flwr 1.20.0__py3-none-any.whl → 1.22.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/__init__.py +4 -1
- flwr/app/__init__.py +28 -0
- flwr/app/exception.py +31 -0
- flwr/cli/app.py +2 -0
- flwr/cli/auth_plugin/oidc_cli_plugin.py +4 -4
- flwr/cli/cli_user_auth_interceptor.py +1 -1
- flwr/cli/config_utils.py +3 -3
- flwr/cli/constant.py +25 -8
- flwr/cli/log.py +9 -9
- flwr/cli/login/login.py +3 -3
- flwr/cli/ls.py +5 -5
- flwr/cli/new/new.py +15 -2
- flwr/cli/new/templates/app/README.flowertune.md.tpl +1 -1
- flwr/cli/new/templates/app/code/__init__.pytorch_legacy_api.py.tpl +1 -0
- flwr/cli/new/templates/app/code/client.baseline.py.tpl +64 -47
- flwr/cli/new/templates/app/code/client.huggingface.py.tpl +68 -30
- flwr/cli/new/templates/app/code/client.jax.py.tpl +63 -42
- flwr/cli/new/templates/app/code/client.mlx.py.tpl +80 -51
- flwr/cli/new/templates/app/code/client.numpy.py.tpl +36 -13
- flwr/cli/new/templates/app/code/client.pytorch.py.tpl +71 -46
- flwr/cli/new/templates/app/code/client.pytorch_legacy_api.py.tpl +55 -0
- flwr/cli/new/templates/app/code/client.sklearn.py.tpl +75 -30
- flwr/cli/new/templates/app/code/client.tensorflow.py.tpl +69 -44
- flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
- flwr/cli/new/templates/app/code/flwr_tune/client_app.py.tpl +56 -90
- flwr/cli/new/templates/app/code/flwr_tune/models.py.tpl +1 -23
- flwr/cli/new/templates/app/code/flwr_tune/server_app.py.tpl +37 -58
- flwr/cli/new/templates/app/code/flwr_tune/strategy.py.tpl +39 -44
- flwr/cli/new/templates/app/code/model.baseline.py.tpl +0 -14
- flwr/cli/new/templates/app/code/server.baseline.py.tpl +27 -29
- flwr/cli/new/templates/app/code/server.huggingface.py.tpl +23 -19
- flwr/cli/new/templates/app/code/server.jax.py.tpl +27 -14
- flwr/cli/new/templates/app/code/server.mlx.py.tpl +29 -19
- flwr/cli/new/templates/app/code/server.numpy.py.tpl +30 -17
- flwr/cli/new/templates/app/code/server.pytorch.py.tpl +36 -26
- flwr/cli/new/templates/app/code/server.pytorch_legacy_api.py.tpl +31 -0
- flwr/cli/new/templates/app/code/server.sklearn.py.tpl +29 -21
- flwr/cli/new/templates/app/code/server.tensorflow.py.tpl +28 -19
- flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
- flwr/cli/new/templates/app/code/task.huggingface.py.tpl +16 -20
- flwr/cli/new/templates/app/code/task.jax.py.tpl +1 -1
- flwr/cli/new/templates/app/code/task.numpy.py.tpl +1 -1
- flwr/cli/new/templates/app/code/task.pytorch.py.tpl +14 -27
- flwr/cli/new/templates/app/code/task.pytorch_legacy_api.py.tpl +111 -0
- flwr/cli/new/templates/app/code/task.tensorflow.py.tpl +1 -2
- flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
- flwr/cli/new/templates/app/pyproject.baseline.toml.tpl +4 -4
- flwr/cli/new/templates/app/pyproject.flowertune.toml.tpl +2 -2
- flwr/cli/new/templates/app/pyproject.huggingface.toml.tpl +4 -4
- flwr/cli/new/templates/app/pyproject.jax.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.mlx.toml.tpl +2 -2
- flwr/cli/new/templates/app/pyproject.numpy.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.pytorch.toml.tpl +3 -3
- flwr/cli/new/templates/app/pyproject.pytorch_legacy_api.toml.tpl +53 -0
- flwr/cli/new/templates/app/pyproject.sklearn.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.tensorflow.toml.tpl +1 -1
- flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
- flwr/cli/pull.py +100 -0
- flwr/cli/run/run.py +9 -13
- flwr/cli/stop.py +7 -4
- flwr/cli/utils.py +36 -8
- flwr/client/grpc_rere_client/connection.py +1 -12
- flwr/client/rest_client/connection.py +3 -0
- flwr/clientapp/__init__.py +10 -0
- flwr/clientapp/mod/__init__.py +29 -0
- flwr/clientapp/mod/centraldp_mods.py +248 -0
- flwr/clientapp/mod/localdp_mod.py +169 -0
- flwr/clientapp/typing.py +22 -0
- flwr/common/args.py +20 -6
- flwr/common/auth_plugin/__init__.py +4 -4
- flwr/common/auth_plugin/auth_plugin.py +7 -7
- flwr/common/constant.py +26 -4
- flwr/common/event_log_plugin/event_log_plugin.py +1 -1
- flwr/common/exit/__init__.py +4 -0
- flwr/common/exit/exit.py +8 -1
- flwr/common/exit/exit_code.py +30 -7
- flwr/common/exit/exit_handler.py +62 -0
- flwr/common/{exit_handlers.py → exit/signal_handler.py} +20 -37
- flwr/common/grpc.py +0 -11
- flwr/common/inflatable_utils.py +1 -1
- flwr/common/logger.py +1 -1
- flwr/common/record/typeddict.py +12 -0
- flwr/common/retry_invoker.py +30 -11
- flwr/common/telemetry.py +4 -0
- flwr/compat/server/app.py +2 -2
- flwr/proto/appio_pb2.py +25 -17
- flwr/proto/appio_pb2.pyi +46 -2
- flwr/proto/clientappio_pb2.py +3 -11
- flwr/proto/clientappio_pb2.pyi +0 -47
- flwr/proto/clientappio_pb2_grpc.py +19 -20
- flwr/proto/clientappio_pb2_grpc.pyi +10 -11
- flwr/proto/control_pb2.py +66 -0
- flwr/proto/{exec_pb2.pyi → control_pb2.pyi} +24 -0
- flwr/proto/{exec_pb2_grpc.py → control_pb2_grpc.py} +88 -54
- flwr/proto/control_pb2_grpc.pyi +106 -0
