flwr 1.21.0__py3-none-any.whl → 1.22.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/cli/app.py +2 -0
- flwr/cli/new/new.py +9 -7
- flwr/cli/new/templates/app/README.flowertune.md.tpl +1 -1
- flwr/cli/new/templates/app/code/client.baseline.py.tpl +64 -47
- flwr/cli/new/templates/app/code/client.huggingface.py.tpl +68 -30
- flwr/cli/new/templates/app/code/client.jax.py.tpl +63 -42
- flwr/cli/new/templates/app/code/client.mlx.py.tpl +80 -51
- flwr/cli/new/templates/app/code/client.numpy.py.tpl +36 -13
- flwr/cli/new/templates/app/code/client.pytorch.py.tpl +71 -46
- flwr/cli/new/templates/app/code/client.pytorch_legacy_api.py.tpl +55 -0
- flwr/cli/new/templates/app/code/client.sklearn.py.tpl +75 -30
- flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +69 -44
- flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
- flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +56 -90
- flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +1 -23
- flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +37 -58
- flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +39 -44
- flwr/cli/new/templates/app/code/model.baseline.py.tpl +0 -14
- flwr/cli/new/templates/app/code/server.baseline.py.tpl +27 -29
- flwr/cli/new/templates/app/code/server.huggingface.py.tpl +23 -19
- flwr/cli/new/templates/app/code/server.jax.py.tpl +27 -14
- flwr/cli/new/templates/app/code/server.mlx.py.tpl +29 -19
- flwr/cli/new/templates/app/code/server.numpy.py.tpl +30 -17
- flwr/cli/new/templates/app/code/server.pytorch.py.tpl +36 -26
- flwr/cli/new/templates/app/code/server.pytorch_legacy_api.py.tpl +31 -0
- flwr/cli/new/templates/app/code/server.sklearn.py.tpl +29 -21
- flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +28 -19
- flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
- flwr/cli/new/templates/app/code/task.huggingface.py.tpl +16 -20
- flwr/cli/new/templates/app/code/task.jax.py.tpl +1 -1
- flwr/cli/new/templates/app/code/task.numpy.py.tpl +1 -1
- flwr/cli/new/templates/app/code/task.pytorch.py.tpl +14 -27
- flwr/cli/new/templates/app/code/{task.pytorch_msg_api.py.tpl → task.pytorch_legacy_api.py.tpl} +27 -14
- flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +1 -2
- flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
- flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +4 -4
- flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +2 -2
- flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +4 -4
- flwr/cli/new/templates/app/pyproject.jax.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +2 -2
- flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +3 -3
- flwr/cli/new/templates/app/{pyproject.pytorch_msg_api.toml.tpl → pyproject.pytorch_legacy_api.toml.tpl} +3 -3
- flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
- flwr/cli/pull.py +100 -0
- flwr/cli/utils.py +17 -0
- flwr/clientapp/mod/__init__.py +4 -1
- flwr/clientapp/mod/centraldp_mods.py +156 -40
- flwr/clientapp/mod/localdp_mod.py +169 -0
- flwr/clientapp/typing.py +22 -0
- flwr/common/constant.py +3 -0
- flwr/common/exit/exit_code.py +4 -0
- flwr/common/record/typeddict.py +12 -0
- flwr/proto/control_pb2.py +7 -3
- flwr/proto/control_pb2.pyi +24 -0
- flwr/proto/control_pb2_grpc.py +34 -0
- flwr/proto/control_pb2_grpc.pyi +13 -0
- flwr/server/app.py +13 -0
- flwr/serverapp/strategy/__init__.py +26 -0
