flwr 1.21.0__py3-none-any.whl → 1.22.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (97) hide show
  1. flwr/cli/app.py +2 -0
  2. flwr/cli/new/new.py +9 -7
  3. flwr/cli/new/templates/app/README.flowertune.md.tpl +1 -1
  4. flwr/cli/new/templates/app/code/client.baseline.py.tpl +64 -47
  5. flwr/cli/new/templates/app/code/client.huggingface.py.tpl +68 -30
  6. flwr/cli/new/templates/app/code/client.jax.py.tpl +63 -42
  7. flwr/cli/new/templates/app/code/client.mlx.py.tpl +80 -51
  8. flwr/cli/new/templates/app/code/client.numpy.py.tpl +36 -13
  9. flwr/cli/new/templates/app/code/client.pytorch.py.tpl +71 -46
  10. flwr/cli/new/templates/app/code/client.pytorch_legacy_api.py.tpl +55 -0
  11. flwr/cli/new/templates/app/code/client.sklearn.py.tpl +75 -30
  12. flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +69 -44
  13. flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
  14. flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +56 -90
  15. flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +1 -23
  16. flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +37 -58
  17. flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +39 -44
  18. flwr/cli/new/templates/app/code/model.baseline.py.tpl +0 -14
  19. flwr/cli/new/templates/app/code/server.baseline.py.tpl +27 -29
  20. flwr/cli/new/templates/app/code/server.huggingface.py.tpl +23 -19
  21. flwr/cli/new/templates/app/code/server.jax.py.tpl +27 -14
  22. flwr/cli/new/templates/app/code/server.mlx.py.tpl +29 -19
  23. flwr/cli/new/templates/app/code/server.numpy.py.tpl +30 -17
  24. flwr/cli/new/templates/app/code/server.pytorch.py.tpl +36 -26
  25. flwr/cli/new/templates/app/code/server.pytorch_legacy_api.py.tpl +31 -0
  26. flwr/cli/new/templates/app/code/server.sklearn.py.tpl +29 -21
  27. flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +28 -19
  28. flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
  29. flwr/cli/new/templates/app/code/task.huggingface.py.tpl +16 -20
  30. flwr/cli/new/templates/app/code/task.jax.py.tpl +1 -1
  31. flwr/cli/new/templates/app/code/task.numpy.py.tpl +1 -1
  32. flwr/cli/new/templates/app/code/task.pytorch.py.tpl +14 -27
  33. flwr/cli/new/templates/app/code/{task.pytorch_msg_api.py.tpl → task.pytorch_legacy_api.py.tpl} +27 -14
  34. flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +1 -2
  35. flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
  36. flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +4 -4
  37. flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +2 -2
  38. flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +4 -4
  39. flwr/cli/new/templates/app/pyproject.jax.toml.tpl +1 -1
  40. flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +2 -2
  41. flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +1 -1
  42. flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +3 -3
  43. flwr/cli/new/templates/app/{pyproject.pytorch_msg_api.toml.tpl → pyproject.pytorch_legacy_api.toml.tpl} +3 -3
  44. flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +1 -1
  45. flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +1 -1
  46. flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
  47. flwr/cli/pull.py +100 -0
  48. flwr/cli/utils.py +17 -0
  49. flwr/clientapp/mod/__init__.py +4 -1
  50. flwr/clientapp/mod/centraldp_mods.py +156 -40
  51. flwr/clientapp/mod/localdp_mod.py +169 -0
  52. flwr/clientapp/typing.py +22 -0
  53. flwr/common/constant.py +3 -0
  54. flwr/common/exit/exit_code.py +4 -0
  55. flwr/common/record/typeddict.py +12 -0
  56. flwr/proto/control_pb2.py +7 -3
  57. flwr/proto/control_pb2.pyi +24 -0
  58. flwr/proto/control_pb2_grpc.py +34 -0
  59. flwr/proto/control_pb2_grpc.pyi +13 -0
  60. flwr/server/app.py +13 -0
  61. flwr/serverapp/strategy/__init__.py +26 -0
  62. flwr/serverapp/strategy/bulyan.py +238 -0
  63. flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
  64. flwr/serverapp/strategy/dp_fixed_clipping.py +71 -49
  65. flwr/serverapp/strategy/fedadagrad.py +0 -3
  66. flwr/serverapp/strategy/fedadam.py +0 -3
  67. flwr/serverapp/strategy/fedavg.py +89 -64
  68. flwr/serverapp/strategy/fedavgm.py +198 -0
  69. flwr/serverapp/strategy/fedmedian.py +105 -0
  70. flwr/serverapp/strategy/fedprox.py +174 -0
  71. flwr/serverapp/strategy/fedtrimmedavg.py +176 -0
  72. flwr/serverapp/strategy/fedxgb_bagging.py +117 -0
  73. flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
  74. flwr/serverapp/strategy/fedyogi.py +0 -3
  75. flwr/serverapp/strategy/krum.py +112 -0
  76. flwr/serverapp/strategy/multikrum.py +247 -0
  77. flwr/serverapp/strategy/qfedavg.py +252 -0
  78. flwr/serverapp/strategy/strategy_utils.py +48 -0
  79. flwr/simulation/app.py +1 -1
  80. flwr/simulation/run_simulation.py +25 -30
  81. flwr/supercore/cli/flower_superexec.py +26 -1
  82. flwr/supercore/constant.py +19 -0
  83. flwr/supercore/superexec/plugin/exec_plugin.py +11 -1
  84. flwr/supercore/superexec/run_superexec.py +16 -2
  85. flwr/superlink/artifact_provider/__init__.py +22 -0
  86. flwr/superlink/artifact_provider/artifact_provider.py +37 -0
  87. flwr/superlink/servicer/control/control_grpc.py +3 -0
  88. flwr/superlink/servicer/control/control_servicer.py +59 -2
  89. {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/METADATA +6 -16
  90. {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/RECORD +93 -74
  91. flwr/cli/new/templates/app/code/client.pytorch_msg_api.py.tpl +0 -80
  92. flwr/cli/new/templates/app/code/server.pytorch_msg_api.py.tpl +0 -41
  93. flwr/serverapp/dp_fixed_clipping.py +0 -352
  94. flwr/serverapp/strategy/strategy_utils_tests.py +0 -304
  95. /flwr/cli/new/templates/app/code/{__init__.pytorch_msg_api.py.tpl → __init__.pytorch_legacy_api.py.tpl} +0 -0
  96. {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/WHEEL +0 -0
  97. {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/entry_points.txt +0 -0
@@ -1,55 +1,80 @@
1
1
  """$project_name: A Flower / $framework_str app."""
2
2
 