- flwr/proto/serverappio_pb2.py +2 -2
- flwr/proto/serverappio_pb2_grpc.py +68 -0
- flwr/proto/serverappio_pb2_grpc.pyi +26 -0
- flwr/proto/simulationio_pb2.py +4 -11
- flwr/proto/simulationio_pb2.pyi +0 -58
- flwr/proto/simulationio_pb2_grpc.py +129 -27
- flwr/proto/simulationio_pb2_grpc.pyi +52 -13
- flwr/server/app.py +142 -152
- flwr/server/grid/grpc_grid.py +3 -0
- flwr/server/grid/inmemory_grid.py +1 -0
- flwr/server/serverapp/app.py +157 -146
- flwr/server/superlink/fleet/vce/backend/raybackend.py +3 -1
- flwr/server/superlink/fleet/vce/vce_api.py +6 -6
- flwr/server/superlink/linkstate/in_memory_linkstate.py +34 -0
- flwr/server/superlink/linkstate/linkstate.py +2 -1
- flwr/server/superlink/linkstate/sqlite_linkstate.py +45 -0
- flwr/server/superlink/serverappio/serverappio_grpc.py +1 -1
- flwr/server/superlink/serverappio/serverappio_servicer.py +61 -6
- flwr/server/superlink/simulation/simulationio_servicer.py +97 -21
- flwr/serverapp/__init__.py +12 -0
- flwr/serverapp/exception.py +38 -0
- flwr/serverapp/strategy/__init__.py +64 -0
- flwr/serverapp/strategy/bulyan.py +238 -0
- flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
- flwr/serverapp/strategy/dp_fixed_clipping.py +374 -0
- flwr/serverapp/strategy/fedadagrad.py +159 -0
- flwr/serverapp/strategy/fedadam.py +178 -0
- flwr/serverapp/strategy/fedavg.py +320 -0
- flwr/serverapp/strategy/fedavgm.py +198 -0
- flwr/serverapp/strategy/fedmedian.py +105 -0
- flwr/serverapp/strategy/fedopt.py +218 -0
- flwr/serverapp/strategy/fedprox.py +174 -0
- flwr/serverapp/strategy/fedtrimmedavg.py +176 -0
- flwr/serverapp/strategy/fedxgb_bagging.py +117 -0
- flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
- flwr/serverapp/strategy/fedyogi.py +170 -0
- flwr/serverapp/strategy/krum.py +112 -0
- flwr/serverapp/strategy/multikrum.py +247 -0
- flwr/serverapp/strategy/qfedavg.py +252 -0
- flwr/serverapp/strategy/result.py +105 -0
- flwr/serverapp/strategy/strategy.py +285 -0
- flwr/serverapp/strategy/strategy_utils.py +299 -0
- flwr/simulation/app.py +161 -164
- flwr/simulation/run_simulation.py +25 -30
- flwr/supercore/app_utils.py +58 -0
- flwr/{supernode/scheduler → supercore/cli}/__init__.py +3 -3
- flwr/supercore/cli/flower_superexec.py +166 -0
- flwr/supercore/constant.py +19 -0
- flwr/supercore/{scheduler → corestate}/__init__.py +3 -3
- flwr/supercore/corestate/corestate.py +81 -0
- flwr/supercore/grpc_health/__init__.py +3 -0
- flwr/supercore/grpc_health/health_server.py +53 -0
- flwr/supercore/grpc_health/simple_health_servicer.py +2 -2
- flwr/{superexec → supercore/superexec}/__init__.py +1 -1
- flwr/supercore/superexec/plugin/__init__.py +28 -0
- flwr/{supernode/scheduler/simple_clientapp_scheduler_plugin.py → supercore/superexec/plugin/base_exec_plugin.py} +10 -6
- flwr/supercore/superexec/plugin/clientapp_exec_plugin.py +28 -0
- flwr/supercore/{scheduler/plugin.py → superexec/plugin/exec_plugin.py} +15 -5
- flwr/supercore/superexec/plugin/serverapp_exec_plugin.py +28 -0
- flwr/supercore/superexec/plugin/simulation_exec_plugin.py +28 -0
- flwr/supercore/superexec/run_superexec.py +199 -0
- flwr/superlink/artifact_provider/__init__.py +22 -0
- flwr/superlink/artifact_provider/artifact_provider.py +37 -0
- flwr/superlink/servicer/__init__.py +15 -0
- flwr/superlink/servicer/control/__init__.py +22 -0
- flwr/{superexec/exec_event_log_interceptor.py → superlink/servicer/control/control_event_log_interceptor.py} +7 -7
- flwr/{superexec/exec_grpc.py → superlink/servicer/control/control_grpc.py} +27 -29
- flwr/{superexec/exec_license_interceptor.py → superlink/servicer/control/control_license_interceptor.py} +6 -6
- flwr/{superexec/exec_servicer.py → superlink/servicer/control/control_servicer.py} +127 -31
- flwr/{superexec/exec_user_auth_interceptor.py → superlink/servicer/control/control_user_auth_interceptor.py} +10 -10
- flwr/supernode/cli/flower_supernode.py +3 -0
- flwr/supernode/cli/flwr_clientapp.py +18 -21
- flwr/supernode/nodestate/in_memory_nodestate.py +2 -2
- flwr/supernode/nodestate/nodestate.py +3 -59
- flwr/supernode/runtime/run_clientapp.py +39 -102
- flwr/supernode/servicer/clientappio/clientappio_servicer.py +10 -17
- flwr/supernode/start_client_internal.py +35 -76
- {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/METADATA +9 -18
- {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/RECORD +176 -128
- {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/entry_points.txt +1 -0
- flwr/proto/exec_pb2.py +0 -62
- flwr/proto/exec_pb2_grpc.pyi +0 -93
- flwr/superexec/app.py +0 -45
- flwr/superexec/deployment.py +0 -191
- flwr/superexec/executor.py +0 -100
- flwr/superexec/simulation.py +0 -129
- {flwr-1.20.0.dist-info → flwr-1.22.0.dist-info}/WHEEL +0 -0
|
@@ -0,0 +1,178 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Adaptive Federated Optimization using Adam (FedAdam) strategy.
