flwr-nightly 1.22.0.dev20250917__py3-none-any.whl → 1.22.0.dev20250919__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- flwr/cli/new/new.py +2 -0
- flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
- flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
- flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
- flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
- flwr/clientapp/mod/__init__.py +2 -1
- flwr/clientapp/mod/centraldp_mods.py +155 -39
- flwr/clientapp/typing.py +22 -0
- flwr/common/constant.py +1 -0
- flwr/common/exit/exit_code.py +4 -0
- flwr/common/record/typeddict.py +12 -0
- flwr/serverapp/strategy/__init__.py +12 -0
- flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
- flwr/serverapp/strategy/dp_fixed_clipping.py +71 -49
- flwr/serverapp/strategy/fedadagrad.py +0 -3
- flwr/serverapp/strategy/fedadam.py +0 -3
- flwr/serverapp/strategy/fedavgm.py +3 -3
- flwr/serverapp/strategy/fedprox.py +1 -1
- flwr/serverapp/strategy/fedtrimmedavg.py +1 -1
- flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
- flwr/serverapp/strategy/fedyogi.py +0 -3
- flwr/serverapp/strategy/krum.py +230 -0
- flwr/serverapp/strategy/qfedavg.py +252 -0
- flwr/supercore/cli/flower_superexec.py +26 -1
- flwr/supercore/constant.py +19 -0
- flwr/supercore/superexec/plugin/exec_plugin.py +11 -1
- flwr/supercore/superexec/run_superexec.py +16 -2
- {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/METADATA +1 -1
- {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/RECORD +31 -23
- flwr/serverapp/dp_fixed_clipping.py +0 -352
- flwr/serverapp/strategy/strategy_utils_tests.py +0 -323
- {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/WHEEL +0 -0
- {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,220 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Flower message-based FedXgbCyclic strategy."""
|
16
|
+
|
17
|
+
|
18
|
+
from collections.abc import Iterable
|
19
|
+
from logging import INFO
|
20
|
+
from typing import Callable, Optional, cast
|
21
|
+
|
22
|
+
from flwr.common import (
|
23
|
+
ArrayRecord,
|
24
|
+
ConfigRecord,
|
25
|
+
Message,
|
26
|
+
MessageType,
|
27
|
+
MetricRecord,
|
28
|
+
RecordDict,
|
29
|
+
log,
|
30
|
+
)
|
31
|
+
from flwr.server import Grid
|
32
|
+
|
33
|
+
from .fedavg import FedAvg
|
34
|
+
from .strategy_utils import sample_nodes
|
35
|
+
|
36
|
+
|
37
|
+
# pylint: disable=line-too-long
|
38
|
+
class FedXgbCyclic(FedAvg):
|
39
|
+
"""Configurable FedXgbCyclic strategy implementation.
|
40
|
+
|
41
|
+
Parameters
|
42
|
+
----------
|
43
|
+
fraction_train : float (default: 1.0)
|
44
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
45
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
46
|
+
will still be sampled.
|
47
|
+
fraction_evaluate : float (default: 1.0)
|
48
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
49
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
50
|
+
`min_evaluate_nodes` will still be sampled.
|
51
|
+
min_available_nodes : int (default: 2)
|
52
|
+
Minimum number of total nodes in the system.
|
53
|
+
weighted_by_key : str (default: "num-examples")
|
54
|
+
The key within each MetricRecord whose value is used as the weight when
|
55
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
56
|
+
arrayrecord_key : str (default: "arrays")
|
57
|
+
Key used to store the ArrayRecord when constructing Messages.
|
58
|
+
configrecord_key : str (default: "config")
|
59
|
+
Key used to store the ConfigRecord when constructing Messages.
|
60
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
61
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
62
|
+
used to aggregate MetricRecords from training round replies.
|
63
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
64
|
+
average using the provided weight factor key.
|
65
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
66
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
67
|
+
used to aggregate MetricRecords from training round replies.
