flwr 1.20.0__py3-none-any.whl → 1.22.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (182) hide show
  1. flwr/__init__.py +4 -1
  2. flwr/app/__init__.py +28 -0
  3. flwr/app/exception.py +31 -0
  4. flwr/cli/app.py +2 -0
  5. flwr/cli/auth_plugin/oidc_cli_plugin.py +4 -4
  6. flwr/cli/cli_user_auth_interceptor.py +1 -1
  7. flwr/cli/config_utils.py +3 -3
  8. flwr/cli/constant.py +25 -8
  9. flwr/cli/log.py +9 -9
  10. flwr/cli/login/login.py +3 -3
  11. flwr/cli/ls.py +5 -5
  12. flwr/cli/new/new.py +15 -2
  13. flwr/cli/new/templates/app/README.flowertune.md.tpl +1 -1
  14. flwr/cli/new/templates/app/code/__init__.pytorch_legacy_api.py.tpl +1 -0
  15. flwr/cli/new/templates/app/code/client.baseline.py.tpl +64 -47
  16. flwr/cli/new/templates/app/code/client.huggingface.py.tpl +68 -30
  17. flwr/cli/new/templates/app/code/client.jax.py.tpl +63 -42
  18. flwr/cli/new/templates/app/code/client.mlx.py.tpl +80 -51
  19. flwr/cli/new/templates/app/code/client.numpy.py.tpl +36 -13
  20. flwr/cli/new/templates/app/code/client.pytorch.py.tpl +71 -46
  21. flwr/cli/new/templates/app/code/client.pytorch_legacy_api.py.tpl +55 -0
  22. flwr/cli/new/templates/app/code/client.sklearn.py.tpl +75 -30
  23. flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +69 -44
  24. flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
  25. flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +56 -90
  26. flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +1 -23
  27. flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +37 -58
  28. flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +39 -44
  29. flwr/cli/new/templates/app/code/model.baseline.py.tpl +0 -14
  30. flwr/cli/new/templates/app/code/server.baseline.py.tpl +27 -29
  31. flwr/cli/new/templates/app/code/server.huggingface.py.tpl +23 -19
  32. flwr/cli/new/templates/app/code/server.jax.py.tpl +27 -14
  33. flwr/cli/new/templates/app/code/server.mlx.py.tpl +29 -19
  34. flwr/cli/new/templates/app/code/server.numpy.py.tpl +30 -17
  35. flwr/cli/new/templates/app/code/server.pytorch.py.tpl +36 -26
  36. flwr/cli/new/templates/app/code/server.pytorch_legacy_api.py.tpl +31 -0
  37. flwr/cli/new/templates/app/code/server.sklearn.py.tpl +29 -21
  38. flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +28 -19
  39. flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
  40. flwr/cli/new/templates/app/code/task.huggingface.py.tpl +16 -20
  41. flwr/cli/new/templates/app/code/task.jax.py.tpl +1 -1
  42. flwr/cli/new/templates/app/code/task.numpy.py.tpl +1 -1
  43. flwr/cli/new/templates/app/code/task.pytorch.py.tpl +14 -27
  44. flwr/cli/new/templates/app/code/task.pytorch_legacy_api.py.tpl +111 -0
  45. flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +1 -2
  46. flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
  47. flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +4 -4
  48. flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +2 -2
  49. flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +4 -4
  50. flwr/cli/new/templates/app/pyproject.jax.toml.tpl +1 -1
  51. flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +2 -2
  52. flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +1 -1
  53. flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +3 -3
  54. flwr/cli/new/templates/app/pyproject.pytorch_legacy_api.toml.tpl +53 -0
  55. flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +1 -1
  56. flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +1 -1
  57. flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
  58. flwr/cli/pull.py +100 -0
  59. flwr/cli/run/run.py +9 -13
  60. flwr/cli/stop.py +7 -4
  61. flwr/cli/utils.py +36 -8
  62. flwr/client/grpc_rere_client/connection.py +1 -12
  63. flwr/client/rest_client/connection.py +3 -0
  64. flwr/clientapp/__init__.py +10 -0
  65. flwr/clientapp/mod/__init__.py +29 -0
  66. flwr/clientapp/mod/centraldp_mods.py +248 -0
  67. flwr/clientapp/mod/localdp_mod.py +169 -0
  68. flwr/clientapp/typing.py +22 -0
  69. flwr/common/args.py +20 -6
  70. flwr/common/auth_plugin/__init__.py +4 -4
