flwr-nightly 1.22.0.dev20250917__py3-none-any.whl → 1.22.0.dev20250919__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. flwr/cli/new/new.py +2 -0
  2. flwr/cli/new/templates/app/code/client.xgboost.py.tpl +110 -0
  3. flwr/cli/new/templates/app/code/server.xgboost.py.tpl +56 -0
  4. flwr/cli/new/templates/app/code/task.xgboost.py.tpl +67 -0
  5. flwr/cli/new/templates/app/pyproject.xgboost.toml.tpl +61 -0
  6. flwr/clientapp/mod/__init__.py +2 -1
  7. flwr/clientapp/mod/centraldp_mods.py +155 -39
  8. flwr/clientapp/typing.py +22 -0
  9. flwr/common/constant.py +1 -0
  10. flwr/common/exit/exit_code.py +4 -0
  11. flwr/common/record/typeddict.py +12 -0
  12. flwr/serverapp/strategy/__init__.py +12 -0
  13. flwr/serverapp/strategy/dp_adaptive_clipping.py +335 -0
  14. flwr/serverapp/strategy/dp_fixed_clipping.py +71 -49
  15. flwr/serverapp/strategy/fedadagrad.py +0 -3
  16. flwr/serverapp/strategy/fedadam.py +0 -3
  17. flwr/serverapp/strategy/fedavgm.py +3 -3
  18. flwr/serverapp/strategy/fedprox.py +1 -1
  19. flwr/serverapp/strategy/fedtrimmedavg.py +1 -1
  20. flwr/serverapp/strategy/fedxgb_cyclic.py +220 -0
  21. flwr/serverapp/strategy/fedyogi.py +0 -3
  22. flwr/serverapp/strategy/krum.py +230 -0
  23. flwr/serverapp/strategy/qfedavg.py +252 -0
  24. flwr/supercore/cli/flower_superexec.py +26 -1
  25. flwr/supercore/constant.py +19 -0
  26. flwr/supercore/superexec/plugin/exec_plugin.py +11 -1
  27. flwr/supercore/superexec/run_superexec.py +16 -2
  28. {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/METADATA +1 -1
  29. {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/RECORD +31 -23
  30. flwr/serverapp/dp_fixed_clipping.py +0 -352
  31. flwr/serverapp/strategy/strategy_utils_tests.py +0 -323
  32. {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/WHEEL +0 -0
  33. {flwr_nightly-1.22.0.dev20250917.dist-info → flwr_nightly-1.22.0.dev20250919.dist-info}/entry_points.txt +0 -0
flwr/cli/new/new.py CHANGED
@@ -41,6 +41,7 @@ class MlFramework(str, Enum):
41
41
  JAX = "JAX"
42
42
  MLX = "MLX"
43
43
  NUMPY = "NumPy"
44
+ XGBOOST = "XGBoost"
44
45
  FLOWERTUNE = "FlowerTune"
45
46
  BASELINE = "Flower Baseline"
46
47
  PYTORCH_LEGACY_API = "PyTorch (Legacy API, deprecated)"
@@ -247,6 +248,7 @@ def new(
247
248
  MlFramework.TENSORFLOW.value,
248
249
  MlFramework.SKLEARN.value,
249
250
  MlFramework.NUMPY.value,
251
+ MlFramework.XGBOOST.value,
250
252
  "pytorch_legacy_api",
251
253
  ]
252
254
  if framework_str in frameworks_with_tasks:
@@ -0,0 +1,110 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import warnings
4
+
5
+ import numpy as np
6
+ import xgboost as xgb
7
+ from flwr.app import ArrayRecord, Context, Message, MetricRecord, RecordDict
8
+ from flwr.clientapp import ClientApp
9
+ from flwr.common.config import unflatten_dict
10
+
11
+ from $import_name.task import load_data, replace_keys
12
+
13
+ warnings.filterwarnings("ignore", category=UserWarning)
14
+
15
+
16
+ # Flower ClientApp
17
+ app = ClientApp()
18
+
19
+
20
+ def _local_boost(bst_input, num_local_round, train_dmatrix):
21
+ # Update trees based on local training data.
22
+ for i in range(num_local_round):
23
+ bst_input.update(train_dmatrix, bst_input.num_boosted_rounds())
24
+
25
+ # Bagging: extract the last N=num_local_round trees for sever aggregation
26
+ bst = bst_input[
27
+ bst_input.num_boosted_rounds()
28
+ - num_local_round : bst_input.num_boosted_rounds()
29
+ ]
30
+ return bst
31
+
32
+
33
+ @app.train()
34
+ def train(msg: Message, context: Context) -> Message:
35
+ # Load model and data
36
+ partition_id = context.node_config["partition-id"]
37
+ num_partitions = context.node_config["num-partitions"]
38
+ train_dmatrix, _, num_train, _ = load_data(partition_id, num_partitions)
39
+
40
+ # Read from run config
41
+ num_local_round = context.run_config["local-epochs"]
42
+ # Flatted config dict and replace "-" with "_"
43
+ cfg = replace_keys(unflatten_dict(context.run_config))
44
+ params = cfg["params"]
45
+
46
+ global_round = msg.content["config"]["server-round"]
47