- flwr/serverapp/strategy/bulyan.py +238 -0
- flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
- flwr/serverapp/strategy/dp_fixed_clipping.py +71 -49
- flwr/serverapp/strategy/fedadagrad.py +0 -3
- flwr/serverapp/strategy/fedadam.py +0 -3
- flwr/serverapp/strategy/fedavg.py +89 -64
- flwr/serverapp/strategy/fedavgm.py +198 -0
- flwr/serverapp/strategy/fedmedian.py +105 -0
- flwr/serverapp/strategy/fedprox.py +174 -0
- flwr/serverapp/strategy/fedtrimmedavg.py +176 -0
- flwr/serverapp/strategy/fedxgb_bagging.py +117 -0
- flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
- flwr/serverapp/strategy/fedyogi.py +0 -3
- flwr/serverapp/strategy/krum.py +112 -0
- flwr/serverapp/strategy/multikrum.py +247 -0
- flwr/serverapp/strategy/qfedavg.py +252 -0
- flwr/serverapp/strategy/strategy_utils.py +48 -0
- flwr/simulation/app.py +1 -1
- flwr/simulation/run_simulation.py +25 -30
- flwr/supercore/cli/flower_superexec.py +26 -1
- flwr/supercore/constant.py +19 -0
- flwr/supercore/superexec/plugin/exec_plugin.py +11 -1
- flwr/supercore/superexec/run_superexec.py +16 -2
- flwr/superlink/artifact_provider/__init__.py +22 -0
- flwr/superlink/artifact_provider/artifact_provider.py +37 -0
- flwr/superlink/servicer/control/control_grpc.py +3 -0
- flwr/superlink/servicer/control/control_servicer.py +59 -2
- {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/METADATA +6 -16
- {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/RECORD +93 -74
- flwr/cli/new/templates/app/code/client.pytorch_msg_api.py.tpl +0 -80
- flwr/cli/new/templates/app/code/server.pytorch_msg_api.py.tpl +0 -41
- flwr/serverapp/dp_fixed_clipping.py +0 -352
- flwr/serverapp/strategy/strategy_utils_tests.py +0 -304
- /flwr/cli/new/templates/app/code/{__init__.pytorch_msg_api.py.tpl → __init__.pytorch_legacy_api.py.tpl} +0 -0
- {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/WHEEL +0 -0
- {flwr-1.21.0.dist-info → flwr-1.22.0.dist-info}/entry_points.txt +0 -0
flwr/cli/app.py
CHANGED
|
@@ -25,6 +25,7 @@ from .log import log
|
|
|
25
25
|
from .login import login
|
|
26
26
|
from .ls import ls
|
|
27
27
|
from .new import new
|
|
28
|
+
from .pull import pull
|
|
28
29
|
from .run import run
|
|
29
30
|
from .stop import stop
|
|
30
31
|
|
|
@@ -46,6 +47,7 @@ app.command()(log)
|
|
|
46
47
|
app.command()(ls)
|
|
47
48
|
app.command()(stop)
|
|
48
49
|
app.command()(login)
|
|
50
|
+
app.command()(pull)
|
|
49
51
|
|
|
50
52
|
typer_click_object = get_command(app)
|
|
51
53
|
|
flwr/cli/new/new.py
CHANGED
|
@@ -35,15 +35,16 @@ class MlFramework(str, Enum):
|
|
|
35
35
|
"""Available frameworks."""
|
|
36
36
|
|
|
37
37
|
PYTORCH = "PyTorch"
|
|
38
|
-
PYTORCH_MSG_API = "PyTorch (Message API)"
|
|
39
38
|
TENSORFLOW = "TensorFlow"
|
|
40
39
|
SKLEARN = "sklearn"
|
|
41
40
|
HUGGINGFACE = "HuggingFace"
|
|
42
41
|
JAX = "JAX"
|
|
43
42
|
MLX = "MLX"
|
|
44
43
|
NUMPY = "NumPy"
|
|
44
|
+
XGBOOST = "XGBoost"
|
|
45
45
|
FLOWERTUNE = "FlowerTune"
|
|
46
46
|
BASELINE = "Flower Baseline"
|
|
47
|
+
PYTORCH_LEGACY_API = "PyTorch (Legacy API, deprecated)"
|
|
47
48
|
|
|
48
49
|
|
|
49
50
|
class LlmChallengeName(str, Enum):
|
|
@@ -155,8 +156,8 @@ def new(
|
|
|
155
156
|
if framework_str == MlFramework.BASELINE:
|
|
156
157
|
framework_str = "baseline"
|
|
157
158
|
|
|
158
|
-
if framework_str == MlFramework.