  71. flwr/common/auth_plugin/auth_plugin.py +7 -7
  72. flwr/common/constant.py +26 -4
  73. flwr/common/event_log_plugin/event_log_plugin.py +1 -1
  74. flwr/common/exit/__init__.py +4 -0
  75. flwr/common/exit/exit.py +8 -1
  76. flwr/common/exit/exit_code.py +30 -7
  77. flwr/common/exit/exit_handler.py +62 -0
  78. flwr/common/{exit_handlers.py → exit/signal_handler.py} +20 -37
  79. flwr/common/grpc.py +0 -11
  80. flwr/common/inflatable_utils.py +1 -1
  81. flwr/common/logger.py +1 -1
  82. flwr/common/record/typeddict.py +12 -0
  83. flwr/common/retry_invoker.py +30 -11
  84. flwr/common/telemetry.py +4 -0
  85. flwr/compat/server/app.py +2 -2
  86. flwr/proto/appio_pb2.py +25 -17
  87. flwr/proto/appio_pb2.pyi +46 -2
  88. flwr/proto/clientappio_pb2.py +3 -11
  89. flwr/proto/clientappio_pb2.pyi +0 -47
  90. flwr/proto/clientappio_pb2_grpc.py +19 -20
  91. flwr/proto/clientappio_pb2_grpc.pyi +10 -11
  92. flwr/proto/control_pb2.py +66 -0
  93. flwr/proto/{exec_pb2.pyi → control_pb2.pyi} +24 -0
  94. flwr/proto/{exec_pb2_grpc.py → control_pb2_grpc.py} +88 -54
  95. flwr/proto/control_pb2_grpc.pyi +106 -0
  96. flwr/proto/serverappio_pb2.py +2 -2
  97. flwr/proto/serverappio_pb2_grpc.py +68 -0
  98. flwr/proto/serverappio_pb2_grpc.pyi +26 -0
  99. flwr/proto/simulationio_pb2.py +4 -11
  100. flwr/proto/simulationio_pb2.pyi +0 -58
  101. flwr/proto/simulationio_pb2_grpc.py +129 -27
  102. flwr/proto/simulationio_pb2_grpc.pyi +52 -13
  103. flwr/server/app.py +142 -152
  104. flwr/server/grid/grpc_grid.py +3 -0
  105. flwr/server/grid/inmemory_grid.py +1 -0
  106. flwr/server/serverapp/app.py +157 -146
  107. flwr/server/superlink/fleet/vce/backend/raybackend.py +3 -1
  108. flwr/server/superlink/fleet/vce/vce_api.py +6 -6
  109. flwr/server/superlink/linkstate/in_memory_linkstate.py +34 -0
  110. flwr/server/superlink/linkstate/linkstate.py +2 -1
  111. flwr/server/superlink/linkstate/sqlite_linkstate.py +45 -0
  112. flwr/server/superlink/serverappio/serverappio_grpc.py +1 -1
  113. flwr/server/superlink/serverappio/serverappio_servicer.py +61 -6
  114. flwr/server/superlink/simulation/simulationio_servicer.py +97 -21
  115. flwr/serverapp/__init__.py +12 -0
  116. flwr/serverapp/exception.py +38 -0
  117. flwr/serverapp/strategy/__init__.py +64 -0
  118. flwr/serverapp/strategy/bulyan.py +238 -0
  119. flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
  120. flwr/serverapp/strategy/dp_fixed_clipping.py +374 -0
  121. flwr/serverapp/strategy/fedadagrad.py +159 -0
  122. flwr/serverapp/strategy/fedadam.py +178 -0
  123. flwr/serverapp/strategy/fedavg.py +320 -0
  124. flwr/serverapp/strategy/fedavgm.py +198 -0
  125. flwr/serverapp/strategy/fedmedian.py +105 -0
  126. flwr/serverapp/strategy/fedopt.py +218 -0
  127. flwr/serverapp/strategy/fedprox.py +174 -0
  128. flwr/serverapp/strategy/fedtrimmedavg.py +176 -0
  129. flwr/serverapp/strategy/fedxgb_bagging.py +117 -0
  130. flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
  131. flwr/serverapp/strategy/fedyogi.py +170 -0
  132. flwr/serverapp/strategy/krum.py +112 -0
  133. flwr/serverapp/strategy/multikrum.py +247 -0
  134. flwr/serverapp/strategy/qfedavg.py +252 -0
  135. flwr/serverapp/strategy/result.py +105 -0
  136. flwr/serverapp/strategy/strategy.py +285 -0
  137. flwr/serverapp/strategy/strategy_utils.py +299 -0
  138. flwr/simulation/app.py +161 -164
  139. flwr/simulation/run_simulation.py +25 -30
  140. flwr/supercore/app_utils.py +58 -0
  141. flwr/{supernode/scheduler → supercore/cli}/__init__.py +3 -3
  142. flwr/supercore/cli/flower_superexec.py +166 -0
  143. flwr/supercore/constant.py +19 -0
  144. flwr/supercore/{scheduler → corestate}/__init__.py +3 -3
  145. flwr/supercore/corestate/corestate.py +81 -0
  146. flwr/supercore/grpc_health/__init__.py +3 -0
  147. flwr/supercore/grpc_health/health_server.py +53 -0
  148. flwr/supercore/grpc_health/simple_health_servicer.py +2 -2
  149. flwr/{superexec → supercore/superexec}/__init__.py +1 -1
  150. flwr/supercore/superexec/plugin/__init__.py +28 -0
  151. flwr/{supernode/scheduler/simple_clientapp_scheduler_plugin.py → supercore/superexec/plugin/base_exec_plugin.py} +10 -6
