flwr 1.20.0__py3-none-any.whl → 1.22.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/__init__.py +4 -1
- flwr/app/__init__.py +28 -0
- flwr/app/exception.py +31 -0
- flwr/cli/app.py +2 -0
- flwr/cli/auth_plugin/oidc_cli_plugin.py +4 -4
- flwr/cli/cli_user_auth_interceptor.py +1 -1
- flwr/cli/config_utils.py +3 -3
- flwr/cli/constant.py +25 -8
- flwr/cli/log.py +9 -9
- flwr/cli/login/login.py +3 -3
- flwr/cli/ls.py +5 -5
- flwr/cli/new/new.py +15 -2
- flwr/cli/new/templates/app/README.flowertune.md.tpl +1 -1
- flwr/cli/new/templates/app/code/__init__.pytorch_legacy_api.py.tpl +1 -0
- flwr/cli/new/templates/app/code/client.baseline.py.tpl +64 -47
- flwr/cli/new/templates/app/code/client.huggingface.py.tpl +68 -30
- flwr/cli/new/templates/app/code/client.jax.py.tpl +63 -42
- flwr/cli/new/templates/app/code/client.mlx.py.tpl +80 -51
- flwr/cli/new/templates/app/code/client.numpy.py.tpl +36 -13
- flwr/cli/new/templates/app/code/client.pytorch.py.tpl +71 -46
- flwr/cli/new/templates/app/code/client.pytorch_legacy_api.py.tpl +55 -0
- flwr/cli/new/templates/app/code/client.sklearn.py.tpl +75 -30
- flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +69 -44
- flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
- flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +56 -90
- flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +1 -23
- flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +37 -58
- flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +39 -44
- flwr/cli/new/templates/app/code/model.baseline.py.tpl +0 -14
- flwr/cli/new/templates/app/code/server.baseline.py.tpl +27 -29
- flwr/cli/new/templates/app/code/server.huggingface.py.tpl +23 -19
- flwr/cli/new/templates/app/code/server.jax.py.tpl +27 -14
- flwr/cli/new/templates/app/code/server.mlx.py.tpl +29 -19
- flwr/cli/new/templates/app/code/server.numpy.py.tpl +30 -17
- flwr/cli/new/templates/app/code/server.pytorch.py.tpl +36 -26
- flwr/cli/new/templates/app/code/server.pytorch_legacy_api.py.tpl +31 -0
- flwr/cli/new/templates/app/code/server.sklearn.py.tpl +29 -21
- flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +28 -19
- flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
- flwr/cli/new/templates/app/code/task.huggingface.py.tpl +16 -20
- flwr/cli/new/templates/app/code/task.jax.py.tpl +1 -1
- flwr/cli/new/templates/app/code/task.numpy.py.tpl +1 -1
- flwr/cli/new/templates/app/code/task.pytorch.py.tpl +14 -27
- flwr/cli/new/templates/app/code/task.pytorch_legacy_api.py.tpl +111 -0
- flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +1 -2
- flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
- flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +4 -4
- flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +2 -2
- flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +4 -4
- flwr/cli/new/templates/app/pyproject.jax.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +2 -2
- flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +3 -3
- flwr/cli/new/templates/app/pyproject.pytorch_legacy_api.toml.tpl +53 -0
- flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
- flwr/cli/pull.py +100 -0
- flwr/cli/run/run.py +9 -13
- flwr/cli/stop.py +7 -4
- flwr/cli/utils.py +36 -8
- flwr/client/grpc_rere_client/connection.py +1 -12
- flwr/client/rest_client/connection.py +3 -0
- flwr/clientapp/__init__.py +10 -0
- flwr/clientapp/mod/__init__.py +29 -0
- flwr/clientapp/mod/centraldp_mods.py +248 -0
- flwr/clientapp/mod/localdp_mod.py +169 -0
- flwr/clientapp/typing.py +22 -0
- flwr/common/args.py +20 -6
- flwr/common/auth_plugin/__init__.py +4 -4
- flwr/common/auth_plugin/auth_plugin.py +7 -7
- flwr/common/constant.py +26 -4
- flwr/common/event_log_plugin/event_log_plugin.py +1 -1
- flwr/common/exit/__init__.py +4 -0
- flwr/common/exit/exit.py +8 -1
- flwr/common/exit/exit_code.py +30 -7
- flwr/common/exit/exit_handler.py +62 -0
- flwr/common/{exit_handlers.py → exit/signal_handler.py} +20 -37
- flwr/common/grpc.py +0 -11
- flwr/common/inflatable_utils.py +1 -1
- flwr/common/logger.py +1 -1
- flwr/common/record/typeddict.py +12 -0
- flwr/common/retry_invoker.py +30 -11
- flwr/common/telemetry.py +4 -0
- flwr/compat/server/app.py +2 -2
- flwr/proto/appio_pb2.py +25 -17
- flwr/proto/appio_pb2.pyi +46 -2
- flwr/proto/clientappio_pb2.py +3 -11
- flwr/proto/clientappio_pb2.pyi +0 -47
- flwr/proto/clientappio_pb2_grpc.py +19 -20
- flwr/proto/clientappio_pb2_grpc.pyi +10 -11
- flwr/proto/control_pb2.py +66 -0
- flwr/proto/{exec_pb2.pyi → control_pb2.pyi} +24 -0
- flwr/proto/{exec_pb2_grpc.py → control_pb2_grpc.py} +88 -54
- flwr/proto/control_pb2_grpc.pyi +106 -0
- flwr/proto/serverappio_pb2.py +2 -2
- flwr/proto/serverappio_pb2_grpc.py +68 -0