|
|
16
|
+
|
|
17
|
+
[Reddi et al., 2020]
|
|
18
|
+
|
|
19
|
+
Paper: arxiv.org/abs/2003.00295
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
from collections import OrderedDict
|
|
23
|
+
from collections.abc import Iterable
|
|
24
|
+
from typing import Callable, Optional
|
|
25
|
+
|
|
26
|
+
import numpy as np
|
|
27
|
+
|
|
28
|
+
from flwr.common import Array, ArrayRecord, Message, MetricRecord, RecordDict
|
|
29
|
+
|
|
30
|
+
from ..exception import AggregationError
|
|
31
|
+
from .fedopt import FedOpt
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
# pylint: disable=line-too-long
|
|
35
|
+
class FedAdam(FedOpt):
|
|
36
|
+
"""FedAdam - Adaptive Federated Optimization using Adam.
|
|
37
|
+
|
|
38
|
+
Implementation based on https://arxiv.org/abs/2003.00295v5
|
|
39
|
+
|
|
40
|
+
Parameters
|
|
41
|
+
----------
|
|
42
|
+
fraction_train : float (default: 1.0)
|
|
43
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
|
44
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
|
45
|
+
will still be sampled.
|
|
46
|
+
fraction_evaluate : float (default: 1.0)
|
|
47
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
|
48
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
|
49
|
+
`min_evaluate_nodes` will still be sampled.
|
|
50
|
+
min_train_nodes : int (default: 2)
|
|
51
|
+
Minimum number of nodes used during training.
|
|
52
|
+
min_evaluate_nodes : int (default: 2)
|
|
53
|
+
Minimum number of nodes used during validation.
|
|
54
|
+
min_available_nodes : int (default: 2)
|
|
55
|
+
Minimum number of total nodes in the system.
|
|
56
|
+
weighted_by_key : str (default: "num-examples")
|
|
57
|
+
The key within each MetricRecord whose value is used as the weight when
|
|
58
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
|
59
|
+
arrayrecord_key : str (default: "arrays")
|
|
60
|
+
Key used to store the ArrayRecord when constructing Messages.
|
|
61
|
+
configrecord_key : str (default: "config")
|
|
62
|
+
Key used to store the ConfigRecord when constructing Messages.
|
|
63
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
|
64
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
65
|
+
used to aggregate MetricRecords from training round replies.
|
|
66
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
67
|
+
average using the provided weight factor key.
|
|
68
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
|
69
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
70
|
+
used to aggregate MetricRecords from training round replies.
|
|
71
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
72
|
+
average using the provided weight factor key.
|
|
73
|
+
eta : float, optional
|
|
74
|
+
Server-side learning rate. Defaults to 1e-1.
|
|
75
|
+
eta_l : float, optional
|
|
76
|
+
Client-side learning rate. Defaults to 1e-1.
|
|
77
|
+
beta_1 : float, optional
|
|
78
|
+
Momentum parameter. Defaults to 0.9.
|
|
79
|
+
beta_2 : float, optional
|
|
80
|
+
Second moment parameter. Defaults to 0.99.
|
|
81
|
+
tau : float, optional
|
|
82
|
+
Controls the algorithm's degree of adaptability. Defaults to 1e-3.