  152. flwr/supercore/superexec/plugin/clientapp_exec_plugin.py +28 -0
  153. flwr/supercore/{scheduler/plugin.py → superexec/plugin/exec_plugin.py} +15 -5
  154. flwr/supercore/superexec/plugin/serverapp_exec_plugin.py +28 -0
  155. flwr/supercore/superexec/plugin/simulation_exec_plugin.py +28 -0
  156. flwr/supercore/superexec/run_superexec.py +199 -0
  157. flwr/superlink/artifact_provider/__init__.py +22 -0
  158. flwr/superlink/artifact_provider/artifact_provider.py +37 -0
  159. flwr/superlink/servicer/__init__.py +15 -0
  160. flwr/superlink/servicer/control/__init__.py +22 -0
  161. flwr/{superexec/exec_event_log_interceptor.py → superlink/servicer/control/control_event_log_interceptor.py} +7 -7
  162. flwr/{superexec/exec_grpc.py → superlink/servicer/control/control_grpc.py} +27 -29
  163. flwr/{superexec/exec_license_interceptor.py → superlink/servicer/control/control_license_interceptor.py} +6 -6
  164. flwr/{superexec/exec_servicer.py → superlink/servicer/control/control_servicer.py} +127 -31
  165. flwr/{superexec/exec_user_auth_interceptor.py → superlink/servicer/control/control_user_auth_interceptor.py} +10 -10
  166. flwr/supernode/cli/flower_supernode.py +3 -0
  167. flwr/supernode/cli/flwr_clientapp.py +18 -21
  168. flwr/supernode/nodestate/in_memory_nodestate.py +2 -2
  169. flwr/supernode/nodestate/nodestate.py +3 -59
  170. flwr/supernode/runtime/run_clientapp.py +39 -102
  171. flwr/supernode/servicer/clientappio/clientappio_servicer.py +10 -17
  172. flwr/supernode/start_client_internal.py +35 -76
  173. {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/METADATA +9 -18
  174. {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/RECORD +176 -128
  175. {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/entry_points.txt +1 -0
  176. flwr/proto/exec_pb2.py +0 -62
  177. flwr/proto/exec_pb2_grpc.pyi +0 -93
  178. flwr/superexec/app.py +0 -45
  179. flwr/superexec/deployment.py +0 -191
  180. flwr/superexec/executor.py +0 -100
  181. flwr/superexec/simulation.py +0 -129
  182. {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/WHEEL +0 -0
@@ -0,0 +1,105 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Federated Median (FedMedian) [Yin et al., 2018] strategy.
16
+
17
+ Paper: arxiv.org/pdf/1803.01498v1.pdf
18
+ """
19
+
20
+
21
+ from collections.abc import Iterable
22
+ from typing import Optional, cast
23
+
24
+ import numpy as np
25
+
26
+ from flwr.common import Array, ArrayRecord, Message, MetricRecord
27
+
28
+ from .fedavg import FedAvg
29
+
30
+
31
+ class FedMedian(FedAvg):
32
+ """Federated Median (FedMedian) strategy.
33
+
34
+ Implementation based on https://arxiv.org/pdf/1803.01498v1
35
+
36
+ Parameters
37
+ ----------
38
+ fraction_train : float (default: 1.0)
39
+ Fraction of nodes used during training. In case `min_train_nodes`
40
+ is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
41
+ will still be sampled.
42
+ fraction_evaluate : float (default: 1.0)
43
+ Fraction of nodes used during validation. In case `min_evaluate_nodes`
44
+ is larger than `fraction_evaluate * total_connected_nodes`,
45
+ `min_evaluate_nodes` will still be sampled.
46
+ min_train_nodes : int (default: 2)
47
+ Minimum number of nodes used during training.
48
+ min_evaluate_nodes : int (default: 2)
49
+ Minimum number of nodes used during validation.
50
+ min_available_nodes : int (default: 2)
51
+ Minimum number of total nodes in the system.
52
+ weighted_by_key : str (default: "num-examples")
53
+ The key within each MetricRecord whose value is used as the weight when
54
+ computing weighted averages for MetricRecords.
55
+ arrayrecord_key : str (default: "arrays")
56
+ Key used to store the ArrayRecord when constructing Messages.
57
+ configrecord_key : str (default: "config")
58
+ Key used to store the ConfigRecord when constructing Messages.
59
+ train_metrics_aggr_fn : Optional[callable] (default: None)
60
+ Function with signature (list[RecordDict], str) -> MetricRecord,
61
+ used to aggregate MetricRecords from training round replies.