|
68
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
69
|
+
average using the provided weight factor key.
|
70
|
+
"""
|
71
|
+
|
72
|
+
# pylint: disable=too-many-arguments,too-many-positional-arguments
|
73
|
+
def __init__(
|
74
|
+
self,
|
75
|
+
fraction_train: float = 1.0,
|
76
|
+
fraction_evaluate: float = 1.0,
|
77
|
+
min_available_nodes: int = 2,
|
78
|
+
weighted_by_key: str = "num-examples",
|
79
|
+
arrayrecord_key: str = "arrays",
|
80
|
+
configrecord_key: str = "config",
|
81
|
+
train_metrics_aggr_fn: Optional[
|
82
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
83
|
+
] = None,
|
84
|
+
evaluate_metrics_aggr_fn: Optional[
|
85
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
86
|
+
] = None,
|
87
|
+
) -> None:
|
88
|
+
super().__init__(
|
89
|
+
fraction_train=fraction_train,
|
90
|
+
fraction_evaluate=fraction_evaluate,
|
91
|
+
min_train_nodes=2,
|
92
|
+
min_evaluate_nodes=2,
|
93
|
+
min_available_nodes=min_available_nodes,
|
94
|
+
weighted_by_key=weighted_by_key,
|
95
|
+
arrayrecord_key=arrayrecord_key,
|
96
|
+
configrecord_key=configrecord_key,
|
97
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
98
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
99
|
+
)
|
100
|
+
|
101
|
+
self.registered_nodes: dict[int, int] = {}
|
102
|
+
|
103
|
+
if fraction_train not in (0.0, 1.0):
|
104
|
+
raise ValueError(
|
105
|
+
"fraction_train can only be set to 1.0 or 0.0 for FedXgbCyclic."
|
106
|
+
)
|
107
|
+
if fraction_evaluate not in (0.0, 1.0):
|
108
|
+
raise ValueError(
|
109
|
+
"fraction_evaluate can only be set to 1.0 or 0.0 for FedXgbCyclic."
|
110
|
+
)
|
111
|
+
|
112
|
+
def _reorder_nodes(self, node_ids: list[int]) -> list[int]:
|
113
|
+
"""Re-order node ids based on registered nodes.
|
114
|
+
|
115
|
+
Each node ID is assigned a persistent index in `self.registered_nodes`
|
116
|
+
the first time it appears. The input list is then reordered according
|
117
|
+
to these stored indices, and the result is compacted into ascending
|
118
|
+
order (1..N) for the current call.
|
119
|
+
"""
|
120
|
+
# Assign new indices to unknown nodes
|
121
|
+
next_index = max(self.registered_nodes.values(), default=0) + 1
|
122
|
+
for nid in node_ids:
|
123
|
+
if nid not in self.registered_nodes:
|
124
|
+
self.registered_nodes[nid] = next_index
|
125
|
+
next_index += 1
|
126
|
+
|
127
|
+
# Sort node_ids by their stored indices
|
128
|
+
sorted_by_index = sorted(node_ids, key=lambda x: self.registered_nodes[x])
|
129
|
+
|
130
|
+
# Compact re-map of indices just for this output list
|
131
|
+
unique_indices = sorted(self.registered_nodes[nid] for nid in sorted_by_index)
|
132
|
+
remap = {old: new for new, old in enumerate(unique_indices, start=1)}
|
133
|
+
|
134
|
+
# Build the result list ordered by compact indices
|
135
|
+
result_list = [
|
136
|
+
nid
|
137
|
+
for _, nid in sorted(
|
138
|
+
(remap[self.registered_nodes[nid]], nid) for nid in sorted_by_index
|
139
|
+
)
|
140
|
+
]
|
141
|
+
return result_list
|
142
|
+
|
143
|
+
def _make_sampling(
|
144
|
+
self, grid: Grid, server_round: int, configure_type: str
|
145
|
+
) -> list[int]:
|
146
|
+
"""Sample nodes using the Grid."""