|
|
159
|
-
framework_str = "
|
|
159
|
+
if framework_str == MlFramework.PYTORCH_LEGACY_API:
|
|
160
|
+
framework_str = "pytorch_legacy_api"
|
|
160
161
|
|
|
161
162
|
print(
|
|
162
163
|
typer.style(
|
|
@@ -201,7 +202,7 @@ def new(
|
|
|
201
202
|
}
|
|
202
203
|
|
|
203
204
|
# Challenge specific context
|
|
204
|
-
|
|
205
|
+
fraction_train = "0.2" if llm_challenge_str == "code" else "0.1"
|
|
205
206
|
if llm_challenge_str == "generalnlp":
|
|
206
207
|
challenge_name = "General NLP"
|
|
207
208
|
num_clients = "20"
|
|
@@ -220,7 +221,7 @@ def new(
|
|
|
220
221
|
dataset_name = "flwrlabs/code-alpaca-20k"
|
|
221
222
|
|
|
222
223
|
context["llm_challenge_str"] = llm_challenge_str
|
|
223
|
-
context["
|
|
224
|
+
context["fraction_train"] = fraction_train
|
|
224
225
|
context["challenge_name"] = challenge_name
|
|
225
226
|
context["num_clients"] = num_clients
|
|
226
227
|
context["dataset_name"] = dataset_name
|
|
@@ -247,14 +248,15 @@ def new(
|
|
|
247
248
|
MlFramework.TENSORFLOW.value,
|
|
248
249
|
MlFramework.SKLEARN.value,
|
|
249
250
|
MlFramework.NUMPY.value,
|
|
250
|
-
|
|
251
|
+
MlFramework.XGBOOST.value,
|
|
252
|
+
"pytorch_legacy_api",
|
|
251
253
|
]
|
|
252
254
|
if framework_str in frameworks_with_tasks:
|
|
253
255
|
files[f"{import_name}/task.py"] = {
|
|
254
256
|
"template": f"app/code/task.{template_name}.py.tpl"
|
|
255
257
|
}
|
|
256
258
|
|
|
257
|
-
if framework_str == "
|
|
259
|
+
if framework_str == "pytorch_legacy_api":
|
|
258
260
|
# Use custom __init__ that better captures name of framework
|
|
259
261
|
files[f"{import_name}/__init__.py"] = {
|
|
260
262
|
"template": f"app/code/__init__.{framework_str}.py.tpl"
|
|
@@ -26,7 +26,7 @@ pip install -e .
|
|
|
26
26
|
## Experimental setup
|
|
27
27
|
|
|
28
28
|
The dataset is divided into $num_clients partitions in an IID fashion, a partition is assigned to each ClientApp.
|
|
29
|
-
We randomly sample a fraction ($
|
|
29
|
+
We randomly sample a fraction ($fraction_train) of the total nodes to participate in each round, for a total of `200` rounds.
|
|
30
30
|
All settings are defined in `pyproject.toml`.
|
|
31
31
|
|
|
32
32
|
> [!IMPORTANT]
|
|
@@ -1,58 +1,75 @@
|
|
|
1
1
|
"""$project_name: A Flower Baseline."""
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
|
-
from flwr.
|
|
5
|
-
from flwr.
|
|
4
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
+
from flwr.clientapp import ClientApp
|
|
6
6
|
|
|
7
7
|
from $import_name.dataset import load_data
|
|
8
|
-
from $import_name.model import Net
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
self.net,
|
|
27
|
-
self.trainloader,
|
|
28
|
-
self.local_epochs,
|
|
29
|
-
self.device,
|
|
30
|
-
)
|
|
31
|
-
return (
|
|
32
|
-
get_weights(self.net),
|
|
33
|
-
len(self.trainloader.dataset),
|
|
34
|
-
{"train_loss": train_loss},
|
|
35
|
-
)
|
|
36
|
-
|
|
37
|
-
def evaluate(self, parameters, config):
|
|
38
|
-
"""Evaluate model using this client's data."""
|
|
39
|
-
set_weights(self.net, parameters)
|
|
40
|
-
loss, accuracy = test(self.net, self.valloader, self.device)
|
|
41
|
-
return loss, len(self.valloader.dataset), {"accuracy": accuracy}
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
def client_fn(context: Context):
|
|
45
|
-
"""Construct a Client that will be run in a ClientApp."""
|
|
46
|
-
# Load model and data
|
|
47
|
-
net = Net()
|
|
8
|
+
from $import_name.model import Net
|
|
9
|
+
from $import_name.model import test as test_fn
|
|
10
|
+
from $import_name.model import train as train_fn
|
|
11
|
+
|
|
12
|
+
# Flower ClientApp
|
|
13
|
+
app = ClientApp()
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@app.train()
|
|
17
|
+
def train(msg: Message, context: Context):
|
|
18
|
+
"""Train the model on local data."""