- flwr/proto/serverappio_pb2_grpc.pyi +26 -0
- flwr/proto/simulationio_pb2.py +4 -11
- flwr/proto/simulationio_pb2.pyi +0 -58
- flwr/proto/simulationio_pb2_grpc.py +129 -27
- flwr/proto/simulationio_pb2_grpc.pyi +52 -13
- flwr/server/app.py +142 -152
- flwr/server/grid/grpc_grid.py +3 -0
- flwr/server/grid/inmemory_grid.py +1 -0
- flwr/server/serverapp/app.py +157 -146
- flwr/server/superlink/fleet/vce/backend/raybackend.py +3 -1
- flwr/server/superlink/fleet/vce/vce_api.py +6 -6
- flwr/server/superlink/linkstate/in_memory_linkstate.py +34 -0
- flwr/server/superlink/linkstate/linkstate.py +2 -1
- flwr/server/superlink/linkstate/sqlite_linkstate.py +45 -0
- flwr/server/superlink/serverappio/serverappio_grpc.py +1 -1
- flwr/server/superlink/serverappio/serverappio_servicer.py +61 -6
- flwr/server/superlink/simulation/simulationio_servicer.py +97 -21
- flwr/serverapp/__init__.py +12 -0
- flwr/serverapp/exception.py +38 -0
- flwr/serverapp/strategy/__init__.py +64 -0
- flwr/serverapp/strategy/bulyan.py +238 -0
- flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
- flwr/serverapp/strategy/dp_fixed_clipping.py +374 -0
- flwr/serverapp/strategy/fedadagrad.py +159 -0
- flwr/serverapp/strategy/fedadam.py +178 -0
- flwr/serverapp/strategy/fedavg.py +320 -0
- flwr/serverapp/strategy/fedavgm.py +198 -0
- flwr/serverapp/strategy/fedmedian.py +105 -0
- flwr/serverapp/strategy/fedopt.py +218 -0
- flwr/serverapp/strategy/fedprox.py +174 -0
- flwr/serverapp/strategy/fedtrimmedavg.py +176 -0
- flwr/serverapp/strategy/fedxgb_bagging.py +117 -0
- flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
- flwr/serverapp/strategy/fedyogi.py +170 -0
- flwr/serverapp/strategy/krum.py +112 -0
- flwr/serverapp/strategy/multikrum.py +247 -0
- flwr/serverapp/strategy/qfedavg.py +252 -0
- flwr/serverapp/strategy/result.py +105 -0
- flwr/serverapp/strategy/strategy.py +285 -0
- flwr/serverapp/strategy/strategy_utils.py +299 -0
- flwr/simulation/app.py +161 -164
- flwr/simulation/run_simulation.py +25 -30
- flwr/supercore/app_utils.py +58 -0
- flwr/{supernode/scheduler → supercore/cli}/__init__.py +3 -3
- flwr/supercore/cli/flower_superexec.py +166 -0
- flwr/supercore/constant.py +19 -0
- flwr/supercore/{scheduler → corestate}/__init__.py +3 -3
- flwr/supercore/corestate/corestate.py +81 -0
- flwr/supercore/grpc_health/__init__.py +3 -0
- flwr/supercore/grpc_health/health_server.py +53 -0
- flwr/supercore/grpc_health/simple_health_servicer.py +2 -2
- flwr/{superexec → supercore/superexec}/__init__.py +1 -1
- flwr/supercore/superexec/plugin/__init__.py +28 -0
- flwr/{supernode/scheduler/simple_clientapp_scheduler_plugin.py → supercore/superexec/plugin/base_exec_plugin.py} +10 -6
- flwr/supercore/superexec/plugin/clientapp_exec_plugin.py +28 -0
- flwr/supercore/{scheduler/plugin.py → superexec/plugin/exec_plugin.py} +15 -5
- flwr/supercore/superexec/plugin/serverapp_exec_plugin.py +28 -0
- flwr/supercore/superexec/plugin/simulation_exec_plugin.py +28 -0
- flwr/supercore/superexec/run_superexec.py +199 -0
- flwr/superlink/artifact_provider/__init__.py +22 -0
- flwr/superlink/artifact_provider/artifact_provider.py +37 -0
- flwr/superlink/servicer/__init__.py +15 -0
- flwr/superlink/servicer/control/__init__.py +22 -0
- flwr/{superexec/exec_event_log_interceptor.py → superlink/servicer/control/control_event_log_interceptor.py} +7 -7
- flwr/{superexec/exec_grpc.py → superlink/servicer/control/control_grpc.py} +27 -29
- flwr/{superexec/exec_license_interceptor.py → superlink/servicer/control/control_license_interceptor.py} +6 -6
- flwr/{superexec/exec_servicer.py → superlink/servicer/control/control_servicer.py} +127 -31
- flwr/{superexec/exec_user_auth_interceptor.py → superlink/servicer/control/control_user_auth_interceptor.py} +10 -10
- flwr/supernode/cli/flower_supernode.py +3 -0
- flwr/supernode/cli/flwr_clientapp.py +18 -21
- flwr/supernode/nodestate/in_memory_nodestate.py +2 -2
- flwr/supernode/nodestate/nodestate.py +3 -59
- flwr/supernode/runtime/run_clientapp.py +39 -102
- flwr/supernode/servicer/clientappio/clientappio_servicer.py +10 -17
- flwr/supernode/start_client_internal.py +35 -76
- {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/METADATA +9 -18
- {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/RECORD +176 -128
- {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/entry_points.txt +1 -0
- flwr/proto/exec_pb2.py +0 -62
- flwr/proto/exec_pb2_grpc.pyi +0 -93
- flwr/superexec/app.py +0 -45
- flwr/superexec/deployment.py +0 -191
- flwr/superexec/executor.py +0 -100
- flwr/superexec/simulation.py +0 -129
- {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,247 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent.