62
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
63
+ average using the provided weight factor key.
64
+ evaluate_metrics_aggr_fn : Optional[callable] (default: None)
65
+ Function with signature (list[RecordDict], str) -> MetricRecord,
66
+ used to aggregate MetricRecords from training round replies.
67
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
68
+ average using the provided weight factor key.
69
+ """
70
+
71
+ def aggregate_train(
72
+ self,
73
+ server_round: int,
74
+ replies: Iterable[Message],
75
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
76
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
77
+ # Call FedAvg aggregate_train to perform validation and aggregation
78
+ valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
79
+
80
+ if not valid_replies:
81
+ return None, None
82
+
83
+ # Aggregate ArrayRecords using median
84
+ # Get the key for the only ArrayRecord from the first Message
85
+ record_key = list(valid_replies[0].content.array_records.keys())[0]
86
+ # Preserve keys for arrays in ArrayRecord
87
+ array_keys = list(valid_replies[0].content[record_key].keys())
88
+
89
+ # Compute median for each layer and construct ArrayRecord
90
+ arrays = ArrayRecord()
91
+ for array_key in array_keys:
92
+ # Get the corresponding layer from each client
93
+ layers = [
94
+ cast(ArrayRecord, msg.content[record_key]).pop(array_key).numpy()
95
+ for msg in valid_replies
96
+ ]
97
+ # Compute median and save as Array in ArrayRecord
98
+ arrays[array_key] = Array(np.median(np.stack(layers), axis=0))
99
+
100
+ # Aggregate MetricRecords
101
+ metrics = self.train_metrics_aggr_fn(
102
+ [msg.content for msg in valid_replies],
103
+ self.weighted_by_key,
104
+ )
105
+ return arrays, metrics
@@ -0,0 +1,218 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Adaptive Federated Optimization (FedOpt) [Reddi et al., 2020] abstract strategy.
16
+
17
+ Paper: arxiv.org/abs/2003.00295
18
+ """
19
+
20
+ from collections.abc import Iterable
21
+ from logging import INFO
22
+ from typing import Callable, Optional
23
+
24
+ import numpy as np
25
+
26
+ from flwr.common import (
27
+ ArrayRecord,
28
+ ConfigRecord,
29
+ Message,
30
+ MetricRecord,
31
+ NDArray,
32
+ RecordDict,
33
+ log,
34
+ )
35
+ from flwr.server import Grid
36
+
37
+ from ..exception import AggregationError
38
+ from .fedavg import FedAvg
39
+
40
+
41
+ # pylint: disable=line-too-long
42
+ class FedOpt(FedAvg):
43
+ """Federated Optim strategy.
44
+
45
+ Implementation based on https://arxiv.org/abs/2003.00295v5
46
+
47
+ Parameters
48
+ ----------
49
+ fraction_train : float (default: 1.0)
50
+ Fraction of nodes used during training. In case `min_train_nodes`
51
+ is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
52
+ will still be sampled.
53
+ fraction_evaluate : float (default: 1.0)
54
+ Fraction of nodes used during validation. In case `min_evaluate_nodes`
55
+ is larger than `fraction_evaluate * total_connected_nodes`,
56
+ `min_evaluate_nodes` will still be sampled.
57
+ min_train_nodes : int (default: 2)
58
+ Minimum number of nodes used during training.
59
+ min_evaluate_nodes : int (default: 2)
60
+ Minimum number of nodes used during validation.
61
+ min_available_nodes : int (default: 2)
62
+ Minimum number of total nodes in the system.
63
+ weighted_by_key : str (default: "num-examples")
64
+ The key within each MetricRecord whose value is used as the weight when
65
+ computing weighted averages for both ArrayRecords and MetricRecords.
66
+ arrayrecord_key : str (default: "arrays")
67
+ Key used to store the ArrayRecord when constructing Messages.
68
+ configrecord_key : str (default: "config")
69
+ Key used to store the ConfigRecord when constructing Messages.
70
+ train_metrics_aggr_fn : Optional[callable] (default: None)
71
+ Function with signature (list[RecordDict], str) -> MetricRecord,
72
+ used to aggregate MetricRecords from training round replies.
73
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
74
+ average using the provided weight factor key.
75
+ evaluate_metrics_aggr_fn : Optional[callable] (default: None)
76
+ Function with signature (list[RecordDict], str) -> MetricRecord,
77
+ used to aggregate MetricRecords from training round replies.
78
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
79
+ average using the provided weight factor key.
80
+ eta : float, optional
81
+ Server-side learning rate. Defaults to 1e-1.
82
+ eta_l : float, optional
83
+ Client-side learning rate. Defaults to 1e-1.
84
+ beta_1 : float, optional
85
+ Momentum parameter. Defaults to 0.0.
86
+ beta_2 : float, optional
87
+ Second moment parameter. Defaults to 0.0.
