evalscope 0.12.0__py3-none-any.whl → 0.13.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope/arguments.py +6 -1
- evalscope/benchmarks/aime/aime24_adapter.py +3 -3
- evalscope/benchmarks/aime/aime25_adapter.py +3 -3
- evalscope/benchmarks/arc/arc_adapter.py +15 -18
- evalscope/benchmarks/bbh/bbh_adapter.py +6 -6
- evalscope/benchmarks/benchmark.py +12 -11
- evalscope/benchmarks/ceval/ceval_adapter.py +12 -16
- evalscope/benchmarks/chinese_simple_qa/__init__.py +0 -0
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +168 -0
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +13 -17
- evalscope/benchmarks/competition_math/competition_math_adapter.py +3 -3
- evalscope/benchmarks/data_adapter.py +59 -21
- evalscope/benchmarks/data_collection/data_collection_adapter.py +0 -1
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +9 -12
- evalscope/benchmarks/general_qa/general_qa_adapter.py +30 -15
- evalscope/benchmarks/gpqa/gpqa_adapter.py +12 -7
- evalscope/benchmarks/gsm8k/gsm8k_adapter.py +2 -3
- evalscope/benchmarks/hellaswag/hellaswag_adapter.py +23 -31
- evalscope/benchmarks/humaneval/humaneval_adapter.py +10 -7
- evalscope/benchmarks/ifeval/ifeval_adapter.py +2 -3
- evalscope/benchmarks/iquiz/iquiz_adapter.py +9 -5
- evalscope/benchmarks/live_code_bench/__init__.py +0 -0
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +193 -0
- evalscope/benchmarks/live_code_bench/execute_utils.py +267 -0
- evalscope/benchmarks/live_code_bench/extract_utils.py +70 -0
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +90 -0
- evalscope/benchmarks/live_code_bench/load_utils.py +71 -0
- evalscope/benchmarks/live_code_bench/pass_k_utils.py +56 -0
- evalscope/benchmarks/live_code_bench/prompts.py +207 -0
- evalscope/benchmarks/live_code_bench/testing_util.py +721 -0
- evalscope/benchmarks/math_500/math_500_adapter.py +2 -6
- evalscope/benchmarks/mmlu/mmlu_adapter.py +13 -17
- evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +9 -5
- evalscope/benchmarks/musr/musr_adapter.py +8 -5
- evalscope/benchmarks/process_bench/process_bench_adapter.py +8 -5
- evalscope/benchmarks/race/race_adapter.py +12 -16
- evalscope/benchmarks/simple_qa/__init__.py +0 -0
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +167 -0
- evalscope/benchmarks/super_gpqa/__init__.py +0 -0
- evalscope/benchmarks/super_gpqa/five_shot_prompt.txt +89 -0
- evalscope/benchmarks/super_gpqa/super_gpqa_adapter.py +191 -0
- evalscope/benchmarks/super_gpqa/utils.py +85 -0
- evalscope/benchmarks/super_gpqa/zero_shot_prompt.txt +3 -0
- evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +3 -4
- evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +6 -13
- evalscope/benchmarks/utils.py +43 -0
- evalscope/collections/evaluator.py +14 -5
- evalscope/config.py +15 -2
- evalscope/constants.py +14 -0
- evalscope/evaluator/evaluator.py +51 -13
- evalscope/metrics/llm_judge.py +104 -0
- evalscope/metrics/named_metrics.py +1 -0
- evalscope/models/__init__.py +2 -1
- evalscope/models/base_adapter.py +25 -5
- evalscope/models/chat_adapter.py +3 -0
- evalscope/models/choice_adapter.py +4 -0
- evalscope/models/custom_adapter.py +2 -0
- evalscope/models/register.py +28 -0
- evalscope/models/server_adapter.py +35 -8
- evalscope/perf/arguments.py +13 -7
- evalscope/perf/benchmark.py +5 -0
- evalscope/perf/http_client.py +15 -5
- evalscope/perf/main.py +1 -0
- evalscope/perf/utils/analysis_result.py +1 -1
- evalscope/report/app.py +3 -0
- evalscope/report/combinator.py +2 -2
- evalscope/run.py +6 -5
- evalscope/third_party/longbench_write/infer.py +1 -1
- evalscope/third_party/thinkbench/eval.py +220 -55
- evalscope/third_party/thinkbench/infer.py +37 -7
- evalscope/third_party/thinkbench/tools/llm.py +1 -0
- evalscope/third_party/toolbench_static/llm/swift_infer.py +50 -20
- evalscope/utils/chat_service.py +1 -0
- evalscope/utils/filters.py +59 -0