|
|
16
|
+
|
|
17
|
+
[Blanchard et al., 2017].
|
|
18
|
+
|
|
19
|
+
Paper: proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
from collections.abc import Iterable
|
|
24
|
+
from logging import INFO
|
|
25
|
+
from typing import Callable, Optional, cast
|
|
26
|
+
|
|
27
|
+
import numpy as np
|
|
28
|
+
|
|
29
|
+
from flwr.common import ArrayRecord, Message, MetricRecord, NDArray, RecordDict, log
|
|
30
|
+
|
|
31
|
+
from .fedavg import FedAvg
|
|
32
|
+
from .strategy_utils import aggregate_arrayrecords
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
# pylint: disable=too-many-instance-attributes
|
|
36
|
+
class MultiKrum(FedAvg):
|
|
37
|
+
"""MultiKrum [Blanchard et al., 2017] strategy.
|
|
38
|
+
|
|
39
|
+
Implementation based on https://arxiv.org/abs/1703.02757
|
|
40
|
+
|
|
41
|
+
Parameters
|
|
42
|
+
----------
|
|
43
|
+
fraction_train : float (default: 1.0)
|
|
44
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
|
45
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
|
46
|
+
will still be sampled.
|
|
47
|
+
fraction_evaluate : float (default: 1.0)
|
|
48
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
|
49
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
|
50
|
+
`min_evaluate_nodes` will still be sampled.
|
|
51
|
+
min_train_nodes : int (default: 2)
|
|
52
|
+
Minimum number of nodes used during training.
|
|
53
|
+
min_evaluate_nodes : int (default: 2)
|
|
54
|
+
Minimum number of nodes used during validation.
|
|
55
|
+
min_available_nodes : int (default: 2)
|
|
56
|
+
Minimum number of total nodes in the system.
|
|
57
|
+
num_malicious_nodes : int (default: 0)
|
|
58
|
+
Number of malicious nodes in the system. Defaults to 0.
|
|
59
|
+
num_nodes_to_select : int (default: 1)
|
|
60
|
+
Number of nodes to select before averaging.
|
|
61
|
+
weighted_by_key : str (default: "num-examples")
|
|
62
|
+
The key within each MetricRecord whose value is used as the weight when
|
|
63
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
|
64
|
+
arrayrecord_key : str (default: "arrays")
|
|
65
|
+
Key used to store the ArrayRecord when constructing Messages.
|
|
66
|
+
configrecord_key : str (default: "config")
|
|
67
|
+
Key used to store the ConfigRecord when constructing Messages.
|
|
68
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
|
69
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
70
|
+
used to aggregate MetricRecords from training round replies.
|
|
71
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
72
|
+
average using the provided weight factor key.
|
|
73
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
|
74
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
75
|
+
used to aggregate MetricRecords from training round replies.
|
|
76
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
77
|
+
average using the provided weight factor key.
|
|
78
|
+
|
|
79
|
+
Notes
|
|
80
|
+
-----
|
|
81
|
+
MultiKrum is a generalization of Krum. If `num_nodes_to_select` is set to 1,
|
|
82
|
+
MultiKrum will reduce to classical Krum.