3
3
  import torch
4
+ from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
5
+ from flwr.clientapp import ClientApp
4
6
 
5
- from flwr.client import ClientApp, NumPyClient
6
- from flwr.common import Context
7
- from $import_name.task import Net, get_weights, load_data, set_weights, test, train
8
-
9
-
10
- # Define Flower Client and client_fn
11
- class FlowerClient(NumPyClient):
12
- def __init__(self, net, trainloader, valloader, local_epochs):
13
- self.net = net
14
- self.trainloader = trainloader
15
- self.valloader = valloader
16
- self.local_epochs = local_epochs
17
- self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
18
- self.net.to(self.device)
19
-
20
- def fit(self, parameters, config):
21
- set_weights(self.net, parameters)
22
- train_loss = train(
23
- self.net,
24
- self.trainloader,
25
- self.local_epochs,
26
- self.device,
27
- )
28
- return (
29
- get_weights(self.net),
30
- len(self.trainloader.dataset),
31
- {"train_loss": train_loss},
32
- )
33
-
34
- def evaluate(self, parameters, config):
35
- set_weights(self.net, parameters)
36
- loss, accuracy = test(self.net, self.valloader, self.device)
37
- return loss, len(self.valloader.dataset), {"accuracy": accuracy}
38
-
39
-
40
- def client_fn(context: Context):
41
- # Load model and data
42
- net = Net()
7
+ from $import_name.task import Net, load_data
8
+ from $import_name.task import test as test_fn
9
+ from $import_name.task import train as train_fn
10
+
11
+ # Flower ClientApp
12
+ app = ClientApp()
13
+
14
+
15
+ @app.train()
16
+ def train(msg: Message, context: Context):
17
+ """Train the model on local data."""
18
+
19
+ # Load the model and initialize it with the received weights
20
+ model = Net()
21
+ model.load_state_dict(msg.content["arrays"].to_torch_state_dict())
22
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
23
+ model.to(device)
24
+
25
+ # Load the data
43
26
  partition_id = context.node_config["partition-id"]
44
27
  num_partitions = context.node_config["num-partitions"]
45
- trainloader, valloader = load_data(partition_id, num_partitions)
46
- local_epochs = context.run_config["local-epochs"]
28
+ trainloader, _ = load_data(partition_id, num_partitions)
47
29
 