|
147
|
+
# Sample nodes
|
148
|
+
num_nodes = int(len(list(grid.get_node_ids())) * self.fraction_train)
|
149
|
+
sample_size = max(num_nodes, self.min_train_nodes)
|
150
|
+
node_ids, _ = sample_nodes(grid, self.min_available_nodes, sample_size)
|
151
|
+
|
152
|
+
# Re-order node_ids
|
153
|
+
node_ids = self._reorder_nodes(node_ids)
|
154
|
+
|
155
|
+
# Sample the clients sequentially given server_round
|
156
|
+
sampled_idx = (server_round - 1) % len(node_ids)
|
157
|
+
sampled_node_id = [node_ids[sampled_idx]]
|
158
|
+
|
159
|
+
log(
|
160
|
+
INFO,
|
161
|
+
f"{configure_type}: Sampled %s nodes (out of %s)",
|
162
|
+
len(sampled_node_id),
|
163
|
+
len(node_ids),
|
164
|
+
)
|
165
|
+
return sampled_node_id
|
166
|
+
|
167
|
+
def configure_train(
|
168
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
169
|
+
) -> Iterable[Message]:
|
170
|
+
"""Configure the next round of federated training."""
|
171
|
+
# Sample one node
|
172
|
+
sampled_node_id = self._make_sampling(grid, server_round, "configure_train")
|
173
|
+
|
174
|
+
# Always inject current server round
|
175
|
+
config["server-round"] = server_round
|
176
|
+
|
177
|
+
# Construct messages
|
178
|
+
record = RecordDict(
|
179
|
+
{self.arrayrecord_key: arrays, self.configrecord_key: config}
|
180
|
+
)
|
181
|
+
return self._construct_messages(record, sampled_node_id, MessageType.TRAIN)
|
182
|
+
|
183
|
+
def aggregate_train(
|
184
|
+
self,
|
185
|
+
server_round: int,
|
186
|
+
replies: Iterable[Message],
|
187
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
188
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
189
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
190
|
+
|
191
|
+
arrays, metrics = None, None
|
192
|
+
if valid_replies:
|
193
|
+
reply_contents = [msg.content for msg in valid_replies]
|
194
|
+
array_record_key = next(iter(reply_contents[0].array_records.keys()))
|
195
|
+
|
196
|
+
# Fetch the client model from current round as global model
|
197
|
+
arrays = cast(ArrayRecord, reply_contents[0][array_record_key])
|
198
|
+
|
199
|
+
# Aggregate MetricRecords
|
200
|
+
metrics = self.train_metrics_aggr_fn(
|
201
|
+
reply_contents,
|
202
|
+
self.weighted_by_key,
|
203
|
+
)
|
204
|
+
return arrays, metrics
|
205
|
+
|
206
|
+
def configure_evaluate(
|
207
|
+
self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
|
208
|
+
) -> Iterable[Message]:
|
209
|
+
"""Configure the next round of federated evaluation."""
|
210
|
+
# Sample one node
|
211
|
+
sampled_node_id = self._make_sampling(grid, server_round, "configure_evaluate")
|
212
|
+
|
213
|
+
# Always inject current server round
|
214
|
+
config["server-round"] = server_round
|
215
|
+
|
216
|
+
# Construct messages
|
217
|
+
record = RecordDict(
|
218
|
+
{self.arrayrecord_key: arrays, self.configrecord_key: config}
|
219
|
+
)
|
220
|
+
return self._construct_messages(record, sampled_node_id, MessageType.EVALUATE)
|
@@ -164,9 +164,6 @@ class FedYogi(FedOpt):
|
|
164
164
|
for k, x in self.current_arrays.items()
|
165
165
|
}
|
166
166
|
|
167
|
-
# Update current arrays
|
168
|
-
self.current_arrays = new_arrays
|
169
|
-
|
170
167
|
return (
|
171
168
|
ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
|
172
169
|
aggregated_metrics,
|
@@ -0,0 +1,230 @@
|
|
1
|
+
# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent.