|
|
83
|
+
"""
|
|
84
|
+
|
|
85
|
+
# pylint: disable=too-many-arguments,too-many-positional-arguments
|
|
86
|
+
def __init__(
|
|
87
|
+
self,
|
|
88
|
+
fraction_train: float = 1.0,
|
|
89
|
+
fraction_evaluate: float = 1.0,
|
|
90
|
+
min_train_nodes: int = 2,
|
|
91
|
+
min_evaluate_nodes: int = 2,
|
|
92
|
+
min_available_nodes: int = 2,
|
|
93
|
+
num_malicious_nodes: int = 0,
|
|
94
|
+
num_nodes_to_select: int = 1,
|
|
95
|
+
weighted_by_key: str = "num-examples",
|
|
96
|
+
arrayrecord_key: str = "arrays",
|
|
97
|
+
configrecord_key: str = "config",
|
|
98
|
+
train_metrics_aggr_fn: Optional[
|
|
99
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
100
|
+
] = None,
|
|
101
|
+
evaluate_metrics_aggr_fn: Optional[
|
|
102
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
103
|
+
] = None,
|
|
104
|
+
) -> None:
|
|
105
|
+
super().__init__(
|
|
106
|
+
fraction_train=fraction_train,
|
|
107
|
+
fraction_evaluate=fraction_evaluate,
|
|
108
|
+
min_train_nodes=min_train_nodes,
|
|
109
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
|
110
|
+
min_available_nodes=min_available_nodes,
|
|
111
|
+
weighted_by_key=weighted_by_key,
|
|
112
|
+
arrayrecord_key=arrayrecord_key,
|
|
113
|
+
configrecord_key=configrecord_key,
|
|
114
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
|
115
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
|
116
|
+
)
|
|
117
|
+
self.num_malicious_nodes = num_malicious_nodes
|
|
118
|
+
self.num_nodes_to_select = num_nodes_to_select
|
|
119
|
+
|
|
120
|
+
def summary(self) -> None:
|
|
121
|
+
"""Log summary configuration of the strategy."""
|
|
122
|
+
log(INFO, "\t├──> MultiKrum settings:")
|
|
123
|
+
log(INFO, "\t│\t├── Number of malicious nodes: %d", self.num_malicious_nodes)
|
|
124
|
+
log(INFO, "\t│\t└── Number of nodes to select: %d", self.num_nodes_to_select)
|
|
125
|
+
super().summary()
|
|
126
|
+
|
|
127
|
+
def aggregate_train(
|
|
128
|
+
self,
|
|
129
|
+
server_round: int,
|
|
130
|
+
replies: Iterable[Message],
|
|
131
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
132
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
133
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
|
134
|
+
|
|
135
|
+
arrays, metrics = None, None
|
|
136
|
+
if valid_replies:
|
|
137
|
+
reply_contents = [msg.content for msg in valid_replies]
|
|
138
|
+
|
|
139
|
+
# Krum or MultiKrum selection
|
|
140
|
+
replies_to_aggregate = select_multikrum(
|
|
141
|
+
reply_contents,
|
|
142
|
+
num_malicious_nodes=self.num_malicious_nodes,
|
|
143
|
+
num_nodes_to_select=self.num_nodes_to_select,
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
# Aggregate ArrayRecords
|
|
147
|
+
arrays = aggregate_arrayrecords(
|
|
148
|
+
replies_to_aggregate,
|
|
149
|
+
self.weighted_by_key,
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
# Aggregate MetricRecords
|
|
153
|
+
metrics = self.train_metrics_aggr_fn(
|
|
154
|
+
replies_to_aggregate,
|
|
155
|
+
self.weighted_by_key,
|
|
156
|
+
)
|
|
157
|
+
return arrays, metrics
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
def compute_distances(records: list[ArrayRecord]) -> NDArray:
|
|
161
|
+
"""Compute squared L2 distances between ArrayRecords.
|
|
162
|
+
|
|
163
|
+
Parameters
|
|
164
|
+
----------
|
|
165
|
+
records : list[ArrayRecord]
|
|
166
|
+
A list of ArrayRecords (arrays received in replies)
|
|
167
|
+
|
|
168
|
+
Returns
|
|
169
|
+
-------
|
|
170
|
+
NDArray
|
|
171
|
+
A 2D array representing the distance matrix of squared L2 distances
|
|
172
|
+
between input ArrayRecords
|
|
173
|
+
"""
|
|
174
|
+
# Formula: ||x - y||^2 = ||x||^2 + ||y||^2 - 2 * x.y
|
|
175
|
+
# Flatten records and stack them into a matrix
|
|
176
|
+
flat_w = np.stack(
|
|
177
|
+
[np.concatenate(rec.to_numpy_ndarrays(), axis=None).ravel() for rec in records],
|
|
178
|
+
axis=0,
|
|
179
|
+
) # shape: (n, d) with n number of records and d the dimension of model
|
|
180
|
+
|
|
181
|
+
# Compute squared norms of each vector
|
|
182
|
+
norms: NDArray = np.square(flat_w).sum(axis=1) # shape (n,)
|
|
183
|
+
|
|
184
|
+
# Use broadcasting to compute pairwise distances
|
|
185
|
+
distance_matrix: NDArray = norms[:, None] + norms[None, :] - 2 * flat_w @ flat_w.T
|
|
186
|
+
return distance_matrix
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
def select_multikrum(
|
|
190
|
+
contents: list[RecordDict],
|
|
191
|
+
num_malicious_nodes: int,
|
|
192
|
+
num_nodes_to_select: int,
|
|
193
|
+
) -> list[RecordDict]:
|
|
194
|
+
"""Select the set of RecordDicts to aggregate using the Krum or MultiKrum algorithm.
