flwr 1.21.0__py3-none-any.whl → 1.22.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/cli/app.py +2 -0
- flwr/cli/new/new.py +9 -7
- flwr/cli/new/templates/app/README.flowertune.md.tpl +1 -1
- flwr/cli/new/templates/app/code/client.baseline.py.tpl +64 -47
- flwr/cli/new/templates/app/code/client.huggingface.py.tpl +68 -30
- flwr/cli/new/templates/app/code/client.jax.py.tpl +63 -42
- flwr/cli/new/templates/app/code/client.mlx.py.tpl +80 -51
- flwr/cli/new/templates/app/code/client.numpy.py.tpl +36 -13
- flwr/cli/new/templates/app/code/client.pytorch.py.tpl +71 -46
- flwr/cli/new/templates/app/code/client.pytorch_legacy_api.py.tpl +55 -0
- flwr/cli/new/templates/app/code/client.sklearn.py.tpl +75 -30
- flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +69 -44
- flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
- flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +56 -90
- flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +1 -23
- flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +37 -58
- flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +39 -44
- flwr/cli/new/templates/app/code/model.baseline.py.tpl +0 -14
- flwr/cli/new/templates/app/code/server.baseline.py.tpl +27 -29
- flwr/cli/new/templates/app/code/server.huggingface.py.tpl +23 -19
- flwr/cli/new/templates/app/code/server.jax.py.tpl +27 -14
- flwr/cli/new/templates/app/code/server.mlx.py.tpl +29 -19
- flwr/cli/new/templates/app/code/server.numpy.py.tpl +30 -17
- flwr/cli/new/templates/app/code/server.pytorch.py.tpl +36 -26
- flwr/cli/new/templates/app/code/server.pytorch_legacy_api.py.tpl +31 -0
- flwr/cli/new/templates/app/code/server.sklearn.py.tpl +29 -21
- flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +28 -19
- flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
- flwr/cli/new/templates/app/code/task.huggingface.py.tpl +16 -20
- flwr/cli/new/templates/app/code/task.jax.py.tpl +1 -1
- flwr/cli/new/templates/app/code/task.numpy.py.tpl +1 -1
- flwr/cli/new/templates/app/code/task.pytorch.py.tpl +14 -27
- flwr/cli/new/templates/app/code/{task.pytorch_msg_api.py.tpl → task.pytorch_legacy_api.py.tpl} +27 -14
- flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +1 -2
- flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
- flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +4 -4
- flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +2 -2
- flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +4 -4
- flwr/cli/new/templates/app/pyproject.jax.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +2 -2
- flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +3 -3
- flwr/cli/new/templates/app/{pyproject.pytorch_msg_api.toml.tpl → pyproject.pytorch_legacy_api.toml.tpl} +3 -3
- flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
- flwr/cli/pull.py +100 -0
- flwr/cli/utils.py +17 -0
- flwr/clientapp/mod/__init__.py +4 -1
- flwr/clientapp/mod/centraldp_mods.py +156 -40
- flwr/clientapp/mod/localdp_mod.py +169 -0
- flwr/clientapp/typing.py +22 -0
- flwr/common/constant.py +3 -0
- flwr/common/exit/exit_code.py +4 -0
- flwr/common/record/typeddict.py +12 -0
- flwr/proto/control_pb2.py +7 -3
- flwr/proto/control_pb2.pyi +24 -0
- flwr/proto/control_pb2_grpc.py +34 -0
- flwr/proto/control_pb2_grpc.pyi +13 -0
- flwr/server/app.py +13 -0
- flwr/serverapp/strategy/__init__.py +26 -0
- flwr/serverapp/strategy/bulyan.py +238 -0
- flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
- flwr/serverapp/strategy/dp_fixed_clipping.py +71 -49
- flwr/serverapp/strategy/fedadagrad.py +0 -3
- flwr/serverapp/strategy/fedadam.py +0 -3
- flwr/serverapp/strategy/fedavg.py +89 -64
- flwr/serverapp/strategy/fedavgm.py +198 -0
- flwr/serverapp/strategy/fedmedian.py +105 -0
- flwr/serverapp/strategy/fedprox.py +174 -0
- flwr/serverapp/strategy/fedtrimmedavg.py +176 -0
- flwr/serverapp/strategy/fedxgb_bagging.py +117 -0
- flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
- flwr/serverapp/strategy/fedyogi.py +0 -3
- flwr/serverapp/strategy/krum.py +112 -0
- flwr/serverapp/strategy/multikrum.py +247 -0
- flwr/serverapp/strategy/qfedavg.py +252 -0
- flwr/serverapp/strategy/strategy_utils.py +48 -0
- flwr/simulation/app.py +1 -1
- flwr/simulation/run_simulation.py +25 -30
- flwr/supercore/cli/flower_superexec.py +26 -1
- flwr/supercore/constant.py +19 -0
- flwr/supercore/superexec/plugin/exec_plugin.py +11 -1
- flwr/supercore/superexec/run_superexec.py +16 -2
- flwr/superlink/artifact_provider/__init__.py +22 -0
- flwr/superlink/artifact_provider/artifact_provider.py +37 -0
- flwr/superlink/servicer/control/control_grpc.py +3 -0
- flwr/superlink/servicer/control/control_servicer.py +59 -2
- {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/METADATA +6 -16
- {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/RECORD +93 -74
- flwr/cli/new/templates/app/code/client.pytorch_msg_api.py.tpl +0 -80
- flwr/cli/new/templates/app/code/server.pytorch_msg_api.py.tpl +0 -41
- flwr/serverapp/dp_fixed_clipping.py +0 -352
- flwr/serverapp/strategy/strategy_utils_tests.py +0 -304
- /flwr/cli/new/templates/app/code/{__init__.pytorch_msg_api.py.tpl → __init__.pytorch_legacy_api.py.tpl} +0 -0
- {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/WHEEL +0 -0
- {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/entry_points.txt +0 -0
|
@@ -15,6 +15,11 @@
|
|
|
15
15
|
"""ServerApp strategies."""
