flwr-nightly 1.22.0.dev20250917__py3-none-any.whl → 1.22.0.dev20250919__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. flwr/cli/new/new.py +2 -0
  2. flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
  3. flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
  4. flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
  5. flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
  6. flwr/clientapp/mod/__init__.py +2 -1
  7. flwr/clientapp/mod/centraldp_mods.py +155 -39
  8. flwr/clientapp/typing.py +22 -0
  9. flwr/common/constant.py +1 -0
  10. flwr/common/exit/exit_code.py +4 -0
  11. flwr/common/record/typeddict.py +12 -0
  12. flwr/serverapp/strategy/__init__.py +12 -0
  13. flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
  14. flwr/serverapp/strategy/dp_fixed_clipping.py +71 -49
  15. flwr/serverapp/strategy/fedadagrad.py +0 -3
  16. flwr/serverapp/strategy/fedadam.py +0 -3
  17. flwr/serverapp/strategy/fedavgm.py +3 -3
  18. flwr/serverapp/strategy/fedprox.py +1 -1
  19. flwr/serverapp/strategy/fedtrimmedavg.py +1 -1
  20. flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
  21. flwr/serverapp/strategy/fedyogi.py +0 -3
  22. flwr/serverapp/strategy/krum.py +230 -0
  23. flwr/serverapp/strategy/qfedavg.py +252 -0
  24. flwr/supercore/cli/flower_superexec.py +26 -1
  25. flwr/supercore/constant.py +19 -0
  26. flwr/supercore/superexec/plugin/exec_plugin.py +11 -1
  27. flwr/supercore/superexec/run_superexec.py +16 -2
  28. {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/METADATA +1 -1
  29. {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/RECORD +31 -23
  30. flwr/serverapp/dp_fixed_clipping.py +0 -352
  31. flwr/serverapp/strategy/strategy_utils_tests.py +0 -323
  32. {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/WHEEL +0 -0
  33. {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,335 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Message-based Central differential privacy with adaptive clipping.
16
+
17
+ Paper (Andrew et al.): https://arxiv.org/abs/1905.03871
18
+ """
19
+
20
+ import math
21
+ from abc import ABC
22
+ from collections import OrderedDict
23
+ from collections.abc import Iterable
24
+ from logging import INFO
25
+ from typing import Optional
26
+
27
+ import numpy as np
28
+
29
+ from flwr.common import Array, ArrayRecord, ConfigRecord, Message, MetricRecord, log
30
+ from flwr.common.differential_privacy import (
31
+ adaptive_clip_inputs_inplace,
32
+ add_gaussian_noise_inplace,
33
+ compute_adaptive_noise_params,
34
+ compute_stdv,
35
+ )
36
+ from flwr.common.differential_privacy_constants import KEY_CLIPPING_NORM, KEY_NORM_BIT
37
+ from flwr.server import Grid
38
+ from flwr.serverapp.exception import AggregationError
39
+
40
+ from .dp_fixed_clipping import validate_replies
41
+ from .strategy import Strategy
42
+
43
+
44
+ class DifferentialPrivacyAdaptiveBase(Strategy, ABC):
45
+ """Base class for DP strategies with adaptive clipping."""
46
+
47
+ # pylint: disable=too-many-arguments,too-many-instance-attributes,too-many-positional-arguments
48
+ def __init__(
49
+ self,
50
+ strategy: Strategy,
51
+ noise_multiplier: float,
52
+ num_sampled_clients: int,
53
+ initial_clipping_norm: float = 0.1,
54
+ target_clipped_quantile: float = 0.5,
55
+ clip_norm_lr: float = 0.2,
56
+ clipped_count_stddev: Optional[float] = None,
57
+ ) -> None:
58
+ super().__init__()
59
+
60
+ if strategy is None:
61
+ raise ValueError("The passed strategy is None.")
62
+ if noise_multiplier < 0:
63
+ raise ValueError("The noise multiplier should be a non-negative value.")
64
+ if num_sampled_clients <= 0:
65
+ raise ValueError(
66
+ "The number of sampled clients should be a positive value."
67
+ )
68
+ if initial_clipping_norm <= 0:
69
+ raise ValueError("The initial clipping norm should be a positive value.")
70
+ if not 0 <= target_clipped_quantile <= 1:
71
+ raise ValueError("The target clipped quantile must be in [0, 1].")
72
+ if clip_norm_lr <= 0:
73
+ raise ValueError("The learning rate must be positive.")
74
+ if clipped_count_stddev is not None and clipped_count_stddev < 0:
75
+ raise ValueError("The `clipped_count_stddev` must be non-negative.")
76
+
77
+ self.strategy = strategy
78
+ self.num_sampled_clients = num_sampled_clients
79
+ self.clipping_norm = initial_clipping_norm
80
+ self.target_clipped_quantile = target_clipped_quantile
81
+ self.clip_norm_lr = clip_norm_lr
82
+ (
83
+ self.clipped_count_stddev,
84
+ self.noise_multiplier,
85
+ ) = compute_adaptive_noise_params(
86
+ noise_multiplier,
87
+ num_sampled_clients,
88
+ clipped_count_stddev,
89
+ )
90
+
91
+ def _add_noise_to_aggregated_arrays(self, aggregated: ArrayRecord) -> ArrayRecord:
92
+ nds = aggregated.to_numpy_ndarrays()
93
+ stdv = compute_stdv(
94