48
- # Return Client instance
49
- return FlowerClient(net, trainloader, valloader, local_epochs).to_client()
30
+ # Call the training function
31
+ train_loss = train_fn(
32
+ model,
33
+ trainloader,
34
+ context.run_config["local-epochs"],
35
+ msg.content["config"]["lr"],
36
+ device,
37
+ )
50
38
 
39
+ # Construct and return reply Message
40
+ model_record = ArrayRecord(model.state_dict())
41
+ metrics = {
42
+ "train_loss": train_loss,
43
+ "num-examples": len(trainloader.dataset),
44
+ }
45
+ metric_record = MetricRecord(metrics)
46
+ content = RecordDict({"arrays": model_record, "metrics": metric_record})
47
+ return Message(content=content, reply_to=msg)
51
48
 
52
- # Flower ClientApp
53
- app = ClientApp(
54
- client_fn,
55
- )
49
+
50
+ @app.evaluate()
51
+ def evaluate(msg: Message, context: Context):
52
+ """Evaluate the model on local data."""
53
+
54
+ # Load the model and initialize it with the received weights
55
+ model = Net()
56
+ model.load_state_dict(msg.content["arrays"].to_torch_state_dict())
57
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
58
+ model.to(device)
59
+
60
+ # Load the data
61
+ partition_id = context.node_config["partition-id"]
62
+ num_partitions = context.node_config["num-partitions"]
63
+ _, valloader = load_data(partition_id, num_partitions)
64
+
65
+ # Call the evaluation function
66
+ eval_loss, eval_acc = test_fn(
67
+ model,
68
+ valloader,
69
+ device,
70
+ )
71
+
72
+ # Construct and return reply Message
73
+ metrics = {
74
+ "eval_loss": eval_loss,
75
+ "eval_acc": eval_acc,
76
+ "num-examples": len(valloader.dataset),
77
+ }
78
+ metric_record = MetricRecord(metrics)
79
+ content = RecordDict({"metrics": metric_record})
80
+ return Message(content=content, reply_to=msg)
@@ -0,0 +1,55 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import torch
4
+
5
+ from flwr.client import ClientApp, NumPyClient
6
+ from flwr.common import Context
7
+ from $import_name.task import Net, get_weights, load_data, set_weights, test, train
8
+
9
+
10
+ # Define Flower Client and client_fn
11
+ class FlowerClient(NumPyClient):
12
+ def __init__(self, net, trainloader, valloader, local_epochs):
13
+ self.net = net
14
+ self.trainloader = trainloader
15
+ self.valloader = valloader
16
+ self.local_epochs = local_epochs
17
+ self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
18
+ self.net.to(self.device)
19
+
20
+ def fit(self, parameters, config):
21
+ set_weights(self.net, parameters)
22
+ train_loss = train(
23
+ self.net,
24
+ self.trainloader,
25
+ self.local_epochs,
26
+ self.device,
27
+ )
28
+ return (
29
+ get_weights(self.net),
30
+ len(self.trainloader.dataset),
31
+ {"train_loss": train_loss},
32
+ )
33
+
34
+ def evaluate(self, parameters, config):
35
+ set_weights(self.net, parameters)
36
+ loss, accuracy = test(self.net, self.valloader, self.device)
37
+ return loss, len(self.valloader.dataset), {"accuracy": accuracy}
38
+
39
+
40
+ def client_fn(context: Context):
41
+ # Load model and data
42
+ net = Net()
43
+ partition_id = context.node_config["partition-id"]
44
+ num_partitions = context.node_config["num-partitions"]
45
+ trainloader, valloader = load_data(partition_id, num_partitions)
46
+ local_epochs = context.run_config["local-epochs"]
47
+
48
+ # Return Client instance
49
+ return FlowerClient(net, trainloader, valloader, local_epochs).to_client()
50
+
51
+
52
+ # Flower ClientApp
53
+ app = ClientApp(
54
+ client_fn,
55
+ )
@@ -2,10 +2,16 @@
2
2
 