|
|
16
16
|
|
|
17
17
|
|
|
18
|
+
from .bulyan import Bulyan
|
|
19
|
+
from .dp_adaptive_clipping import (
|
|
20
|
+
DifferentialPrivacyClientSideAdaptiveClipping,
|
|
21
|
+
DifferentialPrivacyServerSideAdaptiveClipping,
|
|
22
|
+
)
|
|
18
23
|
from .dp_fixed_clipping import (
|
|
19
24
|
DifferentialPrivacyClientSideFixedClipping,
|
|
20
25
|
DifferentialPrivacyServerSideFixedClipping,
|
|
@@ -22,17 +27,38 @@ from .dp_fixed_clipping import (
|
|
|
22
27
|
from .fedadagrad import FedAdagrad
|
|
23
28
|
from .fedadam import FedAdam
|
|
24
29
|
from .fedavg import FedAvg
|
|
30
|
+
from .fedavgm import FedAvgM
|
|
31
|
+
from .fedmedian import FedMedian
|
|
32
|
+
from .fedprox import FedProx
|
|
33
|
+
from .fedtrimmedavg import FedTrimmedAvg
|
|
34
|
+
from .fedxgb_bagging import FedXgbBagging
|
|
35
|
+
from .fedxgb_cyclic import FedXgbCyclic
|
|
25
36
|
from .fedyogi import FedYogi
|
|
37
|
+
from .krum import Krum
|
|
38
|
+
from .multikrum import MultiKrum
|
|
39
|
+
from .qfedavg import QFedAvg
|
|
26
40
|
from .result import Result
|
|
27
41
|
from .strategy import Strategy
|
|
28
42
|
|
|
29
43
|
__all__ = [
|
|
44
|
+
"Bulyan",
|
|
45
|
+
"DifferentialPrivacyClientSideAdaptiveClipping",
|
|
30
46
|
"DifferentialPrivacyClientSideFixedClipping",
|
|
47
|
+
"DifferentialPrivacyServerSideAdaptiveClipping",
|
|
31
48
|
"DifferentialPrivacyServerSideFixedClipping",
|
|
32
49
|
"FedAdagrad",
|
|
33
50
|
"FedAdam",
|
|
34
51
|
"FedAvg",
|
|
52
|
+
"FedAvgM",
|
|
53
|
+
"FedMedian",
|
|
54
|
+
"FedProx",
|
|
55
|
+
"FedTrimmedAvg",
|
|
56
|
+
"FedXgbBagging",
|
|
57
|
+
"FedXgbCyclic",
|
|
35
58
|
"FedYogi",
|
|
59
|
+
"Krum",
|
|
60
|
+
"MultiKrum",
|
|
61
|
+
"QFedAvg",
|
|
36
62
|
"Result",
|
|
37
63
|
"Strategy",
|
|
38
64
|
]
|
|
@@ -0,0 +1,238 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Bulyan [El Mhamdi et al., 2018] strategy.
|
|
16
|
+
|
|
17
|
+
Paper: arxiv.org/abs/1802.07927
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
from collections import OrderedDict
|
|
22
|
+
from collections.abc import Iterable
|
|
23
|
+
from logging import INFO, WARN
|
|
24
|
+
from typing import Callable, Optional, cast
|
|
25
|
+
|
|
26
|
+
import numpy as np
|
|
27
|
+
|
|
28
|
+
from flwr.common import (
|
|
29
|
+
Array,
|
|
30
|
+
ArrayRecord,
|
|
31
|
+
Message,
|
|
32
|
+
MetricRecord,
|
|
33
|
+
NDArrays,
|
|
34
|
+
RecordDict,
|
|
35
|
+
log,
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
from .fedavg import FedAvg
|
|
39
|
+
from .multikrum import select_multikrum
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
# pylint: disable=too-many-instance-attributes
|
|
43
|
+
class Bulyan(FedAvg):
|
|
44
|
+
"""Bulyan strategy.