|
|
19
|
+
|
|
20
|
+
# Load the model and initialize it with the received weights
|
|
21
|
+
model = Net()
|
|
22
|
+
model.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
23
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
24
|
+
|
|
25
|
+
# Load the data
|
|
48
26
|
partition_id = int(context.node_config["partition-id"])
|
|
49
27
|
num_partitions = int(context.node_config["num-partitions"])
|
|
50
|
-
trainloader,
|
|
28
|
+
trainloader, _ = load_data(partition_id, num_partitions)
|
|
51
29
|
local_epochs = context.run_config["local-epochs"]
|
|
52
30
|
|
|
53
|
-
#
|
|
54
|
-
|
|
31
|
+
# Call the training function
|
|
32
|
+
train_loss = train_fn(
|
|
33
|
+
model,
|
|
34
|
+
trainloader,
|
|
35
|
+
local_epochs,
|
|
36
|
+
device,
|
|
37
|
+
)
|
|
55
38
|
|
|
39
|
+
# Construct and return reply Message
|
|
40
|
+
model_record = ArrayRecord(model.state_dict())
|
|
41
|
+
metrics = {
|
|
42
|
+
"train_loss": train_loss,
|
|
43
|
+
"num-examples": len(trainloader.dataset),
|
|
44
|
+
}
|
|
45
|
+
metric_record = MetricRecord(metrics)
|
|
46
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
47
|
+
return Message(content=content, reply_to=msg)
|
|
56
48
|
|
|
57
|
-
|
|
58
|
-
app
|
|
49
|
+
|
|
50
|
+
@app.evaluate()
|
|
51
|
+
def evaluate(msg: Message, context: Context):
|
|
52
|
+
"""Evaluate the model on local data."""
|
|
53
|
+
|
|
54
|
+
# Load the model and initialize it with the received weights
|
|
55
|
+
model = Net()
|
|
56
|
+
model.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
57
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
58
|
+
|
|
59
|
+
# Load the data
|
|
60
|
+
partition_id = int(context.node_config["partition-id"])
|
|
61
|
+
num_partitions = int(context.node_config["num-partitions"])
|
|
62
|
+
_, valloader = load_data(partition_id, num_partitions)
|
|
63
|
+
|
|
64
|
+
# Call the evaluation function
|
|
65
|
+
eval_loss, eval_acc = test_fn(model, valloader, device)
|
|
66
|
+
|
|
67
|
+
# Construct and return reply Message
|
|
68
|
+
metrics = {
|
|
69
|
+
"eval_loss": eval_loss,
|
|
70
|
+
"eval_acc": eval_acc,
|
|
71
|
+
"num-examples": len(valloader.dataset),
|
|
72
|
+
}
|
|
73
|
+
metric_record = MetricRecord(metrics)
|
|
74
|
+
content = RecordDict({"metrics": metric_record})
|
|
75
|
+
return Message(content=content, reply_to=msg)
|
|
@@ -1,41 +1,67 @@
|
|
|
1
1
|
"""$project_name: A Flower / $framework_str app."""
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
|
-
from flwr.
|
|
5
|
-
from flwr.
|
|
4
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
+
from flwr.clientapp import ClientApp
|
|
6
6
|
from transformers import AutoModelForSequenceClassification
|
|
7
7
|
|
|
8
|
-
from $import_name.task import
|
|
8
|
+
from $import_name.task import load_data
|
|
9
|
+
from $import_name.task import test as test_fn
|
|
10
|
+
from $import_name.task import train as train_fn
|
|
9
11
|
|
|
12
|
+
# Flower ClientApp
|
|
13
|
+
app = ClientApp()
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@app.train()
|
|
17
|
+
def train(msg: Message, context: Context):
|
|
18
|
+
"""Train the model on local data."""