- evalscope/utils/logger.py +3 -3
- evalscope/version.py +2 -2
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/METADATA +31 -12
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/RECORD +85 -62
- tests/cli/test_all.py +144 -0
- tests/cli/test_collection.py +28 -2
- tests/cli/test_run.py +201 -32
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/LICENSE +0 -0
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/WHEEL +0 -0
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/entry_points.txt +0 -0
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,191 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import random
|
|
3
|
+
import re
|
|
4
|
+
|
|
5
|
+
from evalscope.benchmarks import Benchmark, DataAdapter
|
|
6
|
+
from evalscope.constants import EvalType, OutputType
|
|
7
|
+
from evalscope.metrics import exact_match
|
|
8
|
+
from evalscope.utils import logger
|
|
9
|
+
|
|
10
|
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
11
|
+
|
|
12
|
+
SUBSET_LIST = [
|
|
13
|
+
'Electronic Science and Technology', 'Philosophy', 'Traditional Chinese Medicine', 'Applied Economics',
|
|
14
|
+
'Mathematics', 'Physics', 'Clinical Medicine', 'Computer Science and Technology',
|
|
15
|
+
'Information and Communication Engineering', 'Control Science and Engineering', 'Theoretical Economics', 'Law',
|
|
16
|
+
'History', 'Basic Medicine', 'Education', 'Materials Science and Engineering', 'Electrical Engineering',
|
|
17
|
+
'Systems Science', 'Power Engineering and Engineering Thermophysics', 'Military Science', 'Biology',
|
|
18
|
+
'Business Administration', 'Language and Literature', 'Public Health and Preventive Medicine', 'Political Science',
|
|
19
|
+
'Chemistry', 'Hydraulic Engineering', 'Chemical Engineering and Technology', 'Pharmacy', 'Geography', 'Art Studies',
|
|
20
|
+
'Architecture', 'Forestry Engineering', 'Public Administration', 'Oceanography', 'Journalism and Communication',
|
|
21
|
+
'Nuclear Science and Technology', 'Weapon Science and Technology', 'Naval Architecture and Ocean Engineering',
|
|
22
|
+
'Environmental Science and Engineering', 'Transportation Engineering', 'Geology', 'Physical Oceanography',
|
|
23
|
+
'Musicology', 'Stomatology', 'Aquaculture', 'Mechanical Engineering',
|
|
24
|
+
'Aeronautical and Astronautical Science and Technology', 'Civil Engineering', 'Mechanics',
|
|
25
|
+
'Petroleum and Natural Gas Engineering', 'Sociology', 'Food Science and Engineering', 'Agricultural Engineering',
|
|
26
|
+
'Surveying and Mapping Science and Technology', 'Metallurgical Engineering',
|
|
27
|
+
'Library, Information and Archival Management', 'Mining Engineering', 'Astronomy',
|
|
28
|
+
'Geological Resources and Geological Engineering', 'Atmospheric Science', 'Optical Engineering', 'Animal Husbandry',
|
|
29
|
+
'Geophysics', 'Crop Science', 'Management Science and Engineering', 'Psychology', 'Forestry',
|
|
30
|
+
'Textile Science and Engineering', 'Veterinary Medicine', 'Instrument Science and Technology', 'Physical Education'
|
|
31
|
+
]
|
|
32
|
+
|
|
33
|
+
SUBSET_MAPPING = {
|
|
34
|
+
'Electronic Science and Technology': ['Engineering'],
|
|
35
|
+
'Philosophy': ['Philosophy'],
|
|
36
|
+
'Traditional Chinese Medicine': ['Medicine'],
|
|
37
|
+
'Applied Economics': ['Economics'],
|
|
38
|
+
'Mathematics': ['Science'],
|
|
39
|
+
'Physics': ['Science'],
|
|
40
|
+
'Clinical Medicine': ['Medicine'],
|
|
41
|
+
'Computer Science and Technology': ['Engineering'],
|
|
42
|
+
'Information and Communication Engineering': ['Engineering'],
|
|
43
|
+
'Control Science and Engineering': ['Engineering'],
|
|
44
|
+
'Theoretical Economics': ['Economics'],
|
|
45
|
+
'Law': ['Law'],
|
|
46
|
+
'History': ['History'],
|
|
47
|
+
'Basic Medicine': ['Medicine'],
|
|
48
|
+
'Education': ['Education'],
|
|
49
|
+
'Materials Science and Engineering': ['Engineering'],