|
|
83
|
+
"""
|
|
84
|
+
|
|
85
|
+
# pylint: disable=too-many-arguments, too-many-locals
|
|
86
|
+
def __init__(
|
|
87
|
+
self,
|
|
88
|
+
*,
|
|
89
|
+
fraction_train: float = 1.0,
|
|
90
|
+
fraction_evaluate: float = 1.0,
|
|
91
|
+
min_train_nodes: int = 2,
|
|
92
|
+
min_evaluate_nodes: int = 2,
|
|
93
|
+
min_available_nodes: int = 2,
|
|
94
|
+
weighted_by_key: str = "num-examples",
|
|
95
|
+
arrayrecord_key: str = "arrays",
|
|
96
|
+
configrecord_key: str = "config",
|
|
97
|
+
train_metrics_aggr_fn: Optional[
|
|
98
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
99
|
+
] = None,
|
|
100
|
+
evaluate_metrics_aggr_fn: Optional[
|
|
101
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
102
|
+
] = None,
|
|
103
|
+
eta: float = 1e-1,
|
|
104
|
+
eta_l: float = 1e-1,
|
|
105
|
+
beta_1: float = 0.9,
|
|
106
|
+
beta_2: float = 0.99,
|
|
107
|
+
tau: float = 1e-3,
|
|
108
|
+
) -> None:
|
|
109
|
+
super().__init__(
|
|
110
|
+
fraction_train=fraction_train,
|
|
111
|
+
fraction_evaluate=fraction_evaluate,
|
|
112
|
+
min_train_nodes=min_train_nodes,
|
|
113
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
|
114
|
+
min_available_nodes=min_available_nodes,
|
|
115
|
+
weighted_by_key=weighted_by_key,
|
|
116
|
+
arrayrecord_key=arrayrecord_key,
|
|
117
|
+
configrecord_key=configrecord_key,
|
|
118
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
|
119
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
|
120
|
+
eta=eta,
|
|
121
|
+
eta_l=eta_l,
|
|
122
|
+
beta_1=beta_1,
|
|
123
|
+
beta_2=beta_2,
|
|
124
|
+
tau=tau,
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
def aggregate_train(
|
|
128
|
+
self,
|
|
129
|
+
server_round: int,
|
|
130
|
+
replies: Iterable[Message],
|
|
131
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
132
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
133
|
+
aggregated_arrayrecord, aggregated_metrics = super().aggregate_train(
|
|
134
|
+
server_round, replies
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
if aggregated_arrayrecord is None:
|
|
138
|
+
return aggregated_arrayrecord, aggregated_metrics
|
|
139
|
+
|
|
140
|
+
if self.current_arrays is None:
|
|
141
|
+
reason = (
|
|
142
|
+
"Current arrays not set. Ensure that `configure_train` has been "
|
|
143
|
+
"called before aggregation."
|
|
144
|
+
)
|
|
145
|
+
raise AggregationError(reason=reason)
|
|
146
|
+
|
|
147
|
+
# Compute intermediate variables
|
|
148
|
+
delta_t, m_t, aggregated_ndarrays = self._compute_deltat_and_mt(
|
|
149
|
+
aggregated_arrayrecord
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
# v_t
|
|
153
|
+
if not self.v_t:
|
|
154
|
+
self.v_t = {k: np.zeros_like(v) for k, v in aggregated_ndarrays.items()}
|
|
155
|
+
self.v_t = {
|
|
156
|
+
k: self.beta_2 * v + (1 - self.beta_2) * (delta_t[k] ** 2)
|
|
157
|
+
for k, v in self.v_t.items()
|
|
158
|
+
}
|
|
159
|
+
|
|
160
|
+
# Compute the bias-corrected learning rate, `eta_norm` for improving convergence
|
|
161
|
+
# in the early rounds of FL training. This `eta_norm` is `\alpha_t` in Kingma &
|
|
162
|
+
# Ba, 2014 (http://arxiv.org/abs/1412.6980) "Adam: A Method for Stochastic
|
|
163
|
+
# Optimization" in the formula line right before Section 2.1.
|
|
164
|
+
eta_norm = (
|
|
165
|
+
self.eta
|
|
166
|
+
* np.sqrt(1 - np.power(self.beta_2, server_round + 1.0))
|
|
167
|
+
/ (1 - np.power(self.beta_1, server_round + 1.0))
|
|
168
|
+
)
|
|
169
|
+
|
|
170
|
+
new_arrays = {
|
|
171
|
+
k: x + eta_norm * m_t[k] / (np.sqrt(self.v_t[k]) + self.tau)
|
|
172
|
+
for k, x in self.current_arrays.items()
|
|
173
|
+
}
|
|
174
|
+
|
|
175
|
+
return (
|
|
176
|
+
ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
|
|
177
|
+
aggregated_metrics,
|
|
178
|
+
)
|
|
@@ -0,0 +1,320 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Flower message-based FedAvg strategy."""
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
from collections.abc import Iterable
|
|
19
|
+
from logging import INFO, WARNING
|
|
20
|
+
from typing import Callable, Optional
|
|
21
|
+
|
|
22
|
+
from flwr.common import (
|
|
23
|
+
ArrayRecord,
|
|
24
|
+
ConfigRecord,
|
|
25
|
+
Message,
|
|
26
|
+
MessageType,
|
|
27
|
+
MetricRecord,
|
|
28
|
+
RecordDict,
|
|
29
|
+
log,
|
|
30
|
+
)
|
|
31
|
+
from flwr.server import Grid
|
|
32
|
+
|
|
33
|
+
from .strategy import Strategy
|
|
34
|
+
from .strategy_utils import (
|
|
35
|
+
aggregate_arrayrecords,
|
|
36
|
+
aggregate_metricrecords,
|
|
37
|
+
sample_nodes,
|
|
38
|
+
validate_message_reply_consistency,
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
# pylint: disable=too-many-instance-attributes
|
|
43
|
+
class FedAvg(Strategy):
|
|
44
|
+
"""Federated Averaging strategy.
|
|
45
|
+
|
|
46
|
+
Implementation based on https://arxiv.org/abs/1602.05629
|
|
47
|
+
|
|
48
|
+
Parameters
|
|
49
|
+
----------
|
|
50
|
+
fraction_train : float (default: 1.0)
|
|
51
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
|
52
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
|
53
|
+
will still be sampled.
|
|
54
|
+
fraction_evaluate : float (default: 1.0)
|
|
55
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
|
56
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
|
57
|
+
`min_evaluate_nodes` will still be sampled.
|
|
58
|
+
min_train_nodes : int (default: 2)
|
|
59
|
+
Minimum number of nodes used during training.
|
|
60
|
+
min_evaluate_nodes : int (default: 2)
|
|
61
|
+
Minimum number of nodes used during validation.