|
|
19
|
+
|
|
20
|
+
# Get this client's dataset partition
|
|
21
|
+
partition_id = context.node_config["partition-id"]
|
|
22
|
+
num_partitions = context.node_config["num-partitions"]
|
|
23
|
+
model_name = context.run_config["model-name"]
|
|
24
|
+
trainloader, _ = load_data(partition_id, num_partitions, model_name)
|
|
25
|
+
|
|
26
|
+
# Load model
|
|
27
|
+
num_labels = context.run_config["num-labels"]
|
|
28
|
+
net = AutoModelForSequenceClassification.from_pretrained(
|
|
29
|
+
model_name, num_labels=num_labels
|
|
30
|
+
)
|
|
10
31
|
|
|
11
|
-
#
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
self.trainloader = trainloader
|
|
16
|
-
self.testloader = testloader
|
|
17
|
-
self.local_epochs = local_epochs
|
|
18
|
-
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
19
|
-
self.net.to(self.device)
|
|
32
|
+
# Initialize it with the received weights
|
|
33
|
+
net.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
34
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
35
|
+
net.to(device)
|
|
20
36
|
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
37
|
+
# Train the model on local data
|
|
38
|
+
train_loss = train_fn(
|
|
39
|
+
net,
|
|
40
|
+
trainloader,
|
|
41
|
+
context.run_config["local-steps"],
|
|
42
|
+
device,
|
|
43
|
+
)
|
|
25
44
|
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
45
|
+
# Construct and return reply Message
|
|
46
|
+
model_record = ArrayRecord(net.state_dict())
|
|
47
|
+
metrics = {
|
|
48
|
+
"train_loss": train_loss,
|
|
49
|
+
"num-examples": len(trainloader.dataset),
|
|
50
|
+
}
|
|
51
|
+
metric_record = MetricRecord(metrics)
|
|
52
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
53
|
+
return Message(content=content, reply_to=msg)
|
|
30
54
|
|
|
31
55
|
|
|
32
|
-
|
|
56
|
+
@app.evaluate()
|
|
57
|
+
def evaluate(msg: Message, context: Context):
|
|
58
|
+
"""Evaluate the model on local data."""
|
|
33
59
|
|
|
34
60
|
# Get this client's dataset partition
|
|
35
61
|
partition_id = context.node_config["partition-id"]
|
|
36
62
|
num_partitions = context.node_config["num-partitions"]
|
|
37
63
|
model_name = context.run_config["model-name"]
|
|
38
|
-
|
|
64
|
+
_, valloader = load_data(partition_id, num_partitions, model_name)
|
|
39
65
|
|
|
40
66
|
# Load model
|
|
41
67
|
num_labels = context.run_config["num-labels"]
|
|
@@ -43,13 +69,25 @@ def client_fn(context: Context):
|
|
|
43
69
|
model_name, num_labels=num_labels
|
|
44
70
|
)
|
|
45
71
|
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
72
|
+
# Initialize it with the received weights
|
|
73
|
+
net.load_state_dict(msg.content["arrays"].to_torch_state_dict())
|
|
74
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
75
|
+
net.to(device)
|
|
50
76
|
|
|
77
|
+
# Evaluate the model on local data
|
|
78
|
+
val_loss, val_accuracy = test_fn(
|
|
79
|
+
net,
|
|
80
|
+
valloader,
|
|
81
|
+
device,
|
|
82
|
+
)
|
|
51
83
|
|
|
52
|
-
#
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
84
|
+
# Construct and return reply Message
|
|
85
|
+
model_record = ArrayRecord(net.state_dict())
|
|
86
|
+
metrics = {
|
|
87
|
+
"val_loss": val_loss,
|
|
88
|
+
"val_accuracy": val_accuracy,
|
|
89
|
+
"num-examples": len(valloader.dataset),
|
|
90
|
+
}
|
|
91
|
+
metric_record = MetricRecord(metrics)
|
|
92
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
93
|
+
return Message(content=content, reply_to=msg)
|
|
@@ -1,50 +1,71 @@
|
|
|
1
1
|
"""$project_name: A Flower / $framework_str app."""
|
|
2
2
|
|
|
3
3
|
import jax
|
|
4
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
+
from flwr.clientapp import ClientApp
|
|
4
6
|
|
|
5
|
-
from
|
|
6
|
-
from
|
|
7
|
-
from $import_name.task import
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
# Define Flower Client and client_fn
|
|
19
|
-
class FlowerClient(NumPyClient):
|
|
20
|
-
def __init__(self, input_dim):
|
|
21
|
-
self.train_x, self.train_y, self.test_x, self.test_y = load_data()
|
|
22
|
-
self.grad_fn = jax.grad(loss_fn)
|
|
23
|
-
self.params = load_model((input_dim,))
|
|
24
|
-
|
|
25
|
-
def fit(self, parameters, config):
|
|
26
|
-
set_params(self.params, parameters)
|
|
27
|
-
self.params, loss, num_examples = train(
|
|
28
|
-
self.params, self.grad_fn, self.train_x, self.train_y
|
|
29
|
-
)
|
|
30
|
-
return get_params(self.params), num_examples, {"loss": float(loss)}
|
|
31
|
-
|
|
32
|
-
def evaluate(self, parameters, config):
|
|
33
|
-
set_params(self.params, parameters)
|
|
34
|
-
loss, num_examples = evaluation(
|
|
35
|
-
self.params, self.grad_fn, self.test_x, self.test_y
|
|
36
|
-
)
|
|
37
|
-
return float(loss), num_examples, {"loss": float(loss)}
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def client_fn(context: Context):
|
|
7
|
+
from $import_name.task import evaluation as evaluation_fn
|
|
8
|
+
from $import_name.task import get_params, load_data, load_model, loss_fn, set_params
|
|
9
|
+
from $import_name.task import train as train_fn
|
|
10
|
+
|
|
11
|
+
# Flower ClientApp
|
|
12
|
+
app = ClientApp()
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@app.train()
|
|
16
|
+
def train(msg: Message, context: Context):
|
|
17
|
+
"""Train the model on local data."""