|
|
195
|
+
|
|
196
|
+
For each node, computes the sum of squared L2 distances to its n-f-2 closest
|
|
197
|
+
parameter vectors, where n is the number of nodes and f is the number of
|
|
198
|
+
malicious nodes. The node(s) with the lowest score(s) are selected for
|
|
199
|
+
aggregation.
|
|
200
|
+
|
|
201
|
+
Parameters
|
|
202
|
+
----------
|
|
203
|
+
contents : list[RecordDict]
|
|
204
|
+
List of contents from reply messages, where each content is a RecordDict
|
|
205
|
+
containing an ArrayRecord of model parameters from a node (client).
|
|
206
|
+
num_malicious_nodes : int
|
|
207
|
+
Number of malicious nodes in the system.
|
|
208
|
+
num_nodes_to_select : int
|
|
209
|
+
Number of client updates to select.
|
|
210
|
+
- If 1, the algorithm reduces to classical Krum (selecting a single update).
|
|
211
|
+
- If >1, Multi-Krum is applied (selecting multiple updates).
|
|
212
|
+
|
|
213
|
+
Returns
|
|
214
|
+
-------
|
|
215
|
+
list[RecordDict]
|
|
216
|
+
Selected contents following the Krum or Multi-Krum algorithm.
|
|
217
|
+
|
|
218
|
+
Notes
|
|
219
|
+
-----
|
|
220
|
+
If `num_nodes_to_select` is set to 1, Multi-Krum reduces to classical Krum
|
|
221
|
+
and only a single RecordDict is selected.
|
|
222
|
+
"""
|
|
223
|
+
# Construct list of ArrayRecord objects from replies
|
|
224
|
+
record_key = list(contents[0].array_records.keys())[0]
|
|
225
|
+
# Recall aggregate_train first ensures replies only contain one ArrayRecord
|
|
226
|
+
array_records = [cast(ArrayRecord, reply[record_key]) for reply in contents]
|
|
227
|
+
distance_matrix = compute_distances(array_records)
|
|
228
|
+
|
|
229
|
+
# For each node, take the n-f-2 closest parameters vectors
|
|
230
|
+
num_closest = max(1, len(array_records) - num_malicious_nodes - 2)
|
|
231
|
+
closest_indices = []
|
|
232
|
+
for distance in distance_matrix:
|
|
233
|
+
closest_indices.append(
|
|
234
|
+
np.argsort(distance)[1 : num_closest + 1].tolist() # noqa: E203
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
# Compute the score for each node, that is the sum of the distances
|
|
238
|
+
# of the n-f-2 closest parameters vectors
|
|
239
|
+
scores = [
|
|
240
|
+
np.sum(distance_matrix[i, closest_indices[i]])
|
|
241
|
+
for i in range(len(distance_matrix))
|
|
242
|
+
]
|
|
243
|
+
|
|
244
|
+
# Choose the num_nodes_to_select lowest-scoring nodes (MultiKrum)
|
|
245
|
+
# and return their updates
|
|
246
|
+
best_indices = np.argsort(scores)[:num_nodes_to_select]
|
|
247
|
+
return [contents[i] for i in best_indices]
|
|
@@ -0,0 +1,252 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Fair Resource Allocation in Federated Learning [Li et al., 2020] strategy.
|
|
16
|
+
|
|
17
|
+
Paper: openreview.net/pdf?id=ByexElSYDr
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
from collections import OrderedDict
|
|
22
|
+
from collections.abc import Iterable
|
|
23
|
+
from logging import INFO
|
|
24
|
+
from typing import Callable, Optional
|
|
25
|
+
|
|
26
|
+
import numpy as np
|
|
27
|
+
|
|
28
|
+
from flwr.common import (
|
|
29
|
+
Array,
|
|
30
|
+
ArrayRecord,
|
|
31
|
+
ConfigRecord,
|
|
32
|
+
Message,
|
|
33
|
+
MetricRecord,
|
|
34
|
+
NDArray,
|
|
35
|
+
RecordDict,
|
|
36
|
+
)
|
|
37
|
+
from flwr.common.logger import log
|
|
38
|
+
from flwr.server import Grid
|
|
39
|
+
|
|
40
|
+
from ..exception import AggregationError
|
|
41
|
+
from .fedavg import FedAvg
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class QFedAvg(FedAvg):
|
|
45
|
+
"""Q-FedAvg strategy.
|
|
46
|
+
|
|
47
|
+
Implementation based on openreview.net/pdf?id=ByexElSYDr
|
|
48
|
+
|
|
49
|
+
Parameters
|
|
50
|
+
----------
|
|
51
|
+
client_learning_rate : float
|
|
52
|
+
Local learning rate used by clients during training. This value is used by
|
|
53
|
+
the strategy to approximate the base Lipschitz constant L, via
|
|
54
|
+
L = 1 / client_learning_rate.
|
|
55
|
+
q : float (default: 0.1)
|
|
56
|
+
The parameter q that controls the degree of fairness of the algorithm. Please
|
|
57
|
+
tune this parameter based on your use case.
|
|
58
|
+
When set to 0, q-FedAvg is equivalent to FedAvg.
|
|
59
|
+
train_loss_key : str (default: "train_loss")
|
|
60
|
+
The key within the MetricRecord whose value is used as the training loss when
|
|
61
|
+
aggregating ArrayRecords following q-FedAvg.