|
|
45
|
+
|
|
46
|
+
Implementation based on https://arxiv.org/abs/1802.07927.
|
|
47
|
+
|
|
48
|
+
Parameters
|
|
49
|
+
----------
|
|
50
|
+
fraction_train : float (default: 1.0)
|
|
51
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
|
52
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
|
53
|
+
will still be sampled.
|
|
54
|
+
fraction_evaluate : float (default: 1.0)
|
|
55
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
|
56
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
|
57
|
+
`min_evaluate_nodes` will still be sampled.
|
|
58
|
+
min_train_nodes : int (default: 2)
|
|
59
|
+
Minimum number of nodes used during training.
|
|
60
|
+
min_evaluate_nodes : int (default: 2)
|
|
61
|
+
Minimum number of nodes used during validation.
|
|
62
|
+
min_available_nodes : int (default: 2)
|
|
63
|
+
Minimum number of total nodes in the system.
|
|
64
|
+
num_malicious_nodes : int (default: 0)
|
|
65
|
+
Number of malicious nodes in the system.
|
|
66
|
+
weighted_by_key : str (default: "num-examples")
|
|
67
|
+
The key within each MetricRecord whose value is used as the weight when
|
|
68
|
+
computing weighted averages for MetricRecords.
|
|
69
|
+
arrayrecord_key : str (default: "arrays")
|
|
70
|
+
Key used to store the ArrayRecord when constructing Messages.
|
|
71
|
+
configrecord_key : str (default: "config")
|
|
72
|
+
Key used to store the ConfigRecord when constructing Messages.
|
|
73
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
|
74
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
75
|
+
used to aggregate MetricRecords from training round replies.
|
|
76
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
77
|
+
average using the provided weight factor key.
|
|
78
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
|
79
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
80
|
+
used to aggregate MetricRecords from training round replies.
|
|
81
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
82
|
+
average using the provided weight factor key.
|
|
83
|
+
selection_rule : Optional[Callable] (default: None)
|
|
84
|
+
Function with signature (list[RecordDict], int, int) -> list[RecordDict].
|
|
85
|
+
The inputs are:
|
|
86
|
+
- a list of contents from reply messages,
|
|
87
|
+
- the assumed number of malicious nodes (`num_malicious_nodes`),
|
|
88
|
+
- the number of nodes to select (`num_nodes_to_select`).
|
|
89
|
+
|
|
90
|
+
The function should implement a Byzantine-resilient selection rule that
|
|
91
|
+
serves as the first step of Bulyan. If None, defaults to `select_multikrum`,
|
|
92
|
+
which selects nodes according to the Multi-Krum algorithm.
|
|
93
|
+
"""
|
|
94
|
+
|
|
95
|
+
# pylint: disable=too-many-arguments,too-many-positional-arguments
|
|
96
|
+
def __init__(
|
|
97
|
+
self,
|
|
98
|
+
fraction_train: float = 1.0,
|
|
99
|
+
fraction_evaluate: float = 1.0,
|
|
100
|
+
min_train_nodes: int = 2,
|
|
101
|
+
min_evaluate_nodes: int = 2,
|
|
102
|
+
min_available_nodes: int = 2,
|
|
103
|
+
num_malicious_nodes: int = 0,
|
|
104
|
+
weighted_by_key: str = "num-examples",
|
|
105
|
+
arrayrecord_key: str = "arrays",
|
|
106
|
+
configrecord_key: str = "config",
|
|
107
|
+
train_metrics_aggr_fn: Optional[
|
|
108
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
109
|
+
] = None,
|
|
110
|
+
evaluate_metrics_aggr_fn: Optional[
|
|
111
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
112
|
+
] = None,
|
|
113
|
+
selection_rule: Optional[
|
|
114
|
+
Callable[[list[RecordDict], int, int], list[RecordDict]]
|
|
115
|
+
] = None,
|
|
116
|
+
) -> None:
|
|
117
|
+
super().__init__(
|
|
118
|
+
fraction_train=fraction_train,
|
|
119
|
+
fraction_evaluate=fraction_evaluate,
|
|
120
|
+
min_train_nodes=min_train_nodes,
|
|
121
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
|
122
|
+
min_available_nodes=min_available_nodes,
|
|
123
|
+
weighted_by_key=weighted_by_key,
|
|
124
|
+
arrayrecord_key=arrayrecord_key,
|
|
125
|
+
configrecord_key=configrecord_key,
|
|
126
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
|
127
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
|
128
|
+
)
|
|
129
|
+
self.num_malicious_nodes = num_malicious_nodes
|
|
130
|
+
self.selection_rule = selection_rule or select_multikrum
|
|
131
|
+
|
|
132
|
+
def summary(self) -> None:
|
|
133
|
+
"""Log summary configuration of the strategy."""