+ self.noise_multiplier, self.clipping_norm, self.num_sampled_clients
95
+ )
96
+ add_gaussian_noise_inplace(nds, stdv)
97
+ log(INFO, "aggregate_fit: central DP noise with %.4f stdev added", stdv)
98
+ return ArrayRecord(
99
+ OrderedDict({k: Array(v) for k, v in zip(aggregated.keys(), nds)})
100
+ )
101
+
102
+ def _noisy_fraction(self, count: int, total: int) -> float:
103
+ return float(np.random.normal(count, self.clipped_count_stddev)) / float(total)
104
+
105
+ def _geometric_update(self, clipped_fraction: float) -> None:
106
+ self.clipping_norm *= math.exp(
107
+ -self.clip_norm_lr * (clipped_fraction - self.target_clipped_quantile)
108
+ )
109
+
110
+ def configure_evaluate(
111
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
112
+ ) -> Iterable[Message]:
113
+ """Configure the next round of federated evaluation."""
114
+ return self.strategy.configure_evaluate(server_round, arrays, config, grid)
115
+
116
+ def aggregate_evaluate(
117
+ self, server_round: int, replies: Iterable[Message]
118
+ ) -> Optional[MetricRecord]:
119
+ """Aggregate MetricRecords in the received Messages."""
120
+ return self.strategy.aggregate_evaluate(server_round, replies)
121
+
122
+ def summary(self) -> None:
123
+ """Log summary configuration of the strategy."""
124
+ self.strategy.summary()
125
+
126
+
127
+ class DifferentialPrivacyServerSideAdaptiveClipping(DifferentialPrivacyAdaptiveBase):
128
+ """Message-based central DP with server-side adaptive clipping."""
129
+
130
+ # pylint: disable=too-many-arguments,too-many-locals,too-many-positional-arguments
131
+ def __init__(
132
+ self,
133
+ strategy: Strategy,
134
+ noise_multiplier: float,
135
+ num_sampled_clients: int,
136
+ initial_clipping_norm: float = 0.1,
137
+ target_clipped_quantile: float = 0.5,
138
+ clip_norm_lr: float = 0.2,
139
+ clipped_count_stddev: Optional[float] = None,
140
+ ) -> None:
141
+ super().__init__(
142
+ strategy,
143
+ noise_multiplier,
144
+ num_sampled_clients,
145
+ initial_clipping_norm,
146
+ target_clipped_quantile,
147
+ clip_norm_lr,
148
+ clipped_count_stddev,
149
+ )
150
+ self.current_arrays: ArrayRecord = ArrayRecord()
151
+
152
+ def __repr__(self) -> str:
153
+ """Compute a string representation of the strategy."""
154
+ return "Differential Privacy Strategy Wrapper (Server-Side Adaptive Clipping)"
155
+
156
+ def summary(self) -> None:
157
+ """Log summary configuration of the strategy."""
158
+ log(INFO, "\t├──> DP settings:")
159
+ log(INFO, "\t│\t├── Noise multiplier: %s", self.noise_multiplier)
160
+ log(INFO, "\t│\t├── Clipping norm: %s", self.clipping_norm)
161
+ log(INFO, "\t│\t├── Target clipped quantile: %s", self.target_clipped_quantile)
162
+ log(INFO, "\t│\t└── Clip norm learning rate: %s", self.clip_norm_lr)
163
+ super().summary()
164
+
165
+ def configure_train(
166
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
167
+ ) -> Iterable[Message]:
168
+ """Configure the next round of training."""
169
+ self.current_arrays = arrays
170
+ return self.strategy.configure_train(server_round, arrays, config, grid)
171
+
172
+ def aggregate_train(
173
+ self, server_round: int, replies: Iterable[Message]
174
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
175
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
176
+ if not validate_replies(replies, self.num_sampled_clients):
177
+ return None, None
178
+
179
+ current_nd = self.current_arrays.to_numpy_ndarrays()
180
+ clipped_indicator_count = 0
181
+ replies_list = list(replies)
182
+
183
+ for reply in replies_list:
184
+ for arr_name, record in reply.content.array_records.items():
185
+ reply_nd = record.to_numpy_ndarrays()
186
+ model_update = [
187
+ np.subtract(x, y) for (x, y) in zip(reply_nd, current_nd)
188
+ ]
189
+ norm_bit = adaptive_clip_inputs_inplace(
190
+ model_update, self.clipping_norm
191
+ )
192
+ clipped_indicator_count += int(norm_bit)
193
+ # reconstruct array using clipped contribution from current round
194
+ restored = [c + u for c, u in zip(current_nd, model_update)]
195
+ reply.content[arr_name] = ArrayRecord(
196
+ OrderedDict({k: Array(v) for k, v in zip(record.keys(), restored)})
197
+ )
198
+ log(
199
+ INFO,
200
+ "aggregate_train: arrays in `ArrayRecord` are clipped by value: %.4f.",
201
+ self.clipping_norm,
202
+ )
203
+
204
+ clipped_fraction = self._noisy_fraction(
205
+ clipped_indicator_count, len(replies_list)
206
+ )
207
+ self._geometric_update(clipped_fraction)
208
+
209
+ aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
210
+ server_round, replies_list
211
+ )
212
+
213
+ if aggregated_arrays:
214
+ aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
215
+
216
+ return aggregated_arrays, aggregated_metrics
217
+
218
+
219
+ class DifferentialPrivacyClientSideAdaptiveClipping(DifferentialPrivacyAdaptiveBase):