88
+ tau : float, optional
89
+ Controls the algorithm's degree of adaptability. Defaults to 1e-3.
90
+ """
91
+
92
+ # pylint: disable=too-many-arguments,too-many-instance-attributes,too-many-locals, line-too-long
93
+ def __init__(
94
+ self,
95
+ *,
96
+ fraction_train: float = 1.0,
97
+ fraction_evaluate: float = 1.0,
98
+ min_train_nodes: int = 2,
99
+ min_evaluate_nodes: int = 2,
100
+ min_available_nodes: int = 2,
101
+ weighted_by_key: str = "num-examples",
102
+ arrayrecord_key: str = "arrays",
103
+ configrecord_key: str = "config",
104
+ train_metrics_aggr_fn: Optional[
105
+ Callable[[list[RecordDict], str], MetricRecord]
106
+ ] = None,
107
+ evaluate_metrics_aggr_fn: Optional[
108
+ Callable[[list[RecordDict], str], MetricRecord]
109
+ ] = None,
110
+ eta: float = 1e-1,
111
+ eta_l: float = 1e-1,
112
+ beta_1: float = 0.0,
113
+ beta_2: float = 0.0,
114
+ tau: float = 1e-3,
115
+ ) -> None:
116
+ super().__init__(
117
+ fraction_train=fraction_train,
118
+ fraction_evaluate=fraction_evaluate,
119
+ min_train_nodes=min_train_nodes,
120
+ min_evaluate_nodes=min_evaluate_nodes,
121
+ min_available_nodes=min_available_nodes,
122
+ weighted_by_key=weighted_by_key,
123
+ arrayrecord_key=arrayrecord_key,
124
+ configrecord_key=configrecord_key,
125
+ train_metrics_aggr_fn=train_metrics_aggr_fn,
126
+ evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
127
+ )
128
+ self.current_arrays: Optional[dict[str, NDArray]] = None
129
+ self.eta = eta
130
+ self.eta_l = eta_l
131
+ self.tau = tau
132
+ self.beta_1 = beta_1
133
+ self.beta_2 = beta_2
134
+ self.m_t: Optional[dict[str, NDArray]] = None
135
+ self.v_t: Optional[dict[str, NDArray]] = None
136
+
137
+ def summary(self) -> None:
138
+ """Log summary configuration of the strategy."""
139
+ log(INFO, "\t├──> FedOpt settings:")
140
+ log(
141
+ INFO,
142
+ "\t│\t├── eta (%s) | eta_l (%s)",
143
+ f"{self.eta:.6g}",
144
+ f"{self.eta_l:.6g}",
145
+ )
146
+ log(
147
+ INFO,
148
+ "\t│\t├── beta_1 (%s) | beta_2 (%s)",
149
+ f"{self.beta_1:.6g}",
150
+ f"{self.beta_2:.6g}",
151
+ )
152
+ log(
153
+ INFO,
154
+ "\t│\t└── tau (%s)",
155
+ f"{self.tau:.6g}",
156
+ )
157
+ super().summary()
158
+
159
+ def configure_train(
160
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
161
+ ) -> Iterable[Message]:
162
+ """Configure the next round of federated training."""
163
+ # Keep track of array record being communicated
164
+ self.current_arrays = {k: array.numpy() for k, array in arrays.items()}
165
+ return super().configure_train(server_round, arrays, config, grid)
166
+
167
+ def _compute_deltat_and_mt(
168
+ self, aggregated_arrayrecord: ArrayRecord
169
+ ) -> tuple[dict[str, NDArray], dict[str, NDArray], dict[str, NDArray]]:
170
+ """Compute delta_t and m_t.
171
+
172
+ This is a shared stage during aggregation for FedAdagrad, FedAdam and FedYogi.
173
+ """
174
+ if self.current_arrays is None:
175
+ reason = (
176
+ "Current arrays not set. Ensure that `configure_train` has been "
177
+ "called before aggregation."
178
+ )
179
+ raise AggregationError(reason=reason)
180
+
181
+ aggregated_ndarrays = {
182
+ k: array.numpy() for k, array in aggregated_arrayrecord.items()
183
+ }
184
+
185
+ # Check keys in aggregated arrays match those in current arrays
186
+ if set(aggregated_ndarrays.keys()) != set(self.current_arrays.keys()):
187
+ reason = (
188
+ "Keys of the aggregated arrays do not match those of the arrays "
189
+ "stored at the strategy. `delta_t = aggregated_arrays - "
190
+ "current_arrays` cannot be computed."
191
+ )
192
+ raise AggregationError(reason=reason)
193
+
194
+ # Check that the shape of values match
195
+ # Only shapes that match can compute delta_t (we don't want
196
+ # broadcasting to happen)
197
+ for k, x in aggregated_ndarrays.items():
198
+ if x.shape != self.current_arrays[k].shape:
199
+ reason = (
200
+ f"Shape of aggregated array '{k}' does not match "
201
+ f"shape of the array under the same key stored in the strategy. "
202
+ f"Cannot compute `delta_t`."