|
|
134
|
+
log(INFO, "\t├──> Bulyan settings:")
|
|
135
|
+
log(INFO, "\t│\t├── Number of malicious nodes: %d", self.num_malicious_nodes)
|
|
136
|
+
log(INFO, "\t│\t└── Selection rule: %s", self.selection_rule.__name__)
|
|
137
|
+
super().summary()
|
|
138
|
+
|
|
139
|
+
def aggregate_train(
|
|
140
|
+
self,
|
|
141
|
+
server_round: int,
|
|
142
|
+
replies: Iterable[Message],
|
|
143
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
144
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
145
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
|
146
|
+
|
|
147
|
+
# Check if sufficient replies have been received
|
|
148
|
+
if len(valid_replies) < 4 * self.num_malicious_nodes + 3:
|
|
149
|
+
log(
|
|
150
|
+
WARN,
|
|
151
|
+
"Insufficient replies, skipping Bulyan aggregation: "
|
|
152
|
+
"Required at least %d (4*num_malicious_nodes + 3), but received %d.",
|
|
153
|
+
4 * self.num_malicious_nodes + 3,
|
|
154
|
+
len(valid_replies),
|
|
155
|
+
)
|
|
156
|
+
return None, None
|
|
157
|
+
|
|
158
|
+
reply_contents = [msg.content for msg in valid_replies]
|
|
159
|
+
|
|
160
|
+
# Compute theta and beta
|
|
161
|
+
theta = len(valid_replies) - 2 * self.num_malicious_nodes
|
|
162
|
+
beta = theta - 2 * self.num_malicious_nodes
|
|
163
|
+
|
|
164
|
+
# Byzantine-resilient selection rule
|
|
165
|
+
selected_contents = self.selection_rule(
|
|
166
|
+
reply_contents, self.num_malicious_nodes, theta
|
|
167
|
+
)
|
|
168
|
+
|
|
169
|
+
# Convert each ArrayRecord to a list of NDArray for easier computation
|
|
170
|
+
key = list(selected_contents[0].array_records.keys())[0]
|
|
171
|
+
array_keys = list(selected_contents[0][key].keys())
|
|
172
|
+
selected_ndarrays = [
|
|
173
|
+
cast(ArrayRecord, ctnt[key]).to_numpy_ndarrays(keep_input=False)
|
|
174
|
+
for ctnt in selected_contents
|
|
175
|
+
]
|
|
176
|
+
|
|
177
|
+
# Compute median
|
|
178
|
+
median_ndarrays = [np.median(arr, axis=0) for arr in zip(*selected_ndarrays)]
|
|
179
|
+
|
|
180
|
+
# Aggregate the beta closest weights element-wise
|
|
181
|
+
aggregated_ndarrays = aggregate_n_closest_weights(
|
|
182
|
+
median_ndarrays, selected_ndarrays, beta
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
# Convert to ArrayRecord
|
|
186
|
+
arrays = ArrayRecord(
|
|
187
|
+
OrderedDict(zip(array_keys, map(Array, aggregated_ndarrays)))
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
# Aggregate MetricRecords
|
|
191
|
+
metrics = self.train_metrics_aggr_fn(
|
|
192
|
+
selected_contents,
|
|
193
|
+
self.weighted_by_key,
|
|
194
|
+
)
|
|
195
|
+
return arrays, metrics
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
def aggregate_n_closest_weights(
|
|
199
|
+
ref_weights: NDArrays, weights_list: list[NDArrays], beta: int
|
|
200
|
+
) -> NDArrays:
|
|
201
|
+
"""Compute the element-wise mean of the `beta` closest weight arrays.
|
|
202
|
+
|
|
203
|
+
For each element (i-th coordinate), the output is the average of the
|
|
204
|
+
`beta` weight arrays that are closest to the reference weights.
|
|
205
|
+
|
|
206
|
+
Parameters
|
|
207
|
+
----------
|
|
208
|
+
ref_weights : NDArrays
|
|
209
|
+
Reference weights used to compute distances.
|
|
210
|
+
weights_list : list[NDArrays]
|
|
211
|
+
List of weight arrays (e.g., from selected nodes).
|
|
212
|
+
beta : int
|
|
213
|
+
Number of closest weight arrays to include in the averaging.
|
|
214
|
+
|
|
215
|
+
Returns
|
|
216
|
+
-------
|
|
217
|
+
aggregated_weights : NDArrays
|
|
218
|
+
Element-wise average of the `beta` closest weight arrays to the
|
|
219
|
+
reference weights.