|
|
62
|
+
fraction_train : float (default: 1.0)
|
|
63
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
|
64
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
|
65
|
+
will still be sampled.
|
|
66
|
+
fraction_evaluate : float (default: 1.0)
|
|
67
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
|
68
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
|
69
|
+
`min_evaluate_nodes` will still be sampled.
|
|
70
|
+
min_train_nodes : int (default: 2)
|
|
71
|
+
Minimum number of nodes used during training.
|
|
72
|
+
min_evaluate_nodes : int (default: 2)
|
|
73
|
+
Minimum number of nodes used during validation.
|
|
74
|
+
min_available_nodes : int (default: 2)
|
|
75
|
+
Minimum number of total nodes in the system.
|
|
76
|
+
weighted_by_key : str (default: "num-examples")
|
|
77
|
+
The key within each MetricRecord whose value is used as the weight when
|
|
78
|
+
computing weighted averages for MetricRecords.
|
|
79
|
+
arrayrecord_key : str (default: "arrays")
|
|
80
|
+
Key used to store the ArrayRecord when constructing Messages.
|
|
81
|
+
configrecord_key : str (default: "config")
|
|
82
|
+
Key used to store the ConfigRecord when constructing Messages.
|
|
83
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
|
84
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
85
|
+
used to aggregate MetricRecords from training round replies.
|
|
86
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
87
|
+
average using the provided weight factor key.
|
|
88
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
|
89
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
90
|
+
used to aggregate MetricRecords from training round replies.
|
|
91
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
92
|
+
average using the provided weight factor key.
|
|
93
|
+
"""
|
|
94
|
+
|
|
95
|
+
def __init__( # pylint: disable=R0913, R0917
|
|
96
|
+
self,
|
|
97
|
+
client_learning_rate: float,
|
|
98
|
+
q: float = 0.1,
|
|
99
|
+
train_loss_key: str = "train_loss",
|
|
100
|
+
fraction_train: float = 1.0,
|
|
101
|
+
fraction_evaluate: float = 1.0,
|
|
102
|
+
min_train_nodes: int = 2,
|
|
103
|
+
min_evaluate_nodes: int = 2,
|
|
104
|
+
min_available_nodes: int = 2,
|
|
105
|
+
weighted_by_key: str = "num-examples",
|
|
106
|
+
arrayrecord_key: str = "arrays",
|
|
107
|
+
configrecord_key: str = "config",
|
|
108
|
+
train_metrics_aggr_fn: Optional[
|
|
109
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
110
|
+
] = None,
|
|
111
|
+
evaluate_metrics_aggr_fn: Optional[
|
|
112
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
113
|
+
] = None,
|
|
114
|
+
) -> None:
|
|
115
|
+
super().__init__(
|
|
116
|
+
fraction_train=fraction_train,
|
|
117
|
+
fraction_evaluate=fraction_evaluate,
|
|
118
|
+
min_train_nodes=min_train_nodes,
|
|
119
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
|
120
|
+
min_available_nodes=min_available_nodes,
|
|
121
|
+
weighted_by_key=weighted_by_key,
|
|
122
|
+
arrayrecord_key=arrayrecord_key,
|
|
123
|
+
configrecord_key=configrecord_key,
|
|
124
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
|
125
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
|
126
|
+
)
|
|
127
|
+
self.q = q
|
|
128
|
+
self.client_learning_rate = client_learning_rate
|
|
129
|
+
self.train_loss_key = train_loss_key
|
|
130
|
+
self.current_arrays: Optional[ArrayRecord] = None
|
|
131
|
+
|
|
132
|
+
def summary(self) -> None:
|
|
133
|
+
"""Log summary configuration of the strategy."""
|
|
134
|
+
log(INFO, "\t├──> q-FedAvg settings:")
|
|
135
|
+
log(INFO, "\t│\t├── client_learning_rate: %s", self.client_learning_rate)
|
|
136
|
+
log(INFO, "\t│\t├── q: %s", self.q)
|
|
137
|
+
log(INFO, "\t│\t└── train_loss_key: '%s'", self.train_loss_key)
|
|
138
|
+
super().summary()
|
|
139
|
+
|
|
140
|
+
def configure_train(
|
|
141
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
142
|
+
) -> Iterable[Message]:
|
|
143
|
+
"""Configure the next round of federated training."""
|
|
144
|
+
self.current_arrays = arrays.copy()
|
|
145
|
+
return super().configure_train(server_round, arrays, config, grid)
|
|
146
|
+
|
|
147
|
+
def aggregate_train( # pylint: disable=too-many-locals
|
|
148
|
+
self,
|
|
149
|
+
server_round: int,
|
|
150
|
+
replies: Iterable[Message],
|
|
151
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
152
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
153
|
+
# Call FedAvg aggregate_train to perform validation and aggregation
|
|
154
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
|
155
|
+
|
|
156
|
+
if not valid_replies:
|
|
157
|
+
return None, None
|
|
158
|
+
|
|
159
|
+
# Compute estimate of Lipschitz constant L
|
|
160
|
+
L = 1.0 / self.client_learning_rate # pylint: disable=C0103
|
|
161
|
+
|
|
162
|
+
# q-FedAvg aggregation
|
|
163
|
+
if self.current_arrays is None:
|
|
164
|
+
raise AggregationError(
|
|
165
|
+
"Current global model weights are not available. Make sure to call"
|
|
166
|
+
"`configure_train` before calling `aggregate_train`."