|
|
62
|
+
min_available_nodes : int (default: 2)
|
|
63
|
+
Minimum number of total nodes in the system.
|
|
64
|
+
weighted_by_key : str (default: "num-examples")
|
|
65
|
+
The key within each MetricRecord whose value is used as the weight when
|
|
66
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
|
67
|
+
arrayrecord_key : str (default: "arrays")
|
|
68
|
+
Key used to store the ArrayRecord when constructing Messages.
|
|
69
|
+
configrecord_key : str (default: "config")
|
|
70
|
+
Key used to store the ConfigRecord when constructing Messages.
|
|
71
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
|
72
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
73
|
+
used to aggregate MetricRecords from training round replies.
|
|
74
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
75
|
+
average using the provided weight factor key.
|
|
76
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
|
77
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
78
|
+
used to aggregate MetricRecords from training round replies.
|
|
79
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
80
|
+
average using the provided weight factor key.
|
|
81
|
+
"""
|
|
82
|
+
|
|
83
|
+
# pylint: disable=too-many-arguments,too-many-positional-arguments
|
|
84
|
+
def __init__(
|
|
85
|
+
self,
|
|
86
|
+
fraction_train: float = 1.0,
|
|
87
|
+
fraction_evaluate: float = 1.0,
|
|
88
|
+
min_train_nodes: int = 2,
|
|
89
|
+
min_evaluate_nodes: int = 2,
|
|
90
|
+
min_available_nodes: int = 2,
|
|
91
|
+
weighted_by_key: str = "num-examples",
|
|
92
|
+
arrayrecord_key: str = "arrays",
|
|
93
|
+
configrecord_key: str = "config",
|
|
94
|
+
train_metrics_aggr_fn: Optional[
|
|
95
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
96
|
+
] = None,
|
|
97
|
+
evaluate_metrics_aggr_fn: Optional[
|
|
98
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
99
|
+
] = None,
|
|
100
|
+
) -> None:
|
|
101
|
+
self.fraction_train = fraction_train
|
|
102
|
+
self.fraction_evaluate = fraction_evaluate
|
|
103
|
+
self.min_train_nodes = min_train_nodes
|
|
104
|
+
self.min_evaluate_nodes = min_evaluate_nodes
|
|
105
|
+
self.min_available_nodes = min_available_nodes
|
|
106
|
+
self.weighted_by_key = weighted_by_key
|
|
107
|
+
self.arrayrecord_key = arrayrecord_key
|
|
108
|
+
self.configrecord_key = configrecord_key
|
|
109
|
+
self.train_metrics_aggr_fn = train_metrics_aggr_fn or aggregate_metricrecords
|
|
110
|
+
self.evaluate_metrics_aggr_fn = (
|
|
111
|
+
evaluate_metrics_aggr_fn or aggregate_metricrecords
|
|
112
|
+
)
|
|
113
|
+
|
|
114
|
+
if self.fraction_evaluate == 0.0:
|
|
115
|
+
self.min_evaluate_nodes = 0
|
|
116
|
+
log(
|
|
117
|
+
WARNING,
|
|
118
|
+
"fraction_evaluate is set to 0.0. "
|
|
119
|
+
"Federated evaluation will be skipped.",
|
|
120
|
+
)
|
|
121
|
+
if self.fraction_train == 0.0:
|
|
122
|
+
self.min_train_nodes = 0
|
|
123
|
+
log(
|
|
124
|
+
WARNING,
|
|
125
|
+
"fraction_train is set to 0.0. Federated training will be skipped.",
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
def summary(self) -> None:
|
|
129
|
+
"""Log summary configuration of the strategy."""
|
|
130
|
+
log(INFO, "\t├──> Sampling:")
|
|
131
|
+
log(
|
|
132
|
+
INFO,
|
|
133
|
+
"\t│\t├──Fraction: train (%.2f) | evaluate ( %.2f)",
|
|
134
|
+
self.fraction_train,
|
|
135
|
+
self.fraction_evaluate,
|
|
136
|
+
) # pylint: disable=line-too-long
|
|
137
|
+
log(
|
|
138
|
+
INFO,
|
|
139
|
+
"\t│\t├──Minimum nodes: train (%d) | evaluate (%d)",
|
|
140
|
+
self.min_train_nodes,
|
|
141
|
+
self.min_evaluate_nodes,
|
|
142
|
+
) # pylint: disable=line-too-long
|
|
143
|
+
log(INFO, "\t│\t└──Minimum available nodes: %d", self.min_available_nodes)
|
|
144
|
+
log(INFO, "\t└──> Keys in records:")
|
|
145
|
+
log(INFO, "\t\t├── Weighted by: '%s'", self.weighted_by_key)
|
|
146
|
+
log(INFO, "\t\t├── ArrayRecord key: '%s'", self.arrayrecord_key)
|
|
147
|
+
log(INFO, "\t\t└── ConfigRecord key: '%s'", self.configrecord_key)
|
|
148
|
+
|
|
149
|
+
def _construct_messages(
|
|
150
|
+
self, record: RecordDict, node_ids: list[int], message_type: str
|
|
151
|
+
) -> Iterable[Message]:
|
|
152
|
+
"""Construct N Messages carrying the same RecordDict payload."""
|
|
153
|
+
messages = []
|
|
154
|
+
for node_id in node_ids: # one message for each node
|
|
155
|
+
message = Message(
|
|
156
|
+
content=record,
|
|
157
|
+
message_type=message_type,
|
|
158
|
+
dst_node_id=node_id,
|
|
159
|
+
)
|
|
160
|
+
messages.append(message)
|
|
161
|
+
return messages
|
|
162
|
+
|
|
163
|
+
def configure_train(
|
|
164
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
165
|
+
) -> Iterable[Message]:
|
|
166
|
+
"""Configure the next round of federated training."""