3
3
  import warnings
4
4
 
5
- from sklearn.metrics import log_loss
5
+ from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
6
+ from flwr.clientapp import ClientApp
7
+ from sklearn.metrics import (
8
+ accuracy_score,
9
+ f1_score,
10
+ log_loss,
11
+ precision_score,
12
+ recall_score,
13
+ )
6
14
 
7
- from flwr.client import ClientApp, NumPyClient
8
- from flwr.common import Context
9
15
  from $import_name.task import (
10
16
  get_model,
11
17
  get_model_params,
@@ -14,39 +20,52 @@ from $import_name.task import (
14
20
  set_model_params,
15
21
  )
16
22
 
23
+ # Flower ClientApp
24
+ app = ClientApp()
17
25
 
18
- class FlowerClient(NumPyClient):
19
- def __init__(self, model, X_train, X_test, y_train, y_test):
20
- self.model = model
21
- self.X_train = X_train
22
- self.X_test = X_test
23
- self.y_train = y_train
24
- self.y_test = y_test
25
26
 
26
- def fit(self, parameters, config):
27
- set_model_params(self.model, parameters)
27
+ @app.train()
28
+ def train(msg: Message, context: Context):
29
+ """Train the model on local data."""
28
30
 
29
- # Ignore convergence failure due to low local epochs
30
- with warnings.catch_warnings():
31
- warnings.simplefilter("ignore")
32
- self.model.fit(self.X_train, self.y_train)
31
+ # Create LogisticRegression Model
32
+ penalty = context.run_config["penalty"]
33
+ local_epochs = context.run_config["local-epochs"]
34
+ model = get_model(penalty, local_epochs)
35
+ # Setting initial parameters, akin to model.compile for keras models
36
+ set_initial_params(model)
33
37
 
34
- return get_model_params(self.model), len(self.X_train), {}
38
+ # Apply received pararameters
39
+ ndarrays = msg.content["arrays"].to_numpy_ndarrays()
40
+ set_model_params(model, ndarrays)
35
41
 
36
- def evaluate(self, parameters, config):
37
- set_model_params(self.model, parameters)
42
+ # Load the data
43
+ partition_id = context.node_config["partition-id"]
44
+ num_partitions = context.node_config["num-partitions"]
45
+ X_train, _, y_train, _ = load_data(partition_id, num_partitions)
38
46
 
39
- loss = log_loss(self.y_test, self.model.predict_proba(self.X_test))
40
- accuracy = self.model.score(self.X_test, self.y_test)
47
+ # Ignore convergence failure due to low local epochs
48
+ with warnings.catch_warnings():
49
+ warnings.simplefilter("ignore")
50
+ # Train the model on local data
51
+ model.fit(X_train, y_train)
41
52
 
42
- return loss, len(self.X_test), {"accuracy": accuracy}
53
+ # Let's compute train loss
54
+ y_train_pred_proba = model.predict_proba(X_train)
55
+ train_logloss = log_loss(y_train, y_train_pred_proba)
43
56
 