203
+ )
204
+ raise AggregationError(reason=reason)
205
+
206
+ delta_t = {
207
+ k: x - self.current_arrays[k] for k, x in aggregated_ndarrays.items()
208
+ }
209
+
210
+ # m_t
211
+ if not self.m_t:
212
+ self.m_t = {k: np.zeros_like(v) for k, v in aggregated_ndarrays.items()}
213
+ self.m_t = {
214
+ k: self.beta_1 * v + (1 - self.beta_1) * delta_t[k]
215
+ for k, v in self.m_t.items()
216
+ }
217
+
218
+ return delta_t, self.m_t, aggregated_ndarrays
@@ -0,0 +1,174 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Federated Optimization (FedProx) [Li et al., 2018] strategy.
16
+
17
+ Paper: arxiv.org/abs/1812.06127
18
+ """
19
+
20
+
21
+ from collections.abc import Iterable
22
+ from logging import INFO, WARN
23
+ from typing import Callable, Optional
24
+
25
+ from flwr.common import (
26
+ ArrayRecord,
27
+ ConfigRecord,
28
+ Message,
29
+ MetricRecord,
30
+ RecordDict,
31
+ log,
32
+ )
33
+ from flwr.server import Grid
34
+
35
+ from .fedavg import FedAvg
36
+
37
+
38
+ class FedProx(FedAvg):
39
+ r"""Federated Optimization strategy.
40
+
41
+ Implementation based on https://arxiv.org/abs/1812.06127
42
+
43
+ FedProx extends FedAvg by introducing a proximal term into the client-side
44
+ optimization objective. The strategy itself behaves identically to FedAvg
45
+ on the server side, but each client **MUST** add a proximal regularization
46
+ term to its local loss function during training:
47
+
48
+ .. math::
49
+ \frac{\mu}{2} || w - w^t ||^2
50
+
51
+ Where $w^t$ denotes the global parameters and $w$ denotes the local weights
52
+ being optimized.
53
+
54
+ This strategy sends the proximal term inside the ``ConfigRecord`` as part of the
55
+ ``configure_train`` method under key ``"proximal-mu"``. The client can then use this
56
+ value to add the proximal term to the loss function.
57
+
58
+ In PyTorch, for example, the loss would go from:
59
+
60
+ .. code:: python
61
+ loss = criterion(net(inputs), labels)
62
+
63
+ To:
64
+
65
+ .. code:: python
66
+ # Get proximal term weight from message
67
+ mu = msg.content["config"]["proximal-mu"]
68
+
69
+ # Compute proximal term
70
+ proximal_term = 0.0
71
+ for local_weights, global_weights in zip(net.parameters(), global_params):
72
+ proximal_term += (local_weights - global_weights).norm(2)
73
+
74
+ # Update loss
75
+ loss = criterion(net(inputs), labels) + (mu / 2) * proximal_term
76
+
77
+ With ``global_params`` being a copy of the model parameters, created **after**
78
+ applying the received global weights but **before** local training begins.
79
+
80
+ .. code:: python
81
+ global_params = copy.deepcopy(net).parameters()
82
+
83
+ Parameters
84
+ ----------
85
+ fraction_train : float (default: 1.0)
86
+ Fraction of nodes used during training. In case `min_train_nodes`
87
+ is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
88
+ will still be sampled.
89
+ fraction_evaluate : float (default: 1.0)
90
+ Fraction of nodes used during validation. In case `min_evaluate_nodes`
91
+ is larger than `fraction_evaluate * total_connected_nodes`,
92
+ `min_evaluate_nodes` will still be sampled.
93
+ min_train_nodes : int (default: 2)
94
+ Minimum number of nodes used during training.
95
+ min_evaluate_nodes : int (default: 2)
96
+ Minimum number of nodes used during validation.
97
+ min_available_nodes : int (default: 2)
98
+ Minimum number of total nodes in the system.
99
+ weighted_by_key : str (default: "num-examples")
100
+ The key within each MetricRecord whose value is used as the weight when
101
+ computing weighted averages for both ArrayRecords and MetricRecords.
102
+ arrayrecord_key : str (default: "arrays")
103
+ Key used to store the ArrayRecord when constructing Messages.
104
+ configrecord_key : str (default: "config")
105
+ Key used to store the ConfigRecord when constructing Messages.
106
+ train_metrics_aggr_fn : Optional[callable] (default: None)
107
+ Function with signature (list[RecordDict], str) -> MetricRecord,
108
+ used to aggregate MetricRecords from training round replies.
109
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
110
+ average using the provided weight factor key.
111
+ evaluate_metrics_aggr_fn : Optional[callable] (default: None)
112
+ Function with signature (list[RecordDict], str) -> MetricRecord,
113
+ used to aggregate MetricRecords from training round replies.