|
16
|
+
|
17
|
+
[Blanchard et al., 2017].
|
18
|
+
|
19
|
+
Paper: proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
|
20
|
+
"""
|
21
|
+
|
22
|
+
|
23
|
+
from collections.abc import Iterable
|
24
|
+
from logging import INFO
|
25
|
+
from typing import Callable, Optional
|
26
|
+
|
27
|
+
import numpy as np
|
28
|
+
|
29
|
+
from flwr.common import ArrayRecord, Message, MetricRecord, NDArray, RecordDict, log
|
30
|
+
|
31
|
+
from .fedavg import FedAvg
|
32
|
+
from .strategy_utils import aggregate_arrayrecords
|
33
|
+
|
34
|
+
|
35
|
+
# pylint: disable=too-many-instance-attributes
|
36
|
+
class Krum(FedAvg):
|
37
|
+
"""Krum [Blanchard et al., 2017] strategy.
|
38
|
+
|
39
|
+
Implementation based on https://arxiv.org/abs/1703.02757
|
40
|
+
|
41
|
+
Parameters
|
42
|
+
----------
|
43
|
+
fraction_train : float (default: 1.0)
|
44
|
+
Fraction of nodes used during training. In case `min_train_nodes`
|
45
|
+
is larger than `fraction_train * total_connected_nodes`, `min_train_nodes`
|
46
|
+
will still be sampled.
|
47
|
+
fraction_evaluate : float (default: 1.0)
|
48
|
+
Fraction of nodes used during validation. In case `min_evaluate_nodes`
|
49
|
+
is larger than `fraction_evaluate * total_connected_nodes`,
|
50
|
+
`min_evaluate_nodes` will still be sampled.
|
51
|
+
min_train_nodes : int (default: 2)
|
52
|
+
Minimum number of nodes used during training.
|
53
|
+
min_evaluate_nodes : int (default: 2)
|
54
|
+
Minimum number of nodes used during validation.
|
55
|
+
min_available_nodes : int (default: 2)
|
56
|
+
Minimum number of total nodes in the system.
|
57
|
+
num_malicious_nodes : int (default: 0)
|
58
|
+
Number of malicious nodes in the system. Defaults to 0.
|
59
|
+
num_nodes_to_keep : int (default: 0)
|
60
|
+
Number of nodes to keep before averaging (MultiKrum). Defaults to 0, in
|
61
|
+
that case classical Krum is applied.
|
62
|
+
weighted_by_key : str (default: "num-examples")
|
63
|
+
The key within each MetricRecord whose value is used as the weight when
|
64
|
+
computing weighted averages for both ArrayRecords and MetricRecords.
|
65
|
+
arrayrecord_key : str (default: "arrays")
|
66
|
+
Key used to store the ArrayRecord when constructing Messages.
|
67
|
+
configrecord_key : str (default: "config")
|
68
|
+
Key used to store the ConfigRecord when constructing Messages.
|
69
|
+
train_metrics_aggr_fn : Optional[callable] (default: None)
|
70
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
71
|
+
used to aggregate MetricRecords from training round replies.
|
72
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
73
|
+
average using the provided weight factor key.
|
74
|
+
evaluate_metrics_aggr_fn : Optional[callable] (default: None)
|
75
|
+
Function with signature (list[RecordDict], str) -> MetricRecord,
|
76
|
+
used to aggregate MetricRecords from training round replies.
|
77
|
+
If `None`, defaults to `aggregate_metricrecords`, which performs a weighted
|
78
|
+
average using the provided weight factor key.