+ if global_round == 1:
48
+ # First round local training
49
+ bst = xgb.train(
50
+ params,
51
+ train_dmatrix,
52
+ num_boost_round=num_local_round,
53
+ )
54
+ else:
55
+ bst = xgb.Booster(params=params)
56
+ global_model = bytearray(msg.content["arrays"]["0"].numpy().tobytes())
57
+
58
+ # Load global model into booster
59
+ bst.load_model(global_model)
60
+
61
+ # Local training
62
+ bst = _local_boost(bst, num_local_round, train_dmatrix)
63
+
64
+ # Save model
65
+ local_model = bst.save_raw("json")
66
+ model_np = np.frombuffer(local_model, dtype=np.uint8)
67
+
68
+ # Construct reply message
69
+ # Note: we store the model as the first item in a list into ArrayRecord,
70
+ # which can be accessed using index ["0"].
71
+ model_record = ArrayRecord([model_np])
72
+ metrics = {
73
+ "num-examples": num_train,
74
+ }
75
+ metric_record = MetricRecord(metrics)
76
+ content = RecordDict({"arrays": model_record, "metrics": metric_record})
77
+ return Message(content=content, reply_to=msg)
78
+
79
+
80
+ @app.evaluate()
81
+ def evaluate(msg: Message, context: Context) -> Message:
82
+ # Load model and data
83
+ partition_id = context.node_config["partition-id"]
84
+ num_partitions = context.node_config["num-partitions"]
85
+ _, valid_dmatrix, _, num_val = load_data(partition_id, num_partitions)
86
+
87
+ # Load config
88
+ cfg = replace_keys(unflatten_dict(context.run_config))
89
+ params = cfg["params"]
90
+
91
+ # Load global model
92
+ bst = xgb.Booster(params=params)
93
+ global_model = bytearray(msg.content["arrays"]["0"].numpy().tobytes())
94
+ bst.load_model(global_model)
95
+
96
+ # Run evaluation
97
+ eval_results = bst.eval_set(
98
+ evals=[(valid_dmatrix, "valid")],
99
+ iteration=bst.num_boosted_rounds() - 1,
100
+ )
101
+ auc = float(eval_results.split("\t")[1].split(":")[1])
102
+
103
+ # Construct and return reply Message
104
+ metrics = {
105
+ "auc": auc,
106
+ "num-examples": num_val,
107
+ }
108
+ metric_record = MetricRecord(metrics)
109
+ content = RecordDict({"metrics": metric_record})
110
+ return Message(content=content, reply_to=msg)
@@ -0,0 +1,56 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import numpy as np
4
+ import xgboost as xgb
5
+ from flwr.app import ArrayRecord, Context
6
+ from flwr.common.config import unflatten_dict
7
+ from flwr.serverapp import Grid, ServerApp
8
+ from flwr.serverapp.strategy import FedXgbBagging
9
+
10
+ from $import_name.task import replace_keys
11
+
12
+ # Create ServerApp
13
+ app = ServerApp()
14
+
15
+
16
+ @app.main()
17
+ def main(grid: Grid, context: Context) -> None:
18
+ # Read run config
19
+ num_rounds = context.run_config["num-server-rounds"]
20
+ fraction_train = context.run_config["fraction-train"]
21
+ fraction_evaluate = context.run_config["fraction-evaluate"]
22
+ # Flatted config dict and replace "-" with "_"
23
+ cfg = replace_keys(unflatten_dict(context.run_config))
24
+ params = cfg["params"]
25
+
26
+ # Init global model
27
+ # Init with an empty object; the XGBooster will be created
28
+ # and trained on the client side.
29
+ global_model = b""
30
+ # Note: we store the model as the first item in a list into ArrayRecord,
31
+ # which can be accessed using index ["0"].
32
+ arrays = ArrayRecord([np.frombuffer(global_model, dtype=np.uint8)])
33
+
34
+ # Initialize FedXgbBagging strategy
35
+ strategy = FedXgbBagging(
36
+ fraction_train=fraction_train,
37
+ fraction_evaluate=fraction_evaluate,
38
+ )
39
+
40
+ # Start strategy, run FedXgbBagging for `num_rounds`
41
+ result = strategy.start(
42
+ grid=grid,
43
+ initial_arrays=arrays,
44
+ num_rounds=num_rounds,
45
+ )
46
+
47
+ # Save final model to disk
48
+ bst = xgb.Booster(params=params)
49
+ global_model = bytearray(result.arrays["0"].numpy().tobytes())
50
+
51
+ # Load global model into booster
52
+ bst.load_model(global_model)
53
+
54
+ # Save model
55
+ print("\nSaving final model to disk...")
56
+ bst.save_model("final_model.json")
@@ -0,0 +1,67 @@
1
+ """$project_name: A Flower / $framework_str app."""
2
+
3
+ import xgboost as xgb
4
+ from flwr_datasets import FederatedDataset