57
+ # Construct and return reply Message
58
+ ndarrays = get_model_params(model)
59
+ model_record = ArrayRecord(ndarrays)
60
+ metrics = {"num-examples": len(X_train), "train_logloss": train_logloss}
61
+ metric_record = MetricRecord(metrics)
62
+ content = RecordDict({"arrays": model_record, "metrics": metric_record})
63
+ return Message(content=content, reply_to=msg)
44
64
 
45
- def client_fn(context: Context):
46
- partition_id = context.node_config["partition-id"]
47
- num_partitions = context.node_config["num-partitions"]
48
65
 
49
- X_train, X_test, y_train, y_test = load_data(partition_id, num_partitions)
66
+ @app.evaluate()
67
+ def evaluate(msg: Message, context: Context):
68
+ """Evaluate the model on test data."""
50
69
 
51
70
  # Create LogisticRegression Model
52
71
  penalty = context.run_config["penalty"]
@@ -56,8 +75,34 @@ def client_fn(context: Context):
56
75
  # Setting initial parameters, akin to model.compile for keras models
57
76
  set_initial_params(model)
58
77
 
59
- return FlowerClient(model, X_train, X_test, y_train, y_test).to_client()
78
+ # Apply received pararameters
79
+ ndarrays = msg.content["arrays"].to_numpy_ndarrays()
80
+ set_model_params(model, ndarrays)
60
81
 
61
-
62
- # Flower ClientApp
63
- app = ClientApp(client_fn=client_fn)
82
+ # Load the data
83
+ partition_id = context.node_config["partition-id"]
84
+ num_partitions = context.node_config["num-partitions"]
85
+ _, X_test, _, y_test = load_data(partition_id, num_partitions)
86
+
87
+ # Evaluate the model on local data
88
+ y_train_pred = model.predict(X_test)
89
+ y_train_pred_proba = model.predict_proba(X_test)
90
+
91
+ accuracy = accuracy_score(y_test, y_train_pred)
92
+ loss = log_loss(y_test, y_train_pred_proba)
93
+ precision = precision_score(y_test, y_train_pred, average="macro", zero_division=0)
94
+ recall = recall_score(y_test, y_train_pred, average="macro", zero_division=0)
95
+ f1 = f1_score(y_test, y_train_pred, average="macro", zero_division=0)
96
+
97
+ # Construct and return reply Message
98
+ metrics = {
99
+ "num-examples": len(X_test),
100
+ "test_logloss": loss,
101
+ "accuracy": accuracy,
102
+ "precision": precision,
103
+ "recall": recall,
104
+ "f1": f1,
105
+ }
106
+ metric_record = MetricRecord(metrics)
107
+ content = RecordDict({"metrics": metric_record})
108
+ return Message(content=content, reply_to=msg)
@@ -1,57 +1,82 @@
1
1
  """$project_name: A Flower / $framework_str app."""
2
2
 
3
- from flwr.client import NumPyClient, ClientApp
4
- from flwr.common import Context
3
+ from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
4
+ from flwr.clientapp import ClientApp
5
5
 
6
6
  from $import_name.task import load_data, load_model
7
7
 
8
+ # Flower ClientApp
9
+ app = ClientApp()
8
10
 
9
- # Define Flower Client and client_fn
10
- class FlowerClient(NumPyClient):
11
- def __init__(
12
- self, model, data, epochs, batch_size, verbose
13
- ):
14
- self.model = model
15
- self.x_train, self.y_train, self.x_test, self.y_test = data
16
- self.epochs = epochs
17
- self.batch_size = batch_size
18
- self.verbose = verbose
19
-
20
- def fit(self, parameters, config):
21
- self.model.set_weights(parameters)
22
- self.model.fit(
23
- self.x_train,
24
- self.y_train,
25
- epochs=self.epochs,
26
- batch_size=self.batch_size,
27
- verbose=self.verbose,
28
- )
29
- return self.model.get_weights(), len(self.x_train), {}
30
-
31
- def evaluate(self, parameters, config):
32
- self.model.set_weights(parameters)
33
- loss, accuracy = self.model.evaluate(self.x_test, self.y_test, verbose=0)
34
- return loss, len(self.x_test), {"accuracy": accuracy}
35
-
36
-
37
- def client_fn(context: Context):
38
- # Load model and data
39
- net = load_model()
40
11
 