114
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
115
+ average using the provided weight factor key.
116
+ proximal_mu : float (default: 0.0)
117
+ The weight of the proximal term used in the optimization. 0.0 makes
118
+ this strategy equivalent to FedAvg, and the higher the coefficient, the more
119
+ regularization will be used (that is, the client parameters will need to be
120
+ closer to the server parameters during training).
121
+ """
122
+
123
+ def __init__( # pylint: disable=R0913, R0917
124
+ self,
125
+ fraction_train: float = 1.0,
126
+ fraction_evaluate: float = 1.0,
127
+ min_train_nodes: int = 2,
128
+ min_evaluate_nodes: int = 2,
129
+ min_available_nodes: int = 2,
130
+ weighted_by_key: str = "num-examples",
131
+ arrayrecord_key: str = "arrays",
132
+ configrecord_key: str = "config",
133
+ train_metrics_aggr_fn: Optional[
134
+ Callable[[list[RecordDict], str], MetricRecord]
135
+ ] = None,
136
+ evaluate_metrics_aggr_fn: Optional[
137
+ Callable[[list[RecordDict], str], MetricRecord]
138
+ ] = None,
139
+ proximal_mu: float = 0.0,
140
+ ) -> None:
141
+ super().__init__(
142
+ fraction_train=fraction_train,
143
+ fraction_evaluate=fraction_evaluate,
144
+ min_train_nodes=min_train_nodes,
145
+ min_evaluate_nodes=min_evaluate_nodes,
146
+ min_available_nodes=min_available_nodes,
147
+ weighted_by_key=weighted_by_key,
148
+ arrayrecord_key=arrayrecord_key,
149
+ configrecord_key=configrecord_key,
150
+ train_metrics_aggr_fn=train_metrics_aggr_fn,
151
+ evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
152
+ )
153
+ self.proximal_mu = proximal_mu
154
+
155
+ if self.proximal_mu == 0.0:
156
+ log(
157
+ WARN,
158
+ "FedProx initialized with `proximal_mu=0.0`. "
159
+ "This makes the strategy equivalent to FedAvg.",
160
+ )
161
+
162
+ def summary(self) -> None:
163
+ """Log summary configuration of the strategy."""
164
+ log(INFO, "\t├──> FedProx settings:")
165
+ log(INFO, "\t│\t└── Proximal mu: %s", self.proximal_mu)
166
+ super().summary()
167
+
168
+ def configure_train(
169
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
170
+ ) -> Iterable[Message]:
171
+ """Configure the next round of federated training."""
172
+ # Inject proximal term weight into config
173
+ config["proximal-mu"] = self.proximal_mu
174
+ return super().configure_train(server_round, arrays, config, grid)
@@ -0,0 +1,176 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Federated Averaging with Trimmed Mean [Dong Yin, et al., 2021].
16
+
17
+ Paper: arxiv.org/abs/1803.01498
18
+ """
19
+
20
+
21
+ from collections.abc import Iterable
22
+ from logging import INFO
23
+ from typing import Callable, Optional, cast
24
+
25
+ import numpy as np
26
+
27
+ from flwr.common import Array, ArrayRecord, Message, MetricRecord, NDArray, RecordDict
28
+ from flwr.common.logger import log
29
+
30
+ from ..exception import AggregationError
31
+ from .fedavg import FedAvg
32
+
33
+
34
+ class FedTrimmedAvg(FedAvg):
35
+ """Federated Averaging with Trimmed Mean [Dong Yin, et al., 2021].
36
+
37
+ Implemented based on: https://arxiv.org/abs/1803.01498
38
+
39
+ Parameters
40
+ ----------
41
+ fraction_train : float (default: 1.0)
42
+ Fraction of nodes used during training. In case `min_train_nodes`
43
+ is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
44
+ will still be sampled.
45
+ fraction_evaluate : float (default: 1.0)
46
+ Fraction of nodes used during validation. In case `min_evaluate_nodes`
47
+ is larger than `fraction_evaluate * total_connected_nodes`,
48
+ `min_evaluate_nodes` will still be sampled.
49
+ min_train_nodes : int (default: 2)
50
+ Minimum number of nodes used during training.
51
+ min_evaluate_nodes : int (default: 2)
52
+ Minimum number of nodes used during validation.
53
+ min_available_nodes : int (default: 2)
54
+ Minimum number of total nodes in the system.
55
+ weighted_by_key : str (default: "num-examples")
56
+ The key within each MetricRecord whose value is used as the weight when
57
+ computing weighted averages for both ArrayRecords and MetricRecords.
58
+ arrayrecord_key : str (default: "arrays")
59
+ Key used to store the ArrayRecord when constructing Messages.
60
+ configrecord_key : str (default: "config")
61
+ Key used to store the ConfigRecord when constructing Messages.