|
79
|
+
"""
|
80
|
+
|
81
|
+
# pylint: disable=too-many-arguments,too-many-positional-arguments
|
82
|
+
def __init__(
|
83
|
+
self,
|
84
|
+
fraction_train: float = 1.0,
|
85
|
+
fraction_evaluate: float = 1.0,
|
86
|
+
min_train_nodes: int = 2,
|
87
|
+
min_evaluate_nodes: int = 2,
|
88
|
+
min_available_nodes: int = 2,
|
89
|
+
num_malicious_nodes: int = 0,
|
90
|
+
num_nodes_to_keep: int = 0,
|
91
|
+
weighted_by_key: str = "num-examples",
|
92
|
+
arrayrecord_key: str = "arrays",
|
93
|
+
configrecord_key: str = "config",
|
94
|
+
train_metrics_aggr_fn: Optional[
|
95
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
96
|
+
] = None,
|
97
|
+
evaluate_metrics_aggr_fn: Optional[
|
98
|
+
Callable[[list[RecordDict], str], MetricRecord]
|
99
|
+
] = None,
|
100
|
+
) -> None:
|
101
|
+
super().__init__(
|
102
|
+
fraction_train=fraction_train,
|
103
|
+
fraction_evaluate=fraction_evaluate,
|
104
|
+
min_train_nodes=min_train_nodes,
|
105
|
+
min_evaluate_nodes=min_evaluate_nodes,
|
106
|
+
min_available_nodes=min_available_nodes,
|
107
|
+
weighted_by_key=weighted_by_key,
|
108
|
+
arrayrecord_key=arrayrecord_key,
|
109
|
+
configrecord_key=configrecord_key,
|
110
|
+
train_metrics_aggr_fn=train_metrics_aggr_fn,
|
111
|
+
evaluate_metrics_aggr_fn=evaluate_metrics_aggr_fn,
|
112
|
+
)
|
113
|
+
self.num_malicious_nodes = num_malicious_nodes
|
114
|
+
self.num_nodes_to_keep = num_nodes_to_keep
|
115
|
+
|
116
|
+
def summary(self) -> None:
|
117
|
+
"""Log summary configuration of the strategy."""
|
118
|
+
log(INFO, "\t├──> Krum settings:")
|
119
|
+
log(INFO, "\t│\t├── Number of malicious nodes: %d", self.num_malicious_nodes)
|
120
|
+
log(INFO, "\t│\t└── Number of nodes to keep: %d", self.num_nodes_to_keep)
|
121
|
+
super().summary()
|
122
|
+
|
123
|
+
def _compute_distances(self, records: list[ArrayRecord]) -> NDArray:
|
124
|
+
"""Compute distances between ArrayRecords.
|
125
|
+
|
126
|
+
Parameters
|
127
|
+
----------
|
128
|
+
records : list[ArrayRecord]
|
129
|
+
A list of ArrayRecords (arrays received in replies)
|
130
|
+
|
131
|
+
Returns
|
132
|
+
-------
|
133
|
+
NDArray
|
134
|
+
A 2D array representing the distance matrix of squared distances
|
135
|
+
between input ArrayRecords
|
136
|
+
"""
|
137
|
+
flat_w = np.array(
|
138
|
+
[
|
139
|
+
np.concatenate(rec.to_numpy_ndarrays(), axis=None).ravel()
|
140
|
+
for rec in records
|
141
|
+
]
|
142
|
+
)
|
143
|
+
distance_matrix = np.zeros((len(records), len(records)))
|
144
|
+
for i, flat_w_i in enumerate(flat_w):
|
145
|
+
for j, flat_w_j in enumerate(flat_w):
|
146
|
+
delta = flat_w_i - flat_w_j
|
147
|
+
norm = np.linalg.norm(delta)
|
148
|
+
distance_matrix[i, j] = norm**2
|
149
|
+
return distance_matrix
|
150
|
+
|
151
|
+
def _krum(self, replies: list[RecordDict]) -> list[RecordDict]:
|
152
|
+
"""Select the set of RecordDicts to aggregate using the Krum or MultiKrum
|
153
|
+
algorithm.