220
+ """Strategy wrapper for central DP with client-side adaptive clipping.
221
+
222
+ Use `adaptiveclipping_mod` modifier at the client side.
223
+
224
+ In comparison to `DifferentialPrivacyServerSideAdaptiveClipping`,
225
+ which performs clipping on the server-side,
226
+ `DifferentialPrivacyClientSideAdaptiveClipping`
227
+ expects clipping to happen on the client-side, usually by using the built-in
228
+ `adaptiveclipping_mod`.
229
+
230
+ Parameters
231
+ ----------
232
+ strategy : Strategy
233
+ The strategy to which DP functionalities will be added by this wrapper.
234
+ noise_multiplier : float
235
+ The noise multiplier for the Gaussian mechanism for model updates.
236
+ num_sampled_clients : int
237
+ The number of clients that are sampled on each round.
238
+ initial_clipping_norm : float
239
+ The initial value of clipping norm. Defaults to 0.1.
240
+ Andrew et al. recommends to set to 0.1.
241
+ target_clipped_quantile : float
242
+ The desired quantile of updates which should be clipped. Defaults to 0.5.
243
+ clip_norm_lr : float
244
+ The learning rate for the clipping norm adaptation. Defaults to 0.2.
245
+ Andrew et al. recommends to set to 0.2.
246
+ clipped_count_stddev : float
247
+ The stddev of the noise added to the count of
248
+ updates currently below the estimate.
249
+ Andrew et al. recommends to set to `expected_num_records/20`
250
+
251
+ Examples
252
+ --------
253
+ Create a strategy::
254
+
255
+ strategy = fl.serverapp.FedAvg(...)
256
+
257
+ Wrap the strategy with the `DifferentialPrivacyClientSideAdaptiveClipping` wrapper::
258
+
259
+ dp_strategy = DifferentialPrivacyClientSideAdaptiveClipping(
260
+ strategy, cfg.noise_multiplier, cfg.num_sampled_clients, ...
261
+ )
262
+
263
+ On the client, add the `adaptiveclipping_mod` to the client-side mods::
264
+
265
+ app = fl.client.ClientApp(mods=[adaptiveclipping_mod])
266
+ """
267
+
268
+ def __repr__(self) -> str:
269
+ """Compute a string representation of the strategy."""
270
+ return "Differential Privacy Strategy Wrapper (Client-Side Adaptive Clipping)"
271
+
272
+ def summary(self) -> None:
273
+ """Log summary configuration of the strategy."""
274
+ log(INFO, "\t├──> DP settings:")
275
+ log(INFO, "\t│\t├── Noise multiplier: %s", self.noise_multiplier)
276
+ log(INFO, "\t│\t├── Clipping norm: %s", self.clipping_norm)
277
+ log(INFO, "\t│\t├── Target clipped quantile: %s", self.target_clipped_quantile)
278
+ log(INFO, "\t│\t└── Clip norm learning rate: %s", self.clip_norm_lr)
279
+ super().summary()
280
+
281
+ def configure_train(
282
+ self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
283
+ ) -> Iterable[Message]:
284
+ """Configure the next round of training."""
285
+ config[KEY_CLIPPING_NORM] = self.clipping_norm
286
+ return self.strategy.configure_train(server_round, arrays, config, grid)
287
+
288
+ def aggregate_train(
289
+ self, server_round: int, replies: Iterable[Message]
290
+ ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
291
+ """Aggregate ArrayRecords and MetricRecords in the received Messages."""
292
+ if not validate_replies(replies, self.num_sampled_clients):
293
+ return None, None
294
+
295
+ replies_list = list(replies)
296
+
297
+ # validate that KEY_NORM_BIT is present in all replies
298
+ for msg in replies_list:
299
+ for _, mrec in msg.content.metric_records.items():
300
+ if KEY_NORM_BIT not in mrec:
301
+ raise AggregationError(
302
+ f"KEY_NORM_BIT ('{KEY_NORM_BIT}') not found"
303
+ f" in MetricRecord or metrics for reply."
304
+ )
305
+
306
+ aggregated_arrays, aggregated_metrics = self.strategy.aggregate_train(
307
+ server_round, replies_list
308
+ )
309
+
310
+ self._update_clip_norm_from_replies(replies_list)
311
+
312
+ if aggregated_arrays:
313
+ aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
314
+
315
+ return aggregated_arrays, aggregated_metrics
316
+
317
+ def _update_clip_norm_from_replies(self, replies: list[Message]) -> None:
318
+ total = len(replies)
319
+ clipped_count = 0
320
+
321
+ for msg in replies:
322
+ # KEY_NORM_BIT is guaranteed to be present
323
+ for _, mrec in msg.content.metric_records.items():
324
+ if KEY_NORM_BIT in mrec:
325
+ clipped_count += int(bool(mrec[KEY_NORM_BIT]))
326
+ break
327
+ else:
328
+ # Check fallback location
329
+ if hasattr(msg.content, "metrics") and isinstance(
330
+ msg.content.metrics, dict
331
+ ):
332
+ clipped_count += int(bool(msg.content.metrics[KEY_NORM_BIT]))
333
+
334
+ clipped_fraction = self._noisy_fraction(clipped_count, total)
335
+ self._geometric_update(clipped_fraction)
@@ -84,53 +84,6 @@ class DifferentialPrivacyFixedClippingBase(Strategy, ABC):
84
84
  self.clipping_norm = clipping_norm
85
85
  self.num_sampled_clients = num_sampled_clients
86
86
 