5
+ from flwr_datasets.partitioner import IidPartitioner
6
+
7
+
8
+ def train_test_split(partition, test_fraction, seed):
9
+ """Split the data into train and validation set given split rate."""
10
+ train_test = partition.train_test_split(test_size=test_fraction, seed=seed)
11
+ partition_train = train_test["train"]
12
+ partition_test = train_test["test"]
13
+
14
+ num_train = len(partition_train)
15
+ num_test = len(partition_test)
16
+
17
+ return partition_train, partition_test, num_train, num_test
18
+
19
+
20
+ def transform_dataset_to_dmatrix(data):
21
+ """Transform dataset to DMatrix format for xgboost."""
22
+ x = data["inputs"]
23
+ y = data["label"]
24
+ new_data = xgb.DMatrix(x, label=y)
25
+ return new_data
26
+
27
+
28
+ fds = None # Cache FederatedDataset
29
+
30
+
31
+ def load_data(partition_id, num_clients):
32
+ """Load partition HIGGS data."""
33
+ # Only initialize `FederatedDataset` once
34
+ global fds
35
+ if fds is None:
36
+ partitioner = IidPartitioner(num_partitions=num_clients)
37
+ fds = FederatedDataset(
38
+ dataset="jxie/higgs",
39
+ partitioners={"train": partitioner},
40
+ )
41
+
42
+ # Load the partition for this `partition_id`
43
+ partition = fds.load_partition(partition_id, split="train")
44
+ partition.set_format("numpy")
45
+
46
+ # Train/test splitting
47
+ train_data, valid_data, num_train, num_val = train_test_split(
48
+ partition, test_fraction=0.2, seed=42
49
+ )
50
+
51
+ # Reformat data to DMatrix for xgboost
52
+ train_dmatrix = transform_dataset_to_dmatrix(train_data)
53
+ valid_dmatrix = transform_dataset_to_dmatrix(valid_data)
54
+
55
+ return train_dmatrix, valid_dmatrix, num_train, num_val
56
+
57
+
58
+ def replace_keys(input_dict, match="-", target="_"):
59
+ """Recursively replace match string with target string in dictionary keys."""
60
+ new_dict = {}
61
+ for key, value in input_dict.items():
62
+ new_key = key.replace(match, target)
63
+ if isinstance(value, dict):
64
+ new_dict[new_key] = replace_keys(value, match, target)
65
+ else:
66
+ new_dict[new_key] = value
67
+ return new_dict
@@ -0,0 +1,61 @@
1
+ # =====================================================================
2
+ # For a full TOML configuration guide, check the Flower docs:
3
+ # https://flower.ai/docs/framework/how-to-configure-pyproject-toml.html
4
+ # =====================================================================
5
+
6
+ [build-system]
7
+ requires = ["hatchling"]
8
+ build-backend = "hatchling.build"
9
+
10
+ [project]
11
+ name = "$package_name"
12
+ version = "1.0.0"
13
+ description = ""
14
+ license = "Apache-2.0"
15
+ # Dependencies for your Flower App
16
+ dependencies = [
17
+ "flwr[simulation]>=1.22.0",
18
+ "flwr-datasets>=0.5.0",
19
+ "xgboost>=2.0.0",
20
+ ]
21
+
22
+ [tool.hatch.build.targets.wheel]
23
+ packages = ["."]
24
+
25
+ [tool.flwr.app]
26
+ publisher = "$username"
27
+
28
+ [tool.flwr.app.components]
29
+ serverapp = "$import_name.server_app:app"
30
+ clientapp = "$import_name.client_app:app"
31
+
32
+ # Custom config values accessible via `context.run_config`
33
+ [tool.flwr.app.config]
34
+ num-server-rounds = 3
35
+ fraction-train = 0.1
36
+ fraction-evaluate = 0.1
37
+ local-epochs = 1
38
+
39
+ # XGBoost parameters
40
+ params.objective = "binary:logistic"
41
+ params.eta = 0.1 # Learning rate
42
+ params.max-depth = 8
43
+ params.eval-metric = "auc"
44
+ params.nthread = 16
45
+ params.num-parallel-tree = 1
46
+ params.subsample = 1
47
+ params.tree-method = "hist"
48
+
49
+ # Default federation to use when running the app
50
+ [tool.flwr.federations]
51
+ default = "local-simulation"
52
+
53
+ # Local simulation federation with 10 virtual SuperNodes
54
+ [tool.flwr.federations.local-simulation]
55
+ options.num-supernodes = 10
56
+
57
+ # Remote federation example for use with SuperLink
58
+ [tool.flwr.federations.remote-federation]
59
+ address = "<SUPERLINK-ADDRESS>:<PORT>"
60
+ insecure = true # Remove this line to enable TLS
61
+ # root-certificates = "<PATH/TO/ca.crt>" # For TLS setup
@@ -17,9 +17,10 @@
17
17
 