|
154
|
+
|
155
|
+
For each node, computes the sum of squared distances to its n-f-2 closest
|
156
|
+
parameter vectors, where n is the number of nodes and f is the number of
|
157
|
+
malicious nodes. The node(s) with the lowest score(s) are selected for
|
158
|
+
aggregation.
|
159
|
+
|
160
|
+
Parameters
|
161
|
+
----------
|
162
|
+
replies : list[RecordDict]
|
163
|
+
List of RecordDicts, each containing an ArrayRecord representing model
|
164
|
+
parameters from a client.
|
165
|
+
|
166
|
+
Returns
|
167
|
+
-------
|
168
|
+
list[RecordDict]
|
169
|
+
List of RecordDicts selected for aggregation. If `num_nodes_to_keep` > 0,
|
170
|
+
returns the top `num_nodes_to_keep` RecordDicts (MultiKrum); otherwise,
|
171
|
+
returns the single RecordDict with the lowest score (Krum).
|
172
|
+
"""
|
173
|
+
# Construct list of ArrayRecord objects from replies
|
174
|
+
# Recall aggregate_train first ensures replies only contain one ArrayRecord
|
175
|
+
array_records = [list(reply.array_records.values())[0] for reply in replies]
|
176
|
+
distance_matrix = self._compute_distances(array_records)
|
177
|
+
|
178
|
+
# For each node, take the n-f-2 closest parameters vectors
|
179
|
+
num_closest = max(1, len(array_records) - self.num_malicious_nodes - 2)
|
180
|
+
closest_indices = []
|
181
|
+
for distance in distance_matrix:
|
182
|
+
closest_indices.append(
|
183
|
+
np.argsort(distance)[1 : num_closest + 1].tolist() # noqa: E203
|
184
|
+
)
|
185
|
+
|
186
|
+
# Compute the score for each node, that is the sum of the distances
|
187
|
+
# of the n-f-2 closest parameters vectors
|
188
|
+
scores = [
|
189
|
+
np.sum(distance_matrix[i, closest_indices[i]])
|
190
|
+
for i in range(len(distance_matrix))
|
191
|
+
]
|
192
|
+
|
193
|
+
# Return RecordDicts that should be aggregated
|
194
|
+
if self.num_nodes_to_keep > 0:
|
195
|
+
# Choose to_keep nodes and return their average (MultiKrum)
|
196
|
+
best_indices = np.argsort(scores)[::-1][
|
197
|
+
len(scores) - self.num_nodes_to_keep :
|
198
|
+
] # noqa: E203
|
199
|
+
return [replies[i] for i in best_indices]
|
200
|
+
|
201
|
+
# Return the RecordDict with the ArrayRecord that minimize the score (Krum)
|
202
|
+
return [replies[np.argmin(scores)]]
|
203
|
+
|
204
|
+
def aggregate_train(
|
205
|
+
self,
|
206
|
+
server_round: int,
|
207
|
+
replies: Iterable[Message],
|
208
|
+
) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
|
209
|
+
"""Aggregate ArrayRecords and MetricRecords in the received Messages."""
|
210
|
+
valid_replies, _ = self._check_and_log_replies(replies, is_train=True)
|
211
|
+
|
212
|
+
arrays, metrics = None, None
|
213
|
+
if valid_replies:
|
214
|
+
reply_contents = [msg.content for msg in valid_replies]
|
215
|
+
|
216
|
+
# Krum
|
217
|
+
replies_to_aggregate = self._krum(reply_contents)
|
218
|
+
|
219
|
+
# Aggregate ArrayRecords
|
220
|
+
arrays = aggregate_arrayrecords(
|
221
|
+
replies_to_aggregate,
|
222
|
+
self.weighted_by_key,
|
223
|
+
)
|
224
|
+
|
225
|
+
# Aggregate MetricRecords
|
226
|
+
metrics = self.train_metrics_aggr_fn(
|
227
|
+
replies_to_aggregate,
|
228
|
+
self.weighted_by_key,
|
229
|
+
)
|
230
|
+
return arrays, metrics
|