|
|
220
|
+
"""
|
|
221
|
+
aggregated_weights = []
|
|
222
|
+
for layer_id, ref_layer in enumerate(ref_weights):
|
|
223
|
+
# Shape: (n_models, *layer_shape)
|
|
224
|
+
layer_stack = np.stack([weights[layer_id] for weights in weights_list])
|
|
225
|
+
|
|
226
|
+
# Compute absolute differences: shape (n_models, *layer_shape)
|
|
227
|
+
diffs = np.abs(layer_stack - ref_layer)
|
|
228
|
+
|
|
229
|
+
# Find indices of `beta` smallest per coordinate
|
|
230
|
+
idx = np.argpartition(diffs, beta - 1, axis=0)[:beta]
|
|
231
|
+
|
|
232
|
+
# Gather the closest weights
|
|
233
|
+
closest = np.take_along_axis(layer_stack, idx, axis=0)
|
|
234
|
+
|
|
235
|
+
# Average them
|
|
236
|
+
aggregated_weights.append(np.mean(closest, axis=0))
|
|
237
|
+
|
|
238
|
+
return aggregated_weights
|
|
@@ -0,0 +1,335 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Message-based Central differential privacy with adaptive clipping.
|
|
16
|
+
|
|
17
|
+
Paper (Andrew et al.): https://arxiv.org/abs/1905.03871
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
import math
|
|
21
|
+
from abc import ABC
|
|
22
|
+
from collections import OrderedDict
|
|
23
|
+
from collections.abc import Iterable
|
|
24
|
+
from logging import INFO
|
|
25
|
+
from typing import Optional
|
|
26
|
+
|
|
27
|
+
import numpy as np
|
|
28
|
+
|
|
29
|
+
from flwr.common import Array, ArrayRecord, ConfigRecord, Message, MetricRecord, log
|
|
30
|
+
from flwr.common.differential_privacy import (
|
|
31
|
+
adaptive_clip_inputs_inplace,
|
|
32
|
+
add_gaussian_noise_inplace,
|
|
33
|
+
compute_adaptive_noise_params,
|
|
34
|
+
compute_stdv,
|
|
35
|
+
)
|
|
36
|
+
from flwr.common.differential_privacy_constants import KEY_CLIPPING_NORM, KEY_NORM_BIT
|
|
37
|
+
from flwr.server import Grid
|
|
38
|
+
from flwr.serverapp.exception import AggregationError
|
|
39
|
+
|
|
40
|
+
from .dp_fixed_clipping import validate_replies
|
|
41
|
+
from .strategy import Strategy
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class DifferentialPrivacyAdaptiveBase(Strategy, ABC):
|
|
45
|
+
"""Base class for DP strategies with adaptive clipping."""
|
|
46
|
+
|
|
47
|
+
# pylint: disable=too-many-arguments,too-many-instance-attributes,too-many-positional-arguments
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
strategy: Strategy,
|
|
51
|
+
noise_multiplier: float,
|
|
52
|
+
num_sampled_clients: int,
|
|
53
|
+
initial_clipping_norm: float = 0.1,
|
|
54
|
+
target_clipped_quantile: float = 0.5,
|
|
55
|
+
clip_norm_lr: float = 0.2,
|
|
56
|
+
clipped_count_stddev: Optional[float] = None,
|
|
57
|
+
) -> None:
|
|
58
|
+
super().__init__()
|
|
59
|
+
|
|
60
|
+
if strategy is None:
|
|
61
|
+
raise ValueError("The passed strategy is None.")
|
|
62
|
+
if noise_multiplier < 0:
|
|
63
|
+
raise ValueError("The noise multiplier should be a non-negative value.")
|
|
64
|
+
if num_sampled_clients <= 0:
|
|
65
|
+
raise ValueError(
|
|
66
|
+
"The number of sampled clients should be a positive value."
|
|
67
|
+
)
|
|
68
|
+
if initial_clipping_norm <= 0:
|
|
69
|
+
raise ValueError("The initial clipping norm should be a positive value.")
|
|
70
|
+
if not 0 <= target_clipped_quantile <= 1:
|
|
71
|
+
raise ValueError("The target clipped quantile must be in [0, 1].")
|
|
72
|
+
if clip_norm_lr <= 0:
|
|
73
|
+
raise ValueError("The learning rate must be positive.")
|
|
74
|
+
if clipped_count_stddev is not None and clipped_count_stddev < 0:
|
|
75
|
+
raise ValueError("The `clipped_count_stddev` must be non-negative.")