41
- partition_id = context.node_config["partition-id"]
42
- num_partitions = context.node_config["num-partitions"]
43
- data = load_data(partition_id, num_partitions)
12
+ @app.train()
13
+ def train(msg: Message, context: Context):
14
+ """Train the model on local data."""
15
+
16
+ # Load the model and initialize it with the received weights
17
+ model = load_model()
18
+ ndarrays = msg.content["arrays"].to_numpy_ndarrays()
19
+ model.set_weights(ndarrays)
20
+
21
+ # Read from config
44
22
  epochs = context.run_config["local-epochs"]
45
23
  batch_size = context.run_config["batch-size"]
46
24
  verbose = context.run_config.get("verbose")
47
25
 
48
- # Return Client instance
49
- return FlowerClient(
50
- net, data, epochs, batch_size, verbose
51
- ).to_client()
26
+ # Load the data
27
+ partition_id = context.node_config["partition-id"]
28
+ num_partitions = context.node_config["num-partitions"]
29
+ x_train, y_train, _, _ = load_data(partition_id, num_partitions)
52
30
 
31
+ # Train the model on local data
32
+ history = model.fit(
33
+ x_train,
34
+ y_train,
35
+ epochs=epochs,
36
+ batch_size=batch_size,
37
+ verbose=verbose,
38
+ )
53
39
 