|
|
167
|
+
)
|
|
168
|
+
array_keys = list(self.current_arrays.keys()) # Preserve keys
|
|
169
|
+
global_weights = self.current_arrays.to_numpy_ndarrays(keep_input=False)
|
|
170
|
+
sum_delta = None
|
|
171
|
+
sum_h = 0.0
|
|
172
|
+
|
|
173
|
+
for msg in valid_replies:
|
|
174
|
+
# Extract local weights and training loss from Message
|
|
175
|
+
local_weights = get_local_weights(msg)
|
|
176
|
+
loss = get_train_loss(msg, self.train_loss_key)
|
|
177
|
+
|
|
178
|
+
# Compute delta and h
|
|
179
|
+
delta, h = compute_delta_and_h(
|
|
180
|
+
global_weights, local_weights, self.q, L, loss
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
# Compute sum of deltas and sum of h
|
|
184
|
+
if sum_delta is None:
|
|
185
|
+
sum_delta = delta
|
|
186
|
+
else:
|
|
187
|
+
sum_delta = [sd + d for sd, d in zip(sum_delta, delta)]
|
|
188
|
+
sum_h += h
|
|
189
|
+
|
|
190
|
+
# Compute new global weights and convert to Array type
|
|
191
|
+
# `np.asarray` can convert numpy scalars to 0-dim arrays
|
|
192
|
+
assert sum_delta is not None # Make mypy happy
|
|
193
|
+
array_list = [
|
|
194
|
+
Array(np.asarray(gw - (d / sum_h)))
|
|
195
|
+
for gw, d in zip(global_weights, sum_delta)
|
|
196
|
+
]
|
|
197
|
+
|
|
198
|
+
# Aggregate MetricRecords
|
|
199
|
+
metrics = self.train_metrics_aggr_fn(
|
|
200
|
+
[msg.content for msg in valid_replies],
|
|
201
|
+
self.weighted_by_key,
|
|
202
|
+
)
|
|
203
|
+
return ArrayRecord(OrderedDict(zip(array_keys, array_list))), metrics
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
def get_train_loss(msg: Message, loss_key: str) -> float:
|
|
207
|
+
"""Extract training loss from a Message."""
|
|
208
|
+
metrics = list(msg.content.metric_records.values())[0]
|
|
209
|
+
if (loss := metrics.get(loss_key)) is None or not isinstance(loss, (int, float)):
|
|
210
|
+
raise AggregationError(
|
|
211
|
+
"Missing or invalid training loss. "
|
|
212
|
+
f"The strategy expected a float value for the key '{loss_key}' "
|
|
213
|
+
"as the training loss in each MetricRecord from the clients. "
|
|
214
|
+
f"Ensure that '{loss_key}' is present and maps to a valid float."
|
|
215
|
+
)
|
|
216
|
+
return float(loss)
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
def get_local_weights(msg: Message) -> list[NDArray]:
|
|
220
|
+
"""Extract local weights from a Message."""
|
|
221
|
+
arrays = list(msg.content.array_records.values())[0]
|
|
222
|
+
return arrays.to_numpy_ndarrays(keep_input=False)
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
def l2_norm(ndarrays: list[NDArray]) -> float:
|
|
226
|
+
"""Compute the squared L2 norm of a list of numpy.ndarray."""
|
|
227
|
+
return float(sum(np.sum(np.square(g)) for g in ndarrays))
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
def compute_delta_and_h(
|
|
231
|
+
global_weights: list[NDArray],
|
|
232
|
+
local_weights: list[NDArray],
|
|
233
|
+
q: float,
|
|
234
|
+
L: float, # Lipschitz constant # pylint: disable=C0103
|
|
235
|
+
loss: float,
|
|
236
|
+
) -> tuple[list[NDArray], float]:
|
|
237
|
+
"""Compute delta and h used in q-FedAvg aggregation."""
|
|
238
|
+
# Compute gradient_k = L * (w - w_k)
|
|
239
|
+
for gw, lw in zip(global_weights, local_weights):
|
|
240
|
+
np.subtract(gw, lw, out=lw)
|
|
241
|
+
lw *= L
|
|
242
|
+
grad = local_weights # After in-place operations, local_weights is now grad
|
|
243
|
+
# Compute ||w_k - w||^2
|
|
244
|
+
norm = l2_norm(grad)
|
|
245
|
+
# Compute delta_k = loss_k^q * gradient_k
|
|
246
|
+
loss_pow_q: float = np.float_power(loss + 1e-10, q)
|
|
247
|
+
for g in grad:
|
|
248
|
+
g *= loss_pow_q
|
|
249
|
+
delta = grad # After in-place multiplication, grad is now delta
|
|
250
|
+
# Compute h_k
|
|
251
|
+
h = q * np.float_power(loss + 1e-10, q - 1) * norm + L * loss_pow_q
|
|
252
|
+
return delta, h
|
|
@@ -0,0 +1,105 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Strategy results."""