18
18
  from flwr.client.mod.comms_mods import arrays_size_mod, message_size_mod
19
19
 
20
- from .centraldp_mods import fixedclipping_mod
20
+ from .centraldp_mods import adaptiveclipping_mod, fixedclipping_mod
21
21
 
22
22
  __all__ = [
23
+ "adaptiveclipping_mod",
23
24
  "arrays_size_mod",
24
25
  "fixedclipping_mod",
25
26
  "message_size_mod",
@@ -16,13 +16,26 @@
16
16
 
17
17
 
18
18
  from collections import OrderedDict
19
- from logging import INFO, WARN
19
+ from logging import ERROR, INFO
20
20
  from typing import cast
21
21
 
22
- from flwr.client.typing import ClientAppCallable
23
- from flwr.common import Array, ArrayRecord, Context, Message, MessageType, log
24
- from flwr.common.differential_privacy import compute_clip_model_update
25
- from flwr.common.differential_privacy_constants import KEY_CLIPPING_NORM
22
+ from flwr.app import Error
23
+ from flwr.clientapp.typing import ClientAppCallable
24
+ from flwr.common import (
25
+ Array,
26
+ ArrayRecord,
27
+ ConfigRecord,
28
+ Context,
29
+ Message,
30
+ MetricRecord,
31
+ log,
32
+ )
33
+ from flwr.common.constant import ErrorCode
34
+ from flwr.common.differential_privacy import (
35
+ compute_adaptive_clip_model_update,
36
+ compute_clip_model_update,
37
+ )
38
+ from flwr.common.differential_privacy_constants import KEY_CLIPPING_NORM, KEY_NORM_BIT
26
39
 
27
40
 
28
41
  # pylint: disable=too-many-return-statements
@@ -46,33 +59,15 @@ def fixedclipping_mod(
46
59
 
47
60
  Typically, fixedclipping_mod should be the last to operate on params.
48
61
  """
49
- if msg.metadata.message_type != MessageType.TRAIN:
50
- return call_next(msg, ctxt)
51
-
52
62
  if len(msg.content.array_records) != 1:
53
- log(
54
- WARN,
55
- "fixedclipping_mod is designed to work with a single ArrayRecord. "
56
- "Skipping.",
57
- )
58
- return call_next(msg, ctxt)
59
-
63
+ return _handle_multi_record_err("fixedclipping_mod", msg, ArrayRecord)
60
64
  if len(msg.content.config_records) != 1:
61
- log(
62
- WARN,
63
- "fixedclipping_mod is designed to work with a single ConfigRecord. "
64
- "Skipping.",
65
- )
66
- return call_next(msg, ctxt)
65
+ return _handle_multi_record_err("fixedclipping_mod", msg, ConfigRecord)
67
66
 