|
|
167
|
+
# Do not configure federated train if fraction_train is 0.
|
|
168
|
+
if self.fraction_train == 0.0:
|
|
169
|
+
return []
|
|
170
|
+
# Sample nodes
|
|
171
|
+
num_nodes = int(len(list(grid.get_node_ids())) * self.fraction_train)
|
|
172
|
+
sample_size = max(num_nodes, self.min_train_nodes)
|
|
173
|
+
node_ids, num_total = sample_nodes(grid, self.min_available_nodes, sample_size)
|
|
174
|
+
log(
|
|
175
|
+
INFO,
|
|
176
|
+
"configure_train: Sampled %s nodes (out of %s)",
|
|
177
|
+
len(node_ids),
|
|
178
|
+
len(num_total),
|
|
179
|
+
)
|
|
180
|
+
# Always inject current server round
|
|
181
|
+
config["server-round"] = server_round
|
|
182
|
+
|
|
183
|
+
# Construct messages
|
|
184
|
+
record = RecordDict(
|
|
185
|
+
{self.arrayrecord_key: arrays, self.configrecord_key: config}
|
|
186
|
+
)
|
|
187
|
+
return self._construct_messages(record, node_ids, MessageType.TRAIN)
|
|
188
|
+
|
|
189
|
+
def _check_and_log_replies(
|
|
190
|
+
self, replies: Iterable[Message], is_train: bool, validate: bool = True
|
|
191
|
+
) -> tuple[list[Message], list[Message]]:
|
|
192
|
+
"""Check replies for errors and log them.
|
|
193
|
+
|
|
194
|
+
Parameters
|
|
195
|
+
----------
|
|
196
|
+
replies : Iterable[Message]
|
|
197
|
+
Iterable of reply Messages.
|
|
198
|
+
is_train : bool
|
|
199
|
+
Set to True if the replies are from a training round; False otherwise.
|
|
200
|
+
This impacts logging and validation behavior.
|
|
201
|
+
validate : bool (default: True)
|
|
202
|
+
Whether to validate the reply contents for consistency.
|
|
203
|
+
|
|
204
|
+
Returns
|
|
205
|
+
-------
|
|
206
|
+
tuple[list[Message], list[Message]]
|
|
207
|
+
A tuple containing two lists:
|
|
208
|
+
- Messages with valid contents.
|
|
209
|
+
- Messages with errors.
|
|
210
|
+
"""
|
|
211
|
+
if not replies:
|
|
212
|
+
return [], []
|
|
213
|
+
|
|
214
|
+
# Filter messages that carry content
|
|
215
|
+
valid_replies: list[Message] = []
|
|
216
|
+
error_replies: list[Message] = []
|
|
217
|
+
for msg in replies:
|
|
218
|
+
if msg.has_error():
|
|
219
|
+
error_replies.append(msg)
|
|
220
|
+
else:
|
|
221
|
+
valid_replies.append(msg)
|
|
222
|
+
|
|
223
|
+
log(
|
|
224
|
+
INFO,
|
|
225
|
+
"%s: Received %s results and %s failures",
|
|
226
|
+
"aggregate_train" if is_train else "aggregate_evaluate",
|
|
227
|
+
len(valid_replies),
|
|
228
|
+
len(error_replies),
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
# Log errors
|
|
232
|
+
for msg in error_replies:
|
|
233
|
+
log(
|
|
234
|
+
INFO,
|
|
235
|
+
"\t> Received error in reply from node %d: %s",
|
|
236
|
+
msg.metadata.src_node_id,
|
|
237
|
+
msg.error.reason,
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
# Ensure expected ArrayRecords and MetricRecords are received
|
|
241
|
+
if validate and valid_replies:
|
|
242
|
+
validate_message_reply_consistency(
|
|
243
|
+
replies=[msg.content for msg in valid_replies],
|
|
244
|
+
weighted_by_key=self.weighted_by_key,
|
|
245
|
+
check_arrayrecord=is_train,
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
return valid_replies, error_replies
|
|
249
|
+
|
|
250
|
+
def aggregate_train(
|
|
251
|
+
self,
|
|
252
|
+
server_round: int,
|
|
253
|
+
replies: Iterable[Message],
|
|
254
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
255
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
256
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
|
257
|
+
|
|
258
|
+
arrays, metrics = None, None
|
|
259
|
+
if valid_replies:
|
|
260
|
+
reply_contents = [msg.content for msg in valid_replies]
|
|
261
|
+
|
|
262
|
+
# Aggregate ArrayRecords
|
|
263
|
+
arrays = aggregate_arrayrecords(
|
|
264
|
+
reply_contents,
|
|
265
|
+
self.weighted_by_key,
|
|
266
|
+
)
|
|
267
|
+
|
|
268
|
+
# Aggregate MetricRecords
|
|
269
|
+
metrics = self.train_metrics_aggr_fn(
|
|
270
|
+
reply_contents,
|
|
271
|
+
self.weighted_by_key,
|
|
272
|
+
)
|
|
273
|
+
return arrays, metrics
|
|
274
|
+
|
|
275
|
+
def configure_evaluate(
|
|
276
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
277
|
+
) -> Iterable[Message]:
|
|
278
|
+
"""Configure the next round of federated evaluation."""