|
|
76
|
+
|
|
77
|
+
self.strategy = strategy
|
|
78
|
+
self.num_sampled_clients = num_sampled_clients
|
|
79
|
+
self.clipping_norm = initial_clipping_norm
|
|
80
|
+
self.target_clipped_quantile = target_clipped_quantile
|
|
81
|
+
self.clip_norm_lr = clip_norm_lr
|
|
82
|
+
(
|
|
83
|
+
self.clipped_count_stddev,
|
|
84
|
+
self.noise_multiplier,
|
|
85
|
+
) = compute_adaptive_noise_params(
|
|
86
|
+
noise_multiplier,
|
|
87
|
+
num_sampled_clients,
|
|
88
|
+
clipped_count_stddev,
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
def _add_noise_to_aggregated_arrays(self, aggregated: ArrayRecord) -> ArrayRecord:
|
|
92
|
+
nds = aggregated.to_numpy_ndarrays()
|
|
93
|
+
stdv = compute_stdv(
|
|
94
|
+
self.noise_multiplier, self.clipping_norm, self.num_sampled_clients
|
|
95
|
+
)
|
|
96
|
+
add_gaussian_noise_inplace(nds, stdv)
|
|
97
|
+
log(INFO, "aggregate_fit: central DP noise with %.4f stdev added", stdv)
|
|
98
|
+
return ArrayRecord(
|
|
99
|
+
OrderedDict({k: Array(v) for k, v in zip(aggregated.keys(), nds)})
|
|
100
|
+
)
|
|
101
|
+
|
|
102
|
+
def _noisy_fraction(self, count: int, total: int) -> float:
|
|
103
|
+
return float(np.random.normal(count, self.clipped_count_stddev)) / float(total)
|
|
104
|
+
|
|
105
|
+
def _geometric_update(self, clipped_fraction: float) -> None:
|
|
106
|
+
self.clipping_norm *= math.exp(
|
|
107
|
+
-self.clip_norm_lr * (clipped_fraction - self.target_clipped_quantile)
|
|
108
|
+
)
|
|
109
|
+
|
|
110
|
+
def configure_evaluate(
|
|
111
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
112
|
+
) -> Iterable[Message]:
|
|
113
|
+
"""Configure the next round of federated evaluation."""
|
|
114
|
+
return self.strategy.configure_evaluate(server_round, arrays, config, grid)
|
|
115
|
+
|
|
116
|
+
def aggregate_evaluate(
|
|
117
|
+
self, server_round: int, replies: Iterable[Message]
|
|
118
|
+
) -> Optional[MetricRecord]:
|
|
119
|
+
"""Aggregate MetricRecords in the received Messages."""
|
|
120
|
+
return self.strategy.aggregate_evaluate(server_round, replies)
|
|
121
|
+
|
|
122
|
+
def summary(self) -> None:
|
|
123
|
+
"""Log summary configuration of the strategy."""
|
|
124
|
+
self.strategy.summary()
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
class DifferentialPrivacyServerSideAdaptiveClipping(DifferentialPrivacyAdaptiveBase):
|
|
128
|
+
"""Message-based central DP with server-side adaptive clipping."""
|
|
129
|
+
|
|
130
|
+
# pylint: disable=too-many-arguments,too-many-locals,too-many-positional-arguments
|
|
131
|
+
def __init__(
|
|
132
|
+
self,
|
|
133
|
+
strategy: Strategy,
|
|
134
|
+
noise_multiplier: float,
|
|
135
|
+
num_sampled_clients: int,
|
|
136
|
+
initial_clipping_norm: float = 0.1,
|
|
137
|
+
target_clipped_quantile: float = 0.5,
|
|
138
|
+
clip_norm_lr: float = 0.2,
|
|
139
|
+
clipped_count_stddev: Optional[float] = None,
|
|
140
|
+
) -> None:
|
|
141
|
+
super().__init__(
|
|
142
|
+
strategy,
|
|
143
|
+
noise_multiplier,
|
|
144
|
+
num_sampled_clients,
|
|
145
|
+
initial_clipping_norm,
|
|
146
|
+
target_clipped_quantile,
|
|
147
|
+
clip_norm_lr,
|
|
148
|
+
clipped_count_stddev,
|
|
149
|
+
)
|
|
150
|
+
self.current_arrays: ArrayRecord = ArrayRecord()
|
|
151
|
+
|
|
152
|
+
def __repr__(self) -> str:
|
|
153
|
+
"""Compute a string representation of the strategy."""
|
|
154
|
+
return "Differential Privacy Strategy Wrapper (Server-Side Adaptive Clipping)"
|
|
155
|
+
|
|
156
|
+
def summary(self) -> None:
|
|
157
|
+
"""Log summary configuration of the strategy."""