62
+ train_metrics_aggr_fn : Optional[callable] (default: None)
63
+ Function with signature (list[RecordDict], str) -> MetricRecord,
64
+ used to aggregate MetricRecords from training round replies.
65
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
66
+ average using the provided weight factor key.
67
+ evaluate_metrics_aggr_fn : Optional[callable] (default: None)
68
+ Function with signature (list[RecordDict], str) -> MetricRecord,
69
+ used to aggregate MetricRecords from training round replies.
70
+ If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
71
+ average using the provided weight factor key.
72
+ beta : float (default: 0.2)
73
+ Fraction to cut off of both tails of the distribution.
74
+ """
75
+
76
+ def __init__( # pylint: disable=R0913, R0917
77
+ self,
78
+ fraction_train: float = 1.0,
79
+ fraction_evaluate: float = 1.0,
80
+ min_train_nodes: int = 2,
81
+ min_evaluate_nodes: int = 2,
82
+ min_available_nodes: int = 2,
83
+ weighted_by_key: str = "num-examples",
84
+ arrayrecord_key: str = "arrays",
85
+ configrecord_key: str = "config",
86
+ train_metrics_aggr_fn: Optional[
87
+ Callable[[list[RecordDict], str], MetricRecord]
88
+ ] = None,
89
+ evaluate_metrics_aggr_fn: Optional[
90
+ Callable[[list[RecordDict], str], MetricRecord]
91
+ ] = None,
92
+ beta: float = 0.2,
93
+ ) -> None:
94
+ super().__init__(
95
+ fraction_train=fraction_train,
96
+ fraction_evaluate=fraction_evaluate,
97
+ min_train_nodes=min_train_nodes,
98
+ min_evaluate_nodes=min_evaluate_nodes,
99
+ min_available_nodes=min_available_nodes,
100
+ weighted_by_key=weighted_by_key,
101
+ arrayrecord_key=arrayrecord_key,
102
+ configrecord_key=configrecord_key,
103
+ train_metrics_aggr_fn=train_metrics_aggr_fn,
104
+ evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
105
+ )
106
+ self.beta = beta
107
+
108
+ def summary(self) -> None:
109
+ """Log summary configuration of the strategy."""
110
+ log(INFO, "\t├──> FedTrimmedAvg settings:")
111
+ log(INFO, "\t│\t└── beta: %s", self.beta)
112
+ super().summary()
113
+
114
+ def aggregate_train(
115
+ self,
116
+ server_round: int,
117
+ replies: Iterable[Message],
118
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
119
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
120
+ # Call FedAvg aggregate_train to perform validation and aggregation
121
+ valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
122
+
123
+ if not valid_replies:
124
+ return None, None
125
+
126
+ # Aggregate ArrayRecords using trimmed mean
127
+ # Get the key for the only ArrayRecord from the first Message
128
+ record_key = list(valid_replies[0].content.array_records.keys())[0]
129
+ # Preserve keys for arrays in ArrayRecord
130
+ array_keys = list(valid_replies[0].content[record_key].keys())
131
+
132
+ # Compute trimmed mean for each layer and construct ArrayRecord
133
+ arrays = ArrayRecord()
134
+ for array_key in array_keys:
135
+ # Get the corresponding layer from each client
136
+ layers = [
137
+ cast(ArrayRecord, msg.content[record_key]).pop(array_key).numpy()
138
+ for msg in valid_replies
139
+ ]
140
+ # Compute trimmed mean and save as Array in ArrayRecord
141
+ try:
142
+ arrays[array_key] = Array(trim_mean(np.stack(layers), self.beta))
143
+ except ValueError as e:
144
+ raise AggregationError(
145
+ f"Trimmed mean could not be computed. "
146
+ f"Likely cause: beta={self.beta} is too large."
147
+ ) from e
148
+
149
+ # Aggregate MetricRecords
150
+ metrics = self.train_metrics_aggr_fn(
151
+ [msg.content for msg in valid_replies],
152
+ self.weighted_by_key,
153
+ )
154
+ return arrays, metrics
155
+
156
+
157
+ def trim_mean(array: NDArray, cut_fraction: float) -> NDArray:
158
+ """Compute trimmed mean along axis=0.
159
+
160
+ It is based on the scipy implementation:
161
+
162
+ https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.trim_mean.html
163
+ """
164
+ axis = 0
165
+ nobs = array.shape[0]
166
+ lowercut = int(cut_fraction * nobs)
167
+ uppercut = nobs - lowercut
168
+ if lowercut > uppercut:
169
+ raise ValueError("Fraction too big.")
170
+
171
+ atmp = np.partition(array, (lowercut, uppercut - 1), axis)
172
+
173
+ slice_list = [slice(None)] * atmp.ndim
174
+ slice_list[axis] = slice(lowercut, uppercut)
175
+ result: NDArray = np.mean(atmp[tuple(slice_list)], axis=axis)
176
+ return result