEST
|
|
1829
|
+
# print(Sandstone(fluid="water", actualThickness=0).create_sandstone(number=100))
|
|
1830
|
+
# print(Sandstone(fluid="water", actualThickness=0).create_conglomerate(number=10))
|