|
|
18
|
+
|
|
19
|
+
# Read from config
|
|
41
20
|
input_dim = context.run_config["input-dim"]
|
|
42
21
|
|
|
43
|
-
#
|
|
44
|
-
|
|
22
|
+
# Load data and model
|
|
23
|
+
train_x, train_y, _, _ = load_data()
|
|
24
|
+
model = load_model((input_dim,))
|
|
25
|
+
grad_fn = jax.grad(loss_fn)
|
|
45
26
|
|
|
27
|
+
# Set model parameters
|
|
28
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
29
|
+
set_params(model, ndarrays)
|
|
46
30
|
|
|
47
|
-
#
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
31
|
+
# Train the model on local data
|
|
32
|
+
model, loss, num_examples = train_fn(model, grad_fn, train_x, train_y)
|
|
33
|
+
|
|
34
|
+
# Construct and return reply Message
|
|
35
|
+
model_record = ArrayRecord(get_params(model))
|
|
36
|
+
metrics = {
|
|
37
|
+
"train_loss": float(loss),
|
|
38
|
+
"num-examples": num_examples,
|
|
39
|
+
}
|
|
40
|
+
metric_record = MetricRecord(metrics)
|
|
41
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
42
|
+
return Message(content=content, reply_to=msg)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@app.evaluate()
|
|
46
|
+
def evaluate(msg: Message, context: Context):
|
|
47
|
+
"""Evaluate the model on local data."""
|
|
48
|
+
|
|
49
|
+
# Read from config
|
|
50
|
+
input_dim = context.run_config["input-dim"]
|
|
51
|
+
|
|
52
|
+
# Load data and model
|
|
53
|
+
_, _, test_x, test_y = load_data()
|
|
54
|
+
model = load_model((input_dim,))
|
|
55
|
+
grad_fn = jax.grad(loss_fn)
|
|
56
|
+
|
|
57
|
+
# Set model parameters
|
|
58
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
59
|
+
set_params(model, ndarrays)
|
|
60
|
+
|
|
61
|
+
# Evaluate the model on local data
|
|
62
|
+
loss, num_examples = evaluation_fn(model, grad_fn, test_x, test_y)
|
|
63
|
+
|
|
64
|
+
# Construct and return reply Message
|
|
65
|
+
metrics = {
|
|
66
|
+
"test_loss": float(loss),
|
|
67
|
+
"num-examples": num_examples,
|
|
68
|
+
}
|
|
69
|
+
metric_record = MetricRecord(metrics)
|
|
70
|
+
content = RecordDict({"metrics": metric_record})
|
|
71
|
+
return Message(content=content, reply_to=msg)
|
|
@@ -3,10 +3,9 @@
|
|
|
3
3
|
import mlx.core as mx
|
|
4
4
|
import mlx.nn as nn
|
|
5
5
|
import mlx.optimizers as optim
|
|
6
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
7
|
+
from flwr.clientapp import ClientApp
|
|
6
8
|
|
|
7
|
-
from flwr.client import ClientApp, NumPyClient
|
|
8
|
-
from flwr.common import Context
|
|
9
|
-
from flwr.common.config import UserConfig
|
|
10
9
|
from $import_name.task import (
|
|
11
10
|
MLP,
|
|
12
11
|
batch_iterate,
|
|
@@ -17,57 +16,87 @@ from $import_name.task import (
|
|
|
17
16
|
set_params,
|
|
18
17
|
)
|
|
19
18
|
|
|
19
|
+
# Flower ClientApp
|
|
20
|
+
app = ClientApp()
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
@app.train()
|
|
24
|
+
def train(msg: Message, context: Context):
|
|
25
|
+
"""Train the model on local data."""