87
- def _validate_replies(self, replies: Iterable[Message]) -> bool:
88
- """Validate replies and log errors/warnings.
89
-
90
- Returns
91
- -------
92
- bool
93
- True if replies are valid for aggregation, False otherwise.
94
- """
95
- num_errors = 0
96
- num_replies_with_content = 0
97
- for msg in replies:
98
- if msg.has_error():
99
- log(
100
- INFO,
101
- "Received error in reply from node %d: %s",
102
- msg.metadata.src_node_id,
103
- msg.error,
104
- )
105
- num_errors += 1
106
- else:
107
- num_replies_with_content += 1
108
-
109
- # Errors are not allowed
110
- if num_errors:
111
- log(
112
- INFO,
113
- "aggregate_train: Some clients reported errors. Skipping aggregation.",
114
- )
115
- return False
116
-
117
- log(
118
- INFO,
119
- "aggregate_train: Received %s results and %s failures",
120
- num_replies_with_content,
121
- num_errors,
122
- )
123
-
124
- if num_replies_with_content != self.num_sampled_clients:
125
- log(
126
- WARNING,
127
- CLIENTS_DISCREPANCY_WARNING,
128
- num_replies_with_content,
129
- self.num_sampled_clients,
130
- )
131
-
132
- return True
133
-
134
87
  def _add_noise_to_aggregated_arrays(
135
88
  self, aggregated_arrays: ArrayRecord
136
89
  ) -> ArrayRecord:
@@ -228,6 +181,13 @@ class DifferentialPrivacyServerSideFixedClipping(DifferentialPrivacyFixedClippin
228
181
  """Compute a string representation of the strategy."""
229
182
  return "Differential Privacy Strategy Wrapper (Server-Side Fixed Clipping)"
230
183
 