|
|
50
|
+
'Electrical Engineering': ['Engineering'],
|
|
51
|
+
'Systems Science': ['Science'],
|
|
52
|
+
'Power Engineering and Engineering Thermophysics': ['Engineering'],
|
|
53
|
+
'Military Science': ['Military Science'],
|
|
54
|
+
'Biology': ['Science'],
|
|
55
|
+
'Business Administration': ['Management'],
|
|
56
|
+
'Language and Literature': ['Literature and Arts'],
|
|
57
|
+
'Public Health and Preventive Medicine': ['Medicine'],
|
|
58
|
+
'Political Science': ['Law'],
|
|
59
|
+
'Chemistry': ['Science'],
|
|
60
|
+
'Hydraulic Engineering': ['Engineering'],
|
|
61
|
+
'Chemical Engineering and Technology': ['Engineering'],
|
|
62
|
+
'Pharmacy': ['Medicine'],
|
|
63
|
+
'Geography': ['Science'],
|
|
64
|
+
'Art Studies': ['Literature and Arts'],
|
|
65
|
+
'Architecture': ['Engineering'],
|
|
66
|
+
'Forestry Engineering': ['Engineering'],
|
|
67
|
+
'Public Administration': ['Management'],
|
|
68
|
+
'Oceanography': ['Science'],
|
|
69
|
+
'Journalism and Communication': ['Literature and Arts'],
|
|
70
|
+
'Nuclear Science and Technology': ['Engineering'],
|
|
71
|
+
'Weapon Science and Technology': ['Engineering'],
|
|
72
|
+
'Naval Architecture and Ocean Engineering': ['Engineering'],
|
|
73
|
+
'Environmental Science and Engineering': ['Engineering'],
|
|
74
|
+
'Transportation Engineering': ['Engineering'],
|
|
75
|
+
'Geology': ['Science'],
|
|
76
|
+
'Physical Oceanography': ['Science'],
|
|
77
|
+
'Musicology': ['Literature and Arts'],
|
|
78
|
+
'Stomatology': ['Medicine'],
|
|
79
|
+
'Aquaculture': ['Agronomy'],
|
|
80
|
+
'Mechanical Engineering': ['Engineering'],
|
|
81
|
+
'Aeronautical and Astronautical Science and Technology': ['Engineering'],
|
|
82
|
+
'Civil Engineering': ['Engineering'],
|
|
83
|
+
'Mechanics': ['Engineering'],
|
|
84
|
+
'Petroleum and Natural Gas Engineering': ['Engineering'],
|
|
85
|
+
'Sociology': ['Sociology'],
|
|
86
|
+
'Food Science and Engineering': ['Engineering'],
|
|
87
|
+
'Agricultural Engineering': ['Engineering'],
|
|
88
|
+
'Surveying and Mapping Science and Technology': ['Engineering'],
|
|
89
|
+
'Metallurgical Engineering': ['Engineering'],
|
|
90
|
+
'Library, Information and Archival Management': ['Management'],
|
|
91
|
+
'Mining Engineering': ['Engineering'],
|
|
92
|
+
'Astronomy': ['Science'],
|
|
93
|
+
'Geological Resources and Geological Engineering': ['Engineering'],
|
|
94
|
+
'Atmospheric Science': ['Science'],
|
|
95
|
+
'Optical Engineering': ['Engineering'],
|
|
96
|
+
'Animal Husbandry': ['Agronomy'],
|
|
97
|
+
'Geophysics': ['Science'],
|
|
98
|
+
'Crop Science': ['Agronomy'],
|
|
99
|
+
'Management Science and Engineering': ['Management'],
|
|
100
|
+
'Psychology': ['Education'],
|
|
101
|
+
'Forestry': ['Agronomy'],
|
|
102
|
+
'Textile Science and Engineering': ['Engineering'],
|
|
103
|
+
'Veterinary Medicine': ['Agronomy'],
|
|
104
|
+
'Instrument Science and Technology': ['Engineering'],
|
|
105
|
+
'Physical Education': ['Education']
|
|
106
|
+
}
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
@Benchmark.register(
|
|
110
|
+
name='super_gpqa',
|
|
111
|
+
pretty_name='SuperGPQA',
|
|
112
|
+
dataset_id='m-a-p/SuperGPQA',
|
|
113
|
+
model_adapter=OutputType.GENERATION,
|
|
114
|
+
output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION],
|
|
115
|
+
subset_list=SUBSET_LIST,
|
|
116
|
+
metric_list=['AverageAccuracy'],
|
|
117
|
+
few_shot_num=0,
|
|
118
|
+
train_split=None,
|
|
119
|
+
eval_split='train', # only have train split
|
|
120
|
+
)
|
|
121
|
+
class SuperGPQAAdapter(DataAdapter):
|
|
122
|
+
|
|
123
|
+
def __init__(self, **kwargs):
|
|
124
|
+
few_shot_num = kwargs.get('few_shot_num', 0)
|
|
125
|
+
if few_shot_num > 0 and few_shot_num != 5:
|
|
126
|
+
logger.warning(
|
|
127
|
+
f'Only support few_shot_num 0 or 5 for SuperGPQA, but got {few_shot_num}. Use 5-shot by default.')