68
67
  # Get keys in the single ConfigRecord
69
68
  keys_in_config = set(next(iter(msg.content.config_records.values())).keys())
70
69
  if KEY_CLIPPING_NORM not in keys_in_config:
71
- raise KeyError(
72
- f"The {KEY_CLIPPING_NORM} value is not supplied by the "
73
- f"`DifferentialPrivacyClientSideFixedClipping` wrapper at"
74
- f" the server side."
75
- )
70
+ return _handle_no_key_err("fixedclipping_mod", msg)
76
71
  # Record array record communicated to client and clipping norm
77
72
  original_array_record = next(iter(msg.content.array_records.values()))
78
73
  clipping_norm = cast(
@@ -86,26 +81,16 @@ def fixedclipping_mod(
86
81
  if out_msg.has_error():
87
82
  return out_msg
88
83
 
89
- # Ensure there is a single ArrayRecord
84
+ # Ensure reply has a single ArrayRecord
90
85
  if len(out_msg.content.array_records) != 1:
91
- log(
92
- WARN,
93
- "fixedclipping_mod is designed to work with a single ArrayRecord. "
94
- "Skipping.",
95
- )
96
- return out_msg
86
+ return _handle_multi_record_err("fixedclipping_mod", out_msg, ArrayRecord)
97
87
 
98
88
  new_array_record_key, client_to_server_arrecord = next(
99
89
  iter(out_msg.content.array_records.items())
100
90
  )
101
91
  # Ensure keys in returned ArrayRecord match those in the one sent from server
102
92
  if set(original_array_record.keys()) != set(client_to_server_arrecord.keys()):
103
- log(
104
- WARN,
105
- "fixedclipping_mod: Keys in ArrayRecord must match those from the model "
106
- "that the ClientApp received. Skipping.",
107
- )
108
- return out_msg
93
+ return _handle_array_key_mismatch_err("fixedclipping_mod", out_msg)
109
94
 