|
|
26
|
+
|
|
27
|
+
# Read config
|
|
28
|
+
num_layers = context.run_config["num-layers"]
|
|
29
|
+
input_dim = context.run_config["input-dim"]
|
|
30
|
+
hidden_dim = context.run_config["hidden-dim"]
|
|
31
|
+
batch_size = context.run_config["batch-size"]
|
|
32
|
+
learning_rate = context.run_config["lr"]
|
|
33
|
+
num_epochs = context.run_config["local-epochs"]
|
|
20
34
|
|
|
21
|
-
#
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
)
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
input_dim = run_config["input-dim"]
|
|
32
|
-
batch_size = run_config["batch-size"]
|
|
33
|
-
learning_rate = run_config["lr"]
|
|
34
|
-
self.num_epochs = run_config["local-epochs"]
|
|
35
|
-
|
|
36
|
-
self.train_images, self.train_labels, self.test_images, self.test_labels = data
|
|
37
|
-
self.model = MLP(num_layers, input_dim, hidden_dim, num_classes)
|
|
38
|
-
self.optimizer = optim.SGD(learning_rate=learning_rate)
|
|
39
|
-
self.loss_and_grad_fn = nn.value_and_grad(self.model, loss_fn)
|
|
40
|
-
self.batch_size = batch_size
|
|
41
|
-
|
|
42
|
-
def fit(self, parameters, config):
|
|
43
|
-
set_params(self.model, parameters)
|
|
44
|
-
for _ in range(self.num_epochs):
|
|
45
|
-
for X, y in batch_iterate(
|
|
46
|
-
self.batch_size, self.train_images, self.train_labels
|
|
47
|
-
):
|
|
48
|
-
_, grads = self.loss_and_grad_fn(self.model, X, y)
|
|
49
|
-
self.optimizer.update(self.model, grads)
|
|
50
|
-
mx.eval(self.model.parameters(), self.optimizer.state)
|
|
51
|
-
return get_params(self.model), len(self.train_images), {}
|
|
52
|
-
|
|
53
|
-
def evaluate(self, parameters, config):
|
|
54
|
-
set_params(self.model, parameters)
|
|
55
|
-
accuracy = eval_fn(self.model, self.test_images, self.test_labels)
|
|
56
|
-
loss = loss_fn(self.model, self.test_images, self.test_labels)
|
|
57
|
-
return loss.item(), len(self.test_images), {"accuracy": accuracy.item()}
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
def client_fn(context: Context):
|
|
35
|
+
# Instantiate model and apply global parameters
|
|
36
|
+
model = MLP(num_layers, input_dim, hidden_dim, output_dim=10)
|
|
37
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
38
|
+
set_params(model, ndarrays)
|
|
39
|
+
|
|
40
|
+
# Define optimizer and loss function
|
|
41
|
+
optimizer = optim.SGD(learning_rate=learning_rate)
|
|
42
|
+
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
|
|
43
|
+
|
|
44
|
+
# Load data
|
|
61
45
|
partition_id = context.node_config["partition-id"]
|
|
62
46
|
num_partitions = context.node_config["num-partitions"]
|
|
63
|
-
|
|
64
|
-
num_classes = 10
|
|
47
|
+
train_images, train_labels, _, _ = load_data(partition_id, num_partitions)
|
|
65
48
|
|
|
66
|
-
#
|
|
67
|
-
|
|
49
|
+
# Train the model on local data
|
|
50
|
+
for _ in range(num_epochs):
|
|
51
|
+
for X, y in batch_iterate(batch_size, train_images, train_labels):
|
|
52
|
+
_, grads = loss_and_grad_fn(model, X, y)
|
|
53
|
+
optimizer.update(model, grads)
|
|
54
|
+
mx.eval(model.parameters(), optimizer.state)
|
|
68
55
|
|
|
56
|
+
# Compute train accuracy and loss
|
|
57
|
+
accuracy = eval_fn(model, train_images, train_labels)
|
|
58
|
+
loss = loss_fn(model, train_images, train_labels)
|
|
59
|
+
# Construct and return reply Message
|
|
60
|
+
model_record = ArrayRecord(get_params(model))
|
|
61
|
+
metrics = {
|
|
62
|
+
"num-examples": len(train_images),
|
|
63
|
+
"accuracy": float(accuracy.item()),
|
|
64
|
+
"loss": float(loss.item()),
|
|
65
|
+
}
|
|
66
|
+
metric_record = MetricRecord(metrics)
|
|
67
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
68
|
+
return Message(content=content, reply_to=msg)
|
|
69
69
|
|
|
70
|
-
|
|
71
|
-
app
|
|
72
|
-
|
|
73
|
-
|
|
70
|
+
|
|
71
|
+
@app.evaluate()
|
|
72
|
+
def evaluate(msg: Message, context: Context):
|
|
73
|
+
"""Evaluate the model on local data."""