|
|
158
|
+
log(INFO, "\t├──> DP settings:")
|
|
159
|
+
log(INFO, "\t│\t├── Noise multiplier: %s", self.noise_multiplier)
|
|
160
|
+
log(INFO, "\t│\t├── Clipping norm: %s", self.clipping_norm)
|
|
161
|
+
log(INFO, "\t│\t├── Target clipped quantile: %s", self.target_clipped_quantile)
|
|
162
|
+
log(INFO, "\t│\t└── Clip norm learning rate: %s", self.clip_norm_lr)
|
|
163
|
+
super().summary()
|
|
164
|
+
|
|
165
|
+
def configure_train(
|
|
166
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
167
|
+
) -> Iterable[Message]:
|
|
168
|
+
"""Configure the next round of training."""
|
|
169
|
+
self.current_arrays = arrays
|
|
170
|
+
return self.strategy.configure_train(server_round, arrays, config, grid)
|
|
171
|
+
|
|
172
|
+
def aggregate_train(
|
|
173
|
+
self, server_round: int, replies: Iterable[Message]
|
|
174
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
175
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
176
|
+
if not validate_replies(replies, self.num_sampled_clients):
|
|
177
|
+
return None, None
|
|
178
|
+
|
|
179
|
+
current_nd = self.current_arrays.to_numpy_ndarrays()
|
|
180
|
+
clipped_indicator_count = 0
|
|
181
|
+
replies_list = list(replies)
|
|
182
|
+
|
|
183
|
+
for reply in replies_list:
|
|
184
|
+
for arr_name, record in reply.content.array_records.items():
|
|
185
|
+
reply_nd = record.to_numpy_ndarrays()
|
|
186
|
+
model_update = [
|
|
187
|
+
np.subtract(x, y) for (x, y) in zip(reply_nd, current_nd)
|
|
188
|
+
]
|
|
189
|
+
norm_bit = adaptive_clip_inputs_inplace(
|
|
190
|
+
model_update, self.clipping_norm
|
|
191
|
+
)
|
|
192
|
+
clipped_indicator_count += int(norm_bit)
|
|
193
|
+
# reconstruct array using clipped contribution from current round
|
|
194
|
+
restored = [c + u for c, u in zip(current_nd, model_update)]
|
|
195
|
+
reply.content[arr_name] = ArrayRecord(
|
|
196
|
+
OrderedDict({k: Array(v) for k, v in zip(record.keys(), restored)})
|
|
197
|
+
)
|
|
198
|
+
log(
|
|
199
|
+
INFO,
|
|
200
|
+
"aggregate_train: arrays in `ArrayRecord` are clipped by value: %.4f.",
|
|
201
|
+
self.clipping_norm,
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
clipped_fraction = self._noisy_fraction(
|
|
205
|
+
clipped_indicator_count, len(replies_list)
|
|
206
|
+
)
|
|
207
|
+
self._geometric_update(clipped_fraction)
|
|
208
|
+
|
|
209
|
+
aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
|
|
210
|
+
server_round, replies_list
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
if aggregated_arrays:
|
|
214
|
+
aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
|
|
215
|
+
|
|
216
|
+
return aggregated_arrays, aggregated_metrics
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
class DifferentialPrivacyClientSideAdaptiveClipping(DifferentialPrivacyAdaptiveBase):
|
|
220
|
+
"""Strategy wrapper for central DP with client-side adaptive clipping.
|
|
221
|
+
|
|
222
|
+
Use `adaptiveclipping_mod` modifier at the client side.
|
|
223
|
+
|
|
224
|
+
In comparison to `DifferentialPrivacyServerSideAdaptiveClipping`,
|
|
225
|
+
which performs clipping on the server-side,
|
|
226
|
+
`DifferentialPrivacyClientSideAdaptiveClipping`
|
|
227
|
+
expects clipping to happen on the client-side, usually by using the built-in
|
|
228
|
+
`adaptiveclipping_mod`.
|
|
229
|
+
|
|
230
|
+
Parameters
|
|
231
|
+
----------
|
|
232
|
+
strategy : Strategy
|
|
233
|
+
The strategy to which DP functionalities will be added by this wrapper.
|
|
234
|
+
noise_multiplier : float
|
|
235
|
+
The noise multiplier for the Gaussian mechanism for model updates.
|
|
236
|
+
num_sampled_clients : int
|
|
237
|
+
The number of clients that are sampled on each round.
|
|
238
|
+
initial_clipping_norm : float
|
|
239
|
+
The initial value of clipping norm. Defaults to 0.1.
|
|
240
|
+
Andrew et al. recommends to set to 0.1.
|
|
241
|
+
target_clipped_quantile : float
|
|
242
|
+
The desired quantile of updates which should be clipped. Defaults to 0.5.
|
|
243
|
+
clip_norm_lr : float
|
|
244
|
+
The learning rate for the clipping norm adaptation. Defaults to 0.2.
|
|
245
|
+
Andrew et al. recommends to set to 0.2.
|
|
246
|
+
clipped_count_stddev : float
|
|
247
|
+
The stddev of the noise added to the count of
|
|
248
|
+
updates currently below the estimate.