184
+ def summary(self) -> None:
185
+ """Log summary configuration of the strategy."""
186
+ log(INFO, "\t├──> DP settings:")
187
+ log(INFO, "\t│\t├── Noise multiplier: %s", self.noise_multiplier)
188
+ log(INFO, "\t│\t└── Clipping norm: %s", self.clipping_norm)
189
+ super().summary()
190
+
231
191
  def configure_train(
232
192
  self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
233
193
  ) -> Iterable[Message]:
@@ -241,7 +201,7 @@ class DifferentialPrivacyServerSideFixedClipping(DifferentialPrivacyFixedClippin
241
201
  replies: Iterable[Message],
242
202
  ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
243
203
  """Aggregate ArrayRecords and MetricRecords in the received Messages."""
244
- if not self._validate_replies(replies):
204
+ if not validate_replies(replies, self.num_sampled_clients):
245
205
  return None, None
246
206
 
247
207
  # Clip arrays in replies
@@ -322,6 +282,13 @@ class DifferentialPrivacyClientSideFixedClipping(DifferentialPrivacyFixedClippin
322
282
  """Compute a string representation of the strategy."""
323
283
  return "Differential Privacy Strategy Wrapper (Client-Side Fixed Clipping)"
324
284
 
285
+ def summary(self) -> None:
286
+ """Log summary configuration of the strategy."""
287
+ log(INFO, "\t├──> DP settings:")
288
+ log(INFO, "\t│\t├── Noise multiplier: %s", self.noise_multiplier)
289
+ log(INFO, "\t│\t└── Clipping norm: %s", self.clipping_norm)
290
+ super().summary()
291
+
325
292
  def configure_train(
326
293
  self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid
327
294
  ) -> Iterable[Message]:
@@ -337,7 +304,7 @@ class DifferentialPrivacyClientSideFixedClipping(DifferentialPrivacyFixedClippin
337
304
  replies: Iterable[Message],
338
305
  ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]:
339
306
  """Aggregate ArrayRecords and MetricRecords in the received Messages."""
340
- if not self._validate_replies(replies):
307
+ if not validate_replies(replies, self.num_sampled_clients):
341
308
  return None, None
342
309
 
343
310
  # Aggregate
@@ -350,3 +317,58 @@ class DifferentialPrivacyClientSideFixedClipping(DifferentialPrivacyFixedClippin
350
317
  aggregated_arrays = self._add_noise_to_aggregated_arrays(aggregated_arrays)
351
318
 