|
|
74
|
+
|
|
75
|
+
# Read config
|
|
76
|
+
num_layers = context.run_config["num-layers"]
|
|
77
|
+
input_dim = context.run_config["input-dim"]
|
|
78
|
+
hidden_dim = context.run_config["hidden-dim"]
|
|
79
|
+
|
|
80
|
+
# Instantiate model and apply global parameters
|
|
81
|
+
model = MLP(num_layers, input_dim, hidden_dim, output_dim=10)
|
|
82
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
83
|
+
set_params(model, ndarrays)
|
|
84
|
+
|
|
85
|
+
# Load data
|
|
86
|
+
partition_id = context.node_config["partition-id"]
|
|
87
|
+
num_partitions = context.node_config["num-partitions"]
|
|
88
|
+
_, _, test_images, test_labels = load_data(partition_id, num_partitions)
|
|
89
|
+
|
|
90
|
+
# Evaluate the model on local data
|
|
91
|
+
accuracy = eval_fn(model, test_images, test_labels)
|
|
92
|
+
loss = loss_fn(model, test_images, test_labels)
|
|
93
|
+
|
|
94
|
+
# Construct and return reply Message
|
|
95
|
+
metrics = {
|
|
96
|
+
"num-examples": len(test_images),
|
|
97
|
+
"accuracy": float(accuracy.item()),
|
|
98
|
+
"loss": float(loss.item()),
|
|
99
|
+
}
|
|
100
|
+
metric_record = MetricRecord(metrics)
|
|
101
|
+
content = RecordDict({"metrics": metric_record})
|
|
102
|
+
return Message(content=content, reply_to=msg)
|
|
@@ -1,23 +1,46 @@
|
|
|
1
1
|
"""$project_name: A Flower / $framework_str app."""
|
|
2
2
|
|
|
3
|
-
|
|
4
|
-
from flwr.
|
|
5
|
-
from
|
|
3
|
+
import numpy as np
|
|
4
|
+
from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
|
|
5
|
+
from flwr.clientapp import ClientApp
|
|
6
6
|
|
|
7
|
+
# Flower ClientApp
|
|
8
|
+
app = ClientApp()
|
|
7
9
|
|
|
8
|
-
class FlowerClient(NumPyClient):
|
|
9
10
|
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
11
|
+
@app.train()
|
|
12
|
+
def train(msg: Message, context: Context):
|
|
13
|
+
"""Train the model on local data."""
|
|
13
14
|
|
|
14
|
-
|
|
15
|
-
|
|
15
|
+
# The model is the global arrays
|
|
16
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
16
17
|
|
|
18
|
+
# Simulate local training (here we just add random noise to model parameters)
|
|
19
|
+
model = [m + np.random.rand(*m.shape) for m in ndarrays]
|
|
17
20
|
|
|
18
|
-
|
|
19
|
-
|
|
21
|
+
# Construct and return reply Message
|
|
22
|
+
model_record = ArrayRecord(model)
|
|
23
|
+
metrics = {
|
|
24
|
+
"random_metric": np.random.rand(),
|
|
25
|
+
"num-examples": 1,
|
|
26
|
+
}
|
|
27
|
+
metric_record = MetricRecord(metrics)
|
|
28
|
+
content = RecordDict({"arrays": model_record, "metrics": metric_record})
|
|
29
|
+
return Message(content=content, reply_to=msg)
|
|
20
30
|
|
|
21
31
|
|
|
22
|
-
|
|
23
|
-
|
|
32
|
+
@app.evaluate()
|
|
33
|
+
def evaluate(msg: Message, context: Context):
|
|
34
|
+
"""Evaluate the model on local data."""
|
|
35
|
+
|
|
36
|
+
# The model is the global arrays
|
|
37
|
+
ndarrays = msg.content["arrays"].to_numpy_ndarrays()
|
|
38
|
+
|
|
39
|
+
# Return reply Message
|
|
40
|
+
metrics = {
|
|
41
|
+
"random_metric": np.random.rand(3).tolist(),
|
|
42
|
+
"num-examples": 1,
|
|
43
|
+
}
|
|
44
|
+
metric_record = MetricRecord(metrics)
|
|
45
|
+
content = RecordDict({"metrics": metric_record})
|
|
46
|
+
return Message(content=content, reply_to=msg)
|