110
95
  client_to_server_ndarrays = client_to_server_arrecord.to_numpy_ndarrays()
111
96
  # Clip the client update
@@ -130,3 +115,134 @@ def fixedclipping_mod(
130
115
  )
131
116
  )
132
117
  return out_msg
118
+
119
+
120
+ def adaptiveclipping_mod(
121
+ msg: Message, ctxt: Context, call_next: ClientAppCallable
122
+ ) -> Message:
123
+ """Client-side adaptive clipping modifier.
124
+
125
+ This mod needs to be used with the DifferentialPrivacyClientSideAdaptiveClipping
126
+ server-side strategy wrapper.
127
+
128
+ The wrapper sends the clipping_norm value to the client.
129
+
130
+ This mod clips the client model updates before sending them to the server.
131
+
132
+ It also sends KEY_NORM_BIT to the server for computing the new clipping value.
133
+
134
+ It operates on messages of type `MessageType.TRAIN`.
135
+
136
+ Notes
137
+ -----
138
+ Consider the order of mods when using multiple.
139
+
140
+ Typically, adaptiveclipping_mod should be the last to operate on params.
141
+ """
142
+ if len(msg.content.array_records) != 1:
143
+ return _handle_multi_record_err("adaptiveclipping_mod", msg, ArrayRecord)
144
+ if len(msg.content.config_records) != 1:
145
+ return _handle_multi_record_err("adaptiveclipping_mod", msg, ConfigRecord)
146
+
147
+ # Get keys in the single ConfigRecord
148
+ keys_in_config = set(next(iter(msg.content.config_records.values())).keys())
149
+ if KEY_CLIPPING_NORM not in keys_in_config:
150
+ return _handle_no_key_err("adaptiveclipping_mod", msg)
151
+
152
+ # Record array record communicated to client and clipping norm
153
+ original_array_record = next(iter(msg.content.array_records.values()))
154
+ clipping_norm = cast(
155
+ float, next(iter(msg.content.config_records.values()))[KEY_CLIPPING_NORM]
156
+ )
157
+
158
+ # Call inner app
159
+ out_msg = call_next(msg, ctxt)
160
+
161
+ # Ensure reply has a single ArrayRecord
162
+ if len(out_msg.content.array_records) != 1:
163
+ return _handle_multi_record_err("adaptiveclipping_mod", out_msg, ArrayRecord)
164
+
165
+ # Ensure reply has a single MetricRecord
166
+ if len(out_msg.content.metric_records) != 1:
167
+ return _handle_multi_record_err("adaptiveclipping_mod", out_msg, MetricRecord)
168
+
169
+ # Check if the msg has error
170
+ if out_msg.has_error():
171
+ return out_msg
172
+
173
+ new_array_record_key, client_to_server_arrecord = next(
174
+ iter(out_msg.content.array_records.items())
175
+ )
176
+
177
+ # Ensure keys in returned ArrayRecord match those in the one sent from server
178
+ if set(original_array_record.keys()) != set(client_to_server_arrecord.keys()):
179
+ return _handle_array_key_mismatch_err("adaptiveclipping_mod", out_msg)
180
+
181
+ client_to_server_ndarrays = client_to_server_arrecord.to_numpy_ndarrays()
182
+ # Clip the client update
183
+ norm_bit = compute_adaptive_clip_model_update(
184
+ client_to_server_ndarrays,
185
+ original_array_record.to_numpy_ndarrays(),
186
+ clipping_norm,
187
+ )
188
+ log(
189
+ INFO,
190
+ "adaptiveclipping_mod: ndarrays are clipped by value: %.4f.",
191
+ clipping_norm,
192
+ )
193
+ # Replace outgoing ArrayRecord's Array while preserving their keys
194
+ out_msg.content.array_records[new_array_record_key] = ArrayRecord(
195
+ OrderedDict(
196
+ {
197
+ k: Array(v)
198
+ for k, v in zip(
199
+ client_to_server_arrecord.keys(), client_to_server_ndarrays
200
+ )
201
+ }
202
+ )
203
+ )
204
+ # Add to the MetricRecords the norm bit (recall reply messages only contain
205
+ # one MetricRecord)
206
+ metric_record_key = list(out_msg.content.metric_records.keys())[0]
207
+ # We cast it to `int` because MetricRecord does not support `bool` values
208
+ out_msg.content.metric_records[metric_record_key][KEY_NORM_BIT] = int(norm_bit)
209
+ return out_msg
210
+
211
+
212
+ def _handle_err(msg: Message, reason: str) -> Message:
213
+ """Log and return error message."""
214
+ log(ERROR, reason)
215
+ return Message(
216
+ Error(code=ErrorCode.MOD_FAILED_PRECONDITION, reason=reason),
217
+ reply_to=msg,
218
+ )
219
+
220
+
221
+ def _handle_multi_record_err(mod_name: str, msg: Message, record_type: type) -> Message:
222
+ """Log and return multi-record error."""
223
+ cnt = sum(isinstance(_, record_type) for _ in msg.content.values())
224
+ return _handle_err(
225
+ msg,
226
+ f"{mod_name} expects exactly one {record_type.__name__}, "
227
+ f"but found {cnt} {record_type.__name__}(s).",
228
+ )
229
+
230
+
231
+ def _handle_no_key_err(mod_name: str, msg: Message) -> Message:
232
+ """Log and return no-key error."""
233
+ return _handle_err(
234
+ msg,
235
+ f"{mod_name} requires the key '{KEY_CLIPPING_NORM}' to be present in the "
236
+ "ConfigRecord, but it was not found. "
237
+ "Please ensure the `DifferentialPrivacyClientSideFixedClipping` wrapper "
238
+ "is used in the ServerApp.",
239
+ )
240
+
241
+
242
+ def _handle_array_key_mismatch_err(mod_name: str, msg: Message) -> Message:
243
+ """Create array-key-mismatch error reasons."""
244
+ return _handle_err(
245
+ msg,
246
+ f"{mod_name} expects the keys in the ArrayRecord of the reply message to match "
247
+ "those from the ArrayRecord that the ClientApp received, but they do not.",
248
+ )
@@ -0,0 +1,22 @@
1
+ # Copyright 2025 Flower Labs GmbH. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Custom types for Flower clients."""
16
+
17
+
18
+ from typing import Callable
19
+
20
+ from flwr.common import Context, Message
21
+
22
+ ClientAppCallable = Callable[[Message, Context], Message]
flwr/common/constant.py CHANGED
@@ -202,6 +202,7 @@ class ErrorCode:
202
202
  MESSAGE_UNAVAILABLE = 3
203
203
  REPLY_MESSAGE_UNAVAILABLE = 4
204
204
  NODE_UNAVAILABLE = 5
205
+ MOD_FAILED_PRECONDITION = 6
205
206
 