|
|
279
|
+
# Do not configure federated evaluation if fraction_evaluate is 0.
|
|
280
|
+
if self.fraction_evaluate == 0.0:
|
|
281
|
+
return []
|
|
282
|
+
|
|
283
|
+
# Sample nodes
|
|
284
|
+
num_nodes = int(len(list(grid.get_node_ids())) * self.fraction_evaluate)
|
|
285
|
+
sample_size = max(num_nodes, self.min_evaluate_nodes)
|
|
286
|
+
node_ids, num_total = sample_nodes(grid, self.min_available_nodes, sample_size)
|
|
287
|
+
log(
|
|
288
|
+
INFO,
|
|
289
|
+
"configure_evaluate: Sampled %s nodes (out of %s)",
|
|
290
|
+
len(node_ids),
|
|
291
|
+
len(num_total),
|
|
292
|
+
)
|
|
293
|
+
|
|
294
|
+
# Always inject current server round
|
|
295
|
+
config["server-round"] = server_round
|
|
296
|
+
|
|
297
|
+
# Construct messages
|
|
298
|
+
record = RecordDict(
|
|
299
|
+
{self.arrayrecord_key: arrays, self.configrecord_key: config}
|
|
300
|
+
)
|
|
301
|
+
return self._construct_messages(record, node_ids, MessageType.EVALUATE)
|
|
302
|
+
|
|
303
|
+
def aggregate_evaluate(
|
|
304
|
+
self,
|
|
305
|
+
server_round: int,
|
|
306
|
+
replies: Iterable[Message],
|
|
307
|
+
) -> Optional[MetricRecord]:
|
|
308
|
+
"""Aggregate MetricRecords in the received Messages."""
|
|
309
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=False)
|
|
310
|
+
|
|
311
|
+
metrics = None
|
|
312
|
+
if valid_replies:
|
|
313
|
+
reply_contents = [msg.content for msg in valid_replies]
|
|
314
|
+
|
|
315
|
+
# Aggregate MetricRecords
|
|
316
|
+
metrics = self.evaluate_metrics_aggr_fn(
|
|
317
|
+
reply_contents,
|
|
318
|
+
self.weighted_by_key,
|
|
319
|
+
)
|
|
320
|
+
return metrics
|
|
@@ -0,0 +1,198 @@
|
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ==============================================================================
|
|
15
|
+
"""Federated Averaging with Momentum (FedAvgM) [Hsu et al., 2019] strategy.
|
|
16
|
+
|
|
17
|
+
Paper: arxiv.org/pdf/1909.06335.pdf
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
from collections import OrderedDict
|
|
22
|
+
from collections.abc import Iterable
|
|
23
|
+
from logging import INFO
|
|
24
|
+
from typing import Callable, Optional
|
|
25
|
+
|
|
26
|
+
from flwr.common import (
|
|
27
|
+
Array,
|
|
28
|
+
ArrayRecord,
|
|
29
|
+
ConfigRecord,
|
|
30
|
+
Message,
|
|
31
|
+
MetricRecord,
|
|
32
|
+
NDArrays,
|
|
33
|
+
RecordDict,
|
|
34
|
+
log,
|
|
35
|
+
)
|
|
36
|
+
from flwr.server import Grid
|
|
37
|
+
|
|
38
|
+
from ..exception import AggregationError
|
|
39
|
+
from .fedavg import FedAvg
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class FedAvgM(FedAvg):
|
|
43
|
+
"""Federated Averaging with Momentum strategy.
|
|
44
|
+
|
|
45
|
+
Implementation based on https://arxiv.org/abs/1909.06335
|
|
46
|
+
|
|
47
|
+
Parameters
|
|
48
|
+
----------
|
|
49
|
+
fraction_train : float (default: 1.0)
|
|
50
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
|
51
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
|
52
|
+
will still be sampled.
|
|
53
|
+
fraction_evaluate : float (default: 1.0)
|
|
54
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
|
55
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
|
56
|
+
`min_evaluate_nodes` will still be sampled.
|
|
57
|
+
min_train_nodes : int (default: 2)
|
|
58
|
+
Minimum number of nodes used during training.
|
|
59
|
+
min_evaluate_nodes : int (default: 2)
|
|
60
|
+
Minimum number of nodes used during validation.
|
|
61
|
+
min_available_nodes : int (default: 2)
|
|
62
|
+
Minimum number of total nodes in the system.
|
|
63
|
+
weighted_by_key : str (default: "num-examples")
|
|
64
|
+
The key within each MetricRecord whose value is used as the weight when
|
|
65
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
|
66
|
+
arrayrecord_key : str (default: "arrays")
|
|
67
|
+
Key used to store the ArrayRecord when constructing Messages.
|
|
68
|
+
configrecord_key : str (default: "config")
|
|
69
|
+
Key used to store the ConfigRecord when constructing Messages.
|
|
70
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
|
71
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
72
|
+
used to aggregate MetricRecords from training round replies.
|
|
73
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
74
|
+
average using the provided weight factor key.
|
|
75
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
|
76
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
|
77
|
+
used to aggregate MetricRecords from training round replies.
|
|
78
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
|
79
|
+
average using the provided weight factor key.
|
|
80
|
+
server_learning_rate: float (default: 1.0)
|
|
81
|
+
Server-side learning rate used in server-side optimization.
|
|
82
|
+
server_momentum: float (default: 0.0)
|
|
83
|
+
Server-side momentum factor used for FedAvgM.