54
- # Flower ClientApp
55
- app = ClientApp(
56
- client_fn=client_fn,
57
- )
40
+ # Get final training loss and accuracy
41
+ train_loss = history.history["loss"][-1] if "loss" in history.history else None
42
+ train_acc = history.history.get("accuracy")
43
+ train_acc = train_acc[-1] if train_acc is not None else None
44
+
45
+ # Construct and return reply Message
46
+ model_record = ArrayRecord(model.get_weights())
47
+ metrics = {"num-examples": len(x_train)}
48
+ if train_loss is not None:
49
+ metrics["train_loss"] = train_loss
50
+ if train_acc is not None:
51
+ metrics["train_acc"] = train_acc
52
+ metric_record = MetricRecord(metrics)
53
+ content = RecordDict({"arrays": model_record, "metrics": metric_record})
54
+ return Message(content=content, reply_to=msg)
55
+
56
+
57
+ @app.evaluate()
58
+ def evaluate(msg: Message, context: Context):
59
+ """Evaluate the model on local data."""
60
+
61
+ # Load the model and initialize it with the received weights
62
+ model = load_model()
63
+ ndarrays = msg.content["arrays"].to_numpy_ndarrays()
64
+ model.set_weights(ndarrays)
65
+
66
+ # Load the data
67
+ partition_id = context.node_config["partition-id"]
68
+ num_partitions = context.node_config["num-partitions"]
69
+ _, _, x_test, y_test = load_data(partition_id, num_partitions)
70
+
71
+ # Evaluate the model on local data
72
+ loss, accuracy = model.evaluate(x_test, y_test, verbose=0)
73
+
74
+ # Construct and return reply Message
75
+ metrics = {
76
+ "eval_loss": loss,
77
+ "eval_acc": accuracy,
78
+ "num-examples": len(x_test),
79
+ }
80
+ metric_record = MetricRecord(metrics)
81
+ content = RecordDict({"metrics": metric_record})
82
+ return Message(content=content, reply_to=msg)
@@ -0,0 +1,110 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import warnings
4
+
5
+ import numpy as np
6
+ import xgboost as xgb
7
+ from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
8
+ from flwr.clientapp import ClientApp
9
+ from flwr.common.config import unflatten_dict
10
+
11
+ from $import_name.task import load_data, replace_keys
12
+
13
+ warnings.filterwarnings("ignore", category=UserWarning)
14
+
15
+
16
+ # Flower ClientApp
17
+ app = ClientApp()
18
+
19
+
20
+ def _local_boost(bst_input, num_local_round, train_dmatrix):
21
+ # Update trees based on local training data.
22
+ for i in range(num_local_round):
23
+ bst_input.update(train_dmatrix, bst_input.num_boosted_rounds())
24
+
25
+ # Bagging: extract the last N=num_local_round trees for sever aggregation
26
+ bst = bst_input[
27
+ bst_input.num_boosted_rounds()
28
+ - num_local_round : bst_input.num_boosted_rounds()
29
+ ]
30
+ return bst
31
+
32
+
33
+ @app.train()
34
+ def train(msg: Message, context: Context) -> Message:
35
+ # Load model and data
36
+ partition_id = context.node_config["partition-id"]
37
+ num_partitions = context.node_config["num-partitions"]
38
+ train_dmatrix, _, num_train, _ = load_data(partition_id, num_partitions)
39
+
40
+ # Read from run config
41
+ num_local_round = context.run_config["local-epochs"]
42
+ # Flatted config dict and replace "-" with "_"
43
+ cfg = replace_keys(unflatten_dict(context.run_config))
44
+ params = cfg["params"]
45
+
46
+ global_round = msg.content["config"]["server-round"]
47
+ if global_round == 1:
48
+ # First round local training
49
+ bst = xgb.train(
50
+ params,
51
+ train_dmatrix,
52
+ num_boost_round=num_local_round,
53
+ )
54
+ else:
55
+ bst = xgb.Booster(params=params)
56
+ global_model = bytearray(msg.content["arrays"]["0"].numpy().tobytes())
57
+
58
+ # Load global model into booster
59
+ bst.load_model(global_model)
60
+
61
+ # Local training
62
+ bst = _local_boost(bst, num_local_round, train_dmatrix)
63
+
64
+ # Save model
65
+ local_model = bst.save_raw("json")
66
+ model_np = np.frombuffer(local_model, dtype=np.uint8)
67
+
68
+ # Construct reply message
69
+ # Note: we store the model as the first item in a list into ArrayRecord,
70
+ # which can be accessed using index ["0"].
71
+ model_record = ArrayRecord([model_np])
72
+ metrics = {
73
+ "num-examples": num_train,
74
+ }
75
+ metric_record = MetricRecord(metrics)
76
+ content = RecordDict({"arrays": model_record, "metrics": metric_record})
77
+ return Message(content=content, reply_to=msg)
78
+
79
+
80
+ @app.evaluate()
81
+ def evaluate(msg: Message, context: Context) -> Message:
82
+ # Load model and data
83
+ partition_id = context.node_config["partition-id"]
84
+ num_partitions = context.node_config["num-partitions"]
85
+ _, valid_dmatrix, _, num_val = load_data(partition_id, num_partitions)
86
+
87
+ # Load config
88
+ cfg = replace_keys(unflatten_dict(context.run_config))
89
+ params = cfg["params"]
90
+
91
+ # Load global model
92
+ bst = xgb.Booster(params=params)
93
+ global_model = bytearray(msg.content["arrays"]["0"].numpy().tobytes())
94
+ bst.load_model(global_model)
95
+
96
+ # Run evaluation
97
+ eval_results = bst.eval_set(
98
+ evals=[(valid_dmatrix, "valid")],
99
+ iteration=bst.num_boosted_rounds() - 1,
100
+ )
101
+ auc = float(eval_results.split("\t")[1].split(":")[1])
102
+
103
+ # Construct and return reply Message
104
+ metrics = {
105
+ "auc": auc,
106
+ "num-examples": num_val,
107
+ }
108
+ metric_record = MetricRecord(metrics)
109
+ content = RecordDict({"metrics": metric_record})
110
+ return Message(content=content, reply_to=msg)