|
|
249
|
+
Andrew et al. recommends to set to `expected_num_records/20`
|
|
250
|
+
|
|
251
|
+
Examples
|
|
252
|
+
--------
|
|
253
|
+
Create a strategy::
|
|
254
|
+
|
|
255
|
+
strategy = fl.serverapp.FedAvg(...)
|
|
256
|
+
|
|
257
|
+
Wrap the strategy with the `DifferentialPrivacyClientSideAdaptiveClipping` wrapper::
|
|
258
|
+
|
|
259
|
+
dp_strategy = DifferentialPrivacyClientSideAdaptiveClipping(
|
|
260
|
+
strategy, cfg.noise_multiplier, cfg.num_sampled_clients, ...
|
|
261
|
+
)
|
|
262
|
+
|
|
263
|
+
On the client, add the `adaptiveclipping_mod` to the client-side mods::
|
|
264
|
+
|
|
265
|
+
app = fl.client.ClientApp(mods=[adaptiveclipping_mod])
|
|
266
|
+
"""
|
|
267
|
+
|
|
268
|
+
def __repr__(self) -> str:
|
|
269
|
+
"""Compute a string representation of the strategy."""
|
|
270
|
+
return "Differential Privacy Strategy Wrapper (Client-Side Adaptive Clipping)"
|
|
271
|
+
|
|
272
|
+
def summary(self) -> None:
|
|
273
|
+
"""Log summary configuration of the strategy."""
|
|
274
|
+
log(INFO, "\t├──> DP settings:")
|
|
275
|
+
log(INFO, "\t│\t├── Noise multiplier: %s", self.noise_multiplier)
|
|
276
|
+
log(INFO, "\t│\t├── Clipping norm: %s", self.clipping_norm)
|
|
277
|
+
log(INFO, "\t│\t├── Target clipped quantile: %s", self.target_clipped_quantile)
|
|
278
|
+
log(INFO, "\t│\t└── Clip norm learning rate: %s", self.clip_norm_lr)
|
|
279
|
+
super().summary()
|
|
280
|
+
|
|
281
|
+
def configure_train(
|
|
282
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
283
|
+
) -> Iterable[Message]:
|
|
284
|
+
"""Configure the next round of training."""
|
|
285
|
+
config[KEY_CLIPPING_NORM] = self.clipping_norm
|
|
286
|
+
return self.strategy.configure_train(server_round, arrays, config, grid)
|
|
287
|
+
|
|
288
|
+
def aggregate_train(
|
|
289
|
+
self, server_round: int, replies: Iterable[Message]
|
|
290
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
291
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
292
|
+
if not validate_replies(replies, self.num_sampled_clients):
|
|
293
|
+
return None, None
|
|
294
|
+
|
|
295
|
+
replies_list = list(replies)
|
|
296
|
+
|
|
297
|
+
# validate that KEY_NORM_BIT is present in all replies
|
|
298
|
+
for msg in replies_list:
|
|
299
|
+
for _, mrec in msg.content.metric_records.items():
|
|
300
|
+
if KEY_NORM_BIT not in mrec:
|
|
301
|
+
raise AggregationError(
|
|
302
|
+
f"KEY_NORM_BIT ('{KEY_NORM_BIT}') not found"
|
|
303
|
+
f" in MetricRecord or metrics for reply."
|
|
304
|
+
)
|
|
305
|
+
|
|
306
|
+
aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
|
|
307
|
+
server_round, replies_list
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
self._update_clip_norm_from_replies(replies_list)
|
|
311
|
+
|
|
312
|
+
if aggregated_arrays:
|
|
313
|
+
aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
|
|
314
|
+
|
|
315
|
+
return aggregated_arrays, aggregated_metrics
|
|
316
|
+
|
|
317
|
+
def _update_clip_norm_from_replies(self, replies: list[Message]) -> None:
|
|
318
|
+
total = len(replies)
|
|
319
|
+
clipped_count = 0
|
|
320
|
+
|
|
321
|
+
for msg in replies:
|
|
322
|
+
# KEY_NORM_BIT is guaranteed to be present
|
|
323
|
+
for _, mrec in msg.content.metric_records.items():
|
|
324
|
+
if KEY_NORM_BIT in mrec:
|
|
325
|
+
clipped_count += int(bool(mrec[KEY_NORM_BIT]))
|
|
326
|
+
break
|
|
327
|
+
else:
|
|
328
|
+
# Check fallback location
|
|
329
|
+
if hasattr(msg.content, "metrics") and isinstance(
|
|
330
|
+
msg.content.metrics, dict
|
|
331
|
+
):
|
|
332
|
+
clipped_count += int(bool(msg.content.metrics[KEY_NORM_BIT]))
|
|
333
|
+
|
|
334
|
+
clipped_fraction = self._noisy_fraction(clipped_count, total)
|
|
335
|
+
self._geometric_update(clipped_fraction)
|