352
319
  return aggregated_arrays, aggregated_metrics
320
+
321
+
322
+ def validate_replies(replies: Iterable[Message], num_sampled_clients: int) -> bool:
323
+ """Validate replies and log errors/warnings.
324
+
325
+ Arguments
326
+ ----------
327
+ replies : Iterable[Message]
328
+ The replies to validate.
329
+ num_sampled_clients : int
330
+ The expected number of sampled clients.
331
+
332
+ Returns
333
+ -------
334
+ bool
335
+ True if replies are valid for aggregation, False otherwise.
336
+ """
337
+ num_errors = 0
338
+ num_replies_with_content = 0
339
+ for msg in replies:
340
+ if msg.has_error():
341
+ log(
342
+ INFO,
343
+ "Received error in reply from node %d: %s",
344
+ msg.metadata.src_node_id,
345
+ msg.error,
346
+ )
347
+ num_errors += 1
348
+ else:
349
+ num_replies_with_content += 1
350
+
351
+ # Errors are not allowed
352
+ if num_errors:
353
+ log(
354
+ INFO,
355
+ "aggregate_train: Some clients reported errors. Skipping aggregation.",
356
+ )
357
+ return False
358
+
359
+ log(
360
+ INFO,
361
+ "aggregate_train: Received %s results and %s failures",
362
+ num_replies_with_content,
363
+ num_errors,
364
+ )
365
+
366
+ if num_replies_with_content != num_sampled_clients:
367
+ log(
368
+ WARNING,
369
+ CLIENTS_DISCREPANCY_WARNING,
370
+ num_replies_with_content,
371
+ num_sampled_clients,
372
+ )
373
+
374
+ return True
@@ -153,9 +153,6 @@ class FedAdagrad(FedOpt):
153
153
  for k, x in self.current_arrays.items()
154
154
  }
155
155
 
156
- # Update current arrays
157
- self.current_arrays = new_arrays
158
-
159
156
  return (
160
157
  ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
161
158
  aggregated_metrics,
@@ -172,9 +172,6 @@ class FedAdam(FedOpt):
172
172
  for k, x in self.current_arrays.items()
173
173
  }
174
174
 
175
- # Update current arrays
176
- self.current_arrays = new_arrays
177
-
178
175
  return (
179
176
  ArrayRecord(OrderedDict({k: Array(v) for k, v in new_arrays.items()})),
180
177
  aggregated_metrics,
@@ -126,9 +126,9 @@ class FedAvgM(FedAvg):
126
126
  """Log summary configuration of the strategy."""
127
127
  opt_status = "ON" if self.server_opt else "OFF"
128
128
  log(INFO, "\t├──> FedAvgM settings:")
129
- log(INFO, "\t|\t├── Server optimization: %s", opt_status)
130
- log(INFO, "\t|\t├── Server learning rate: %s", self.server_learning_rate)
131
- log(INFO, "\t|\t└── Server Momentum: %s", self.server_momentum)
129
+ log(INFO, "\t│\t├── Server optimization: %s", opt_status)
130
+ log(INFO, "\t│\t├── Server learning rate: %s", self.server_learning_rate)
131
+ log(INFO, "\t│\t└── Server Momentum: %s", self.server_momentum)
132
132
  super().summary()
133
133
 
134
134
  def configure_train(
@@ -162,7 +162,7 @@ class FedProx(FedAvg):
162
162
  def summary(self) -> None:
163
163
  """Log summary configuration of the strategy."""
164
164
  log(INFO, "\t├──> FedProx settings:")
165
- log(INFO, "\t|\t└── Proximal mu: %s", self.proximal_mu)
165
+ log(INFO, "\t│\t└── Proximal mu: %s", self.proximal_mu)
166
166
  super().summary()
167
167
 
168
168
  def configure_train(
@@ -108,7 +108,7 @@ class FedTrimmedAvg(FedAvg):
108
108
  def summary(self) -> None:
109
109
  """Log summary configuration of the strategy."""
110
110
  log(INFO, "\t├──> FedTrimmedAvg settings:")
111
- log(INFO, "\t|\t└── beta: %s", self.beta)
111
+ log(INFO, "\t│\t└── beta: %s", self.beta)
112
112
  super().summary()
113
113
 
114
114
  def aggregate_train(