206
207
  def __new__(cls) -> ErrorCode:
207
208
  """Prevent instantiation."""
@@ -45,6 +45,7 @@ class ExitCode:
45
45
  SUPERNODE_NODE_AUTH_KEYS_INVALID = 302
46
46
 
47
47
  # SuperExec-specific exit codes (400-499)
48
+ SUPEREXEC_INVALID_PLUGIN_CONFIG = 400
48
49
 
49
50
  # Common exit codes (600-699)
50
51
  COMMON_ADDRESS_INVALID = 600
@@ -112,6 +113,9 @@ EXIT_CODE_HELP = {
112
113
  "file and try again."
113
114
  ),
114
115
  # SuperExec-specific exit codes (400-499)
116
+ ExitCode.SUPEREXEC_INVALID_PLUGIN_CONFIG: (
117
+ "The YAML configuration for the SuperExec plugin is invalid."
118
+ ),
115
119
  # Common exit codes (600-699)
116
120
  ExitCode.COMMON_ADDRESS_INVALID: (
117
121
  "Please provide a valid URL, IPv4 or IPv6 address."
@@ -18,6 +18,8 @@
18
18
  from collections.abc import ItemsView, Iterator, KeysView, MutableMapping, ValuesView
19
19
  from typing import Callable, Generic, TypeVar, cast
20
20
 
21
+ from typing_extensions import Self
22
+
21
23
  K = TypeVar("K") # Key type
22
24
  V = TypeVar("V") # Value type
23
25
 
@@ -86,3 +88,13 @@ class TypedDict(MutableMapping[K, V], Generic[K, V]):
86
88
  def items(self) -> ItemsView[K, V]:
87
89
  """D.items() -> a set-like object providing a view on D's items."""
88
90
  return cast(dict[K, V], self.__dict__["_data"]).items()
91
+
92
+ def copy(self) -> Self:
93
+ """Return a shallow copy of the dictionary."""
94
+ # Allocate instance without going through __init__
95
+ new = self.__class__.__new__(type(self))
96
+ # Copy internal state
97
+ new.__dict__["_check_key_fn"] = self.__dict__["_check_key_fn"]
98
+ new.__dict__["_check_value_fn"] = self.__dict__["_check_value_fn"]
99
+ new.__dict__["_data"] = cast(dict[K, V], self.__dict__["_data"]).copy()
100
+ return new
@@ -15,6 +15,10 @@
15
15
  """ServerApp strategies."""
16
16
 
17
17
 
18
+ from .dp_adaptive_clipping import (
19
+ DifferentialPrivacyClientSideAdaptiveClipping,
20
+ DifferentialPrivacyServerSideAdaptiveClipping,
21
+ )
18
22
  from .dp_fixed_clipping import (
19
23
  DifferentialPrivacyClientSideFixedClipping,
20
24
  DifferentialPrivacyServerSideFixedClipping,
@@ -27,12 +31,17 @@ from .fedmedian import FedMedian
27
31
  from .fedprox import FedProx
28
32
  from .fedtrimmedavg import FedTrimmedAvg
29
33
  from .fedxgb_bagging import FedXgbBagging
34
+ from .fedxgb_cyclic import FedXgbCyclic
30
35
  from .fedyogi import FedYogi
36
+ from .krum import Krum
37
+ from .qfedavg import QFedAvg
31
38
  from .result import Result
32
39
  from .strategy import Strategy
33
40
 
34
41
  __all__ = [
42
+ "DifferentialPrivacyClientSideAdaptiveClipping",
35
43
  "DifferentialPrivacyClientSideFixedClipping",
44
+ "DifferentialPrivacyServerSideAdaptiveClipping",
36
45
  "DifferentialPrivacyServerSideFixedClipping",
37
46
  "FedAdagrad",
38
47
  "FedAdam",
@@ -42,7 +51,10 @@ __all__ = [
42
51
  "FedProx",
43
52
  "FedTrimmedAvg",
44
53
  "FedXgbBagging",
54
+ "FedXgbCyclic",
45
55
  "FedYogi",
56
+ "Krum",
57
+ "QFedAvg",
46
58
  "Result",
47
59
  "Strategy",
48
60
  ]