|
|
128
|
+
kwargs['few_shot_num'] = 5
|
|
129
|
+
super().__init__(**kwargs)
|
|
130
|
+
|
|
131
|
+
self.choices = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
|
|
132
|
+
self.category_map = SUBSET_MAPPING
|
|
133
|
+
self.few_shot_prompt = open(os.path.join(current_dir, 'five_shot_prompt.txt'), encoding='utf-8').read()
|
|
134
|
+
self.zero_shot_prompt = open(os.path.join(current_dir, 'zero_shot_prompt.txt'), encoding='utf-8').read()
|
|
135
|
+
|
|
136
|
+
def load(self, **kwargs):
|
|
137
|
+
kwargs['subset_list'] = ['default']
|
|
138
|
+
data_dict = super().load(**kwargs)
|
|
139
|
+
return self.reformat_subset(data_dict, subset_key='field', format='{}')
|
|
140
|
+
|
|
141
|
+
def gen_prompt(self, input_d: dict, subset_name: str, few_shot_list: list, **kwargs) -> dict:
|
|
142
|
+
if not self.prompt_template:
|
|
143
|
+
if few_shot_list:
|
|
144
|
+
prompt = self.few_shot_prompt.format(query=input_d['question'])
|
|
145
|
+
else:
|
|
146
|
+
prompt = self.zero_shot_prompt.format(query=input_d['question'])
|
|
147
|
+
else:
|
|
148
|
+
prompt = self.prompt_template.format(query=input_d['question'])
|
|
149
|
+
return self.gen_prompt_data(prompt)
|
|
150
|
+
|
|
151
|
+
def get_gold_answer(self, input_d: dict) -> str:
|
|
152
|
+
# Get the gold choice
|
|
153
|
+
return input_d.get('answer_letter')
|
|
154
|
+
|
|
155
|
+
def parse_pred_result(self, result: str, raw_input_d: dict = None, eval_type: str = EvalType.CHECKPOINT) -> str:
|
|
156
|
+
"""
|
|
157
|
+
Parse the model output to get the answer. Could be the best choice index.
|
|
158
|
+
|
|
159
|
+
Args:
|
|
160
|
+
result: Predicted answer from the model. Usually a string for chat.
|
|
161
|
+
raw_input_d: The raw input. Depending on the dataset.
|
|
162
|
+
eval_type: 'checkpoint' or 'service' or 'custom'
|
|
163
|
+
|
|
164
|
+
Returns:
|
|
165
|
+
The parsed answer. Depending on the dataset. Usually a string for chat.