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
import pprint
|
|
19
|
+
from dataclasses import dataclass, field
|
|
20
|
+
|
|
21
|
+
from flwr.common import ArrayRecord, MetricRecord
|
|
22
|
+
from flwr.common.typing import MetricRecordValues
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@dataclass
|
|
26
|
+
class Result:
|
|
27
|
+
"""Data class carrying records generated during the execution of a strategy.
|
|
28
|
+
|
|
29
|
+
This class encapsulates the results of a federated learning strategy execution,
|
|
30
|
+
including the final global model parameters and metrics collected throughout
|
|
31
|
+
the federated training and evaluation (both federated and centralized) stages.
|
|
32
|
+
|
|
33
|
+
Attributes
|
|
34
|
+
----------
|
|
35
|
+
arrays : ArrayRecord
|
|
36
|
+
The final global model parameters. Contains the
|
|
37
|
+
aggregated model weights/parameters that resulted from the federated
|
|
38
|
+
learning process.
|
|
39
|
+
train_metrics_clientapp : dict[int, MetricRecord]
|
|
40
|
+
Training metrics collected from ClientApps, indexed by round number.
|
|
41
|
+
Contains aggregated metrics (e.g., loss, accuracy) from the training
|
|
42
|
+
phase of each federated learning round.
|
|
43
|
+
evaluate_metrics_clientapp : dict[int, MetricRecord]
|
|
44
|
+
Evaluation metrics collected from ClientApps, indexed by round number.
|
|
45
|
+
Contains aggregated metrics (e.g. validation loss) from the evaluation
|
|
46
|
+
phase where ClientApps evaluate the global model on their local
|
|
47
|
+
validation/test data.
|
|
48
|
+
evaluate_metrics_serverapp : dict[int, MetricRecord]
|
|
49
|
+
Evaluation metrics generated at the ServerApp, indexed by round number.
|
|
50
|
+
Contains metrics from centralized evaluation performed by the ServerApp
|
|
51
|
+
(e.g., when the server evaluates the global model on a held-out dataset).
|
|
52
|
+
"""
|
|
53
|
+
|
|
54
|
+
arrays: ArrayRecord = field(default_factory=ArrayRecord)
|
|
55
|
+
train_metrics_clientapp: dict[int, MetricRecord] = field(default_factory=dict)
|
|
56
|
+
evaluate_metrics_clientapp: dict[int, MetricRecord] = field(default_factory=dict)
|
|
57
|
+
evaluate_metrics_serverapp: dict[int, MetricRecord] = field(default_factory=dict)
|
|
58
|
+
|
|
59
|
+
def __repr__(self) -> str:
|
|
60
|
+
"""Create a representation of the Result instance."""
|
|
61
|
+
rep = ""
|
|
62
|
+
arr_size = sum(len(array.data) for array in self.arrays.values()) / (1024**2)
|
|
63
|
+
rep += "Global Arrays:\n" + f"\tArrayRecord ({arr_size:.3f} MB)\n" + "\n"
|
|
64
|
+
rep += (
|
|
65
|
+
"Aggregated ClientApp-side Train Metrics:\n"
|
|
66
|
+
+ pprint.pformat(stringify_dict(self.train_metrics_clientapp), indent=2)
|
|
67
|
+
+ "\n\n"
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
rep += (
|
|
71
|
+
"Aggregated ClientApp-side Evaluate Metrics:\n"
|
|
72
|
+
+ pprint.pformat(stringify_dict(self.evaluate_metrics_clientapp), indent=2)
|
|
73
|
+
+ "\n\n"
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
rep += (
|
|
77
|
+
"ServerApp-side Evaluate Metrics:\n"
|
|
78
|
+
+ pprint.pformat(stringify_dict(self.evaluate_metrics_serverapp), indent=2)
|
|
79
|
+
+ "\n"
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
return rep
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def format_value(val: MetricRecordValues) -> str:
|
|
86
|
+
"""Format a value as string, applying scientific notation for floats."""
|
|
87
|
+
if isinstance(val, float):
|
|
88
|
+
return f"{val:.4e}"
|
|
89
|
+
if isinstance(val, int):
|
|
90
|
+
return str(val)
|
|
91
|
+
if isinstance(val, list):
|
|
92
|
+
return str([f"{x:.4e}" if isinstance(x, float) else str(x) for x in val])
|
|
93
|
+
return str(val)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def stringify_dict(d: dict[int, MetricRecord]) -> dict[int, dict[str, str]]:
|
|
97
|
+
"""Return a copy results metrics but with values converted to string and formatted
|
|
98
|
+
accordingtly."""
|
|
99
|
+
new_metrics_dict = {}
|
|
100
|
+
for k, inner in d.items():
|
|
101
|
+
new_inner = {}
|
|
102
|
+
for ik, iv in inner.items():
|
|
103
|
+
new_inner[ik] = format_value(iv)
|
|
104
|
+
new_metrics_dict[k] = new_inner
|
|
105
|
+
return new_metrics_dict
|