|
|
84
|
+
"""
|
|
85
|
+
|
|
86
|
+
def __init__( # pylint: disable=R0913, R0917
|
|
87
|
+
self,
|
|
88
|
+
fraction_train: float = 1.0,
|
|
89
|
+
fraction_evaluate: float = 1.0,
|
|
90
|
+
min_train_nodes: int = 2,
|
|
91
|
+
min_evaluate_nodes: int = 2,
|
|
92
|
+
min_available_nodes: int = 2,
|
|
93
|
+
weighted_by_key: str = "num-examples",
|
|
94
|
+
arrayrecord_key: str = "arrays",
|
|
95
|
+
configrecord_key: str = "config",
|
|
96
|
+
train_metrics_aggr_fn: Optional[
|
|
97
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
98
|
+
] = None,
|
|
99
|
+
evaluate_metrics_aggr_fn: Optional[
|
|
100
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
|
101
|
+
] = None,
|
|
102
|
+
server_learning_rate: float = 1.0,
|
|
103
|
+
server_momentum: float = 0.0,
|
|
104
|
+
) -> None:
|
|
105
|
+
super().__init__(
|
|
106
|
+
fraction_train=fraction_train,
|
|
107
|
+
fraction_evaluate=fraction_evaluate,
|
|
108
|
+
min_train_nodes=min_train_nodes,
|
|
109
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
|
110
|
+
min_available_nodes=min_available_nodes,
|
|
111
|
+
weighted_by_key=weighted_by_key,
|
|
112
|
+
arrayrecord_key=arrayrecord_key,
|
|
113
|
+
configrecord_key=configrecord_key,
|
|
114
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
|
115
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
|
116
|
+
)
|
|
117
|
+
self.server_learning_rate = server_learning_rate
|
|
118
|
+
self.server_momentum = server_momentum
|
|
119
|
+
self.server_opt: bool = (self.server_momentum != 0.0) or (
|
|
120
|
+
self.server_learning_rate != 1.0
|
|
121
|
+
)
|
|
122
|
+
self.current_arrays: Optional[ArrayRecord] = None
|
|
123
|
+
self.momentum_vector: Optional[NDArrays] = None
|
|
124
|
+
|
|
125
|
+
def summary(self) -> None:
|
|
126
|
+
"""Log summary configuration of the strategy."""
|
|
127
|
+
opt_status = "ON" if self.server_opt else "OFF"
|
|
128
|
+
log(INFO, "\t├──> FedAvgM settings:")
|
|
129
|
+
log(INFO, "\t│\t├── Server optimization: %s", opt_status)
|
|
130
|
+
log(INFO, "\t│\t├── Server learning rate: %s", self.server_learning_rate)
|
|
131
|
+
log(INFO, "\t│\t└── Server Momentum: %s", self.server_momentum)
|
|
132
|
+
super().summary()
|
|
133
|
+
|
|
134
|
+
def configure_train(
|
|
135
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
|
136
|
+
) -> Iterable[Message]:
|
|
137
|
+
"""Configure the next round of federated training."""
|
|
138
|
+
if self.current_arrays is None:
|
|
139
|
+
self.current_arrays = arrays
|
|
140
|
+
return super().configure_train(server_round, arrays, config, grid)
|
|
141
|
+
|
|
142
|
+
def aggregate_train(
|
|
143
|
+
self,
|
|
144
|
+
server_round: int,
|
|
145
|
+
replies: Iterable[Message],
|
|
146
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
|
147
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
|
148
|
+
# Call FedAvg aggregate_train to perform validation and aggregation
|
|
149
|
+
aggregated_arrays, aggregated_metrics = super().aggregate_train(
|
|
150
|
+
server_round, replies
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
# following convention described in
|
|
154
|
+
# https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
|
|
155
|
+
if self.server_opt and aggregated_arrays is not None:
|
|
156
|
+
# The initial parameters should be set in `start()` method already
|
|
157
|
+
if self.current_arrays is None:
|
|
158
|
+
raise AggregationError(
|
|
159
|
+
"No initial parameters set for FedAvgM. "
|
|
160
|
+
"Ensure that `configure_train` has been called before aggregation."
|
|
161
|
+
)
|
|
162
|
+
ndarrays = self.current_arrays.to_numpy_ndarrays()
|
|
163
|
+
aggregated_ndarrays = aggregated_arrays.to_numpy_ndarrays()
|
|
164
|
+
|
|
165
|
+
# Preserve keys for arrays in ArrayRecord
|
|
166
|
+
array_keys = list(aggregated_arrays.keys())
|
|
167
|
+
aggregated_arrays.clear()
|
|
168
|
+
|
|
169
|
+
# Remember that updates are the opposite of gradients
|
|
170
|
+
pseudo_gradient = [
|
|
171
|
+
old - new for new, old in zip(aggregated_ndarrays, ndarrays)
|
|
172
|
+
]
|
|
173
|
+
if self.server_momentum > 0.0:
|
|
174
|
+
if self.momentum_vector is None:
|
|
175
|
+
# Initialize momentum vector in the first round
|
|
176
|
+
self.momentum_vector = pseudo_gradient
|
|
177
|
+
else:
|
|
178
|
+
self.momentum_vector = [
|
|
179
|
+
self.server_momentum * mv + pg
|
|
180
|
+
for mv, pg in zip(self.momentum_vector, pseudo_gradient)
|
|
181
|
+
]
|
|
182
|
+
|
|
183
|
+
# No nesterov for now
|
|
184
|
+
pseudo_gradient = self.momentum_vector
|
|
185
|
+
|
|
186
|
+
# SGD and convert back to ArrayRecord
|
|
187
|
+
updated_array_list = [
|
|
188
|
+
Array(old - self.server_learning_rate * pg)
|
|
189
|
+
for old, pg in zip(ndarrays, pseudo_gradient)
|
|
190
|
+
]
|
|
191
|
+
aggregated_arrays = ArrayRecord(
|
|
192
|
+
OrderedDict(zip(array_keys, updated_array_list))
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
# Update current weights
|
|
196
|
+
self.current_arrays = aggregated_arrays
|
|
197
|
+
|
|
198
|
+
return aggregated_arrays, aggregated_metrics
|