|
|
166
|
+
"""
|
|
167
|
+
if self.model_adapter == OutputType.MULTIPLE_CHOICE:
|
|
168
|
+
return result
|
|
169
|
+
else:
|
|
170
|
+
from evalscope.benchmarks.super_gpqa.utils import extract_option_content, extract_option_labels
|
|
171
|
+
sample = raw_input_d
|
|
172
|
+
if self.few_shot_num == 0:
|
|
173
|
+
predict = extract_option_labels(result, 'ABCDEFGHIJ')
|
|
174
|
+
if predict is None:
|
|
175
|
+
predict = extract_option_content(result, sample['options'])
|
|
176
|
+
predict = chr(sample['options'].index(predict) + 65) if predict else None
|
|
177
|
+
else:
|
|
178
|
+
response = result.split('Question:')[0]
|
|
179
|
+
predict = extract_option_labels(response, 'ABCDEFGHIJ')
|
|
180
|
+
if predict is None:
|
|
181
|
+
predict = extract_option_content(response, sample['options'])
|
|
182
|
+
predict = chr(sample['options'].index(predict) + 65) if predict else None
|
|
183
|
+
if predict is None:
|
|
184
|
+
predict = extract_option_labels(result, 'ABCDEFGHIJ')
|
|
185
|
+
if predict is None:
|
|
186
|
+
predict = extract_option_content(result, sample['options'])
|
|
187
|
+
predict = chr(sample['options'].index(predict) + 65) if predict else None
|
|
188
|
+
return predict
|
|
189
|
+
|
|
190
|
+
def match(self, gold: str, pred: str) -> float:
|
|
191
|
+
return exact_match(gold=gold, pred=pred)
|
|
@@ -0,0 +1,85 @@
|
|
|
1
|
+
# flake8: noqa
|
|
2
|
+
import re
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def safe_regex_search(pattern, text, flags=0):
|
|
6
|
+
try:
|
|
7
|
+
return re.search(pattern, text, flags)
|
|
8
|
+
except Exception as e:
|
|
9
|
+
print(f'Regex match error: {str(e)}')
|
|
10
|
+
return None
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def extract_option_labels(text, options='ABCDEFGHIJ'):
|
|
14
|
+
if not isinstance(text, str) or not isinstance(options, str):
|
|
15
|
+
return 'error'
|
|
16
|
+
|
|
17
|
+
text = text.rstrip()
|
|
18
|
+
last_line = text.split('\n')[-1]
|
|
19
|
+
|
|
20
|
+
option_str = ''.join([chr(65 + i) for i in range(len(options))]) if options else 'ABCDEFGHIJ'
|
|
21
|
+
|
|
22
|
+
patterns = [
|
|
23
|
+
# e.g. "The final answer to this question is: A."
|
|
24
|
+
# "The best option is $\boxed{B}:"
|
|
25
|
+
# "The correct answer is (C)."
|
|
26
|
+
f'[Tt]he\s+(?:\w+\s+)?(?:answer|option)(?:\w+\s+)?\s+is?:?\s*(?:[\*\$\\{{(\[\\\\(]*?(?:(?:\\\\boxed|\\\\mathbf|\\\\mathrm|\\\\text){{)?)*\s*([{option_str}])(?:\\\\?\}}?\$?\)?\]?\}}?)*(?:[\s:\.\*)]|$)',
|
|
27
|
+
|
|
28
|
+
# e.g. "ANSWER: A"
|
|
29
|
+
# "Answer: $\boxed{B}."
|
|
30
|
+
# "ANSWER: (C):"
|
|
31
|
+
f'(?i:Answer)[\*\s]*:\s*(?:[\*\$\\{{(\[\\\\(]*?(?:(?:\\\\boxed|\\\\mathbf|\\\\mathrm|\\\\text){{)?)*\s*([{option_str}])(?:\\\\?\}}?\$?\)?\]?\}}?)*(?:[\s:\.\*)]|$)',
|
|
32
|
+
|
|
33
|
+
# e.g. "A"
|
|
34
|
+
# "$\boxed{B}$"
|
|
35
|
+
# "(C)."
|
|
36
|
+
# "[D]:"
|
|
37
|
+
f'^[^\w\r\n]*(?:[\*\$\\{{(\[\\\\(]*?(?:(?:\\\\boxed|\\\\mathbf|\\\\mathrm|\\\\text){{)?)*\s*([{option_str}])(?:\\\\?\}}?\$?\)?\]?\}}?)*(?:[\s:\.\*)]|$)',
|
|
38
|
+
]
|
|
39
|
+
|
|
40
|
+
for pattern in patterns:
|
|
41
|
+
match = safe_regex_search(pattern, last_line, re.IGNORECASE)
|
|
42
|
+
if match:
|
|
43
|
+
return match.group(1)
|
|
44
|
+
|
|
45
|
+
for pattern in patterns:
|
|
46
|
+
match = safe_regex_search(pattern, text, re.IGNORECASE)
|
|
47
|
+
if match:
|
|
48
|
+
return match.group(1)
|
|
49
|
+
|
|
50
|
+
return None
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def extract_option_content(text, options_content=None):
|
|
54
|
+
if not isinstance(text, str) or not isinstance(options_content, list):
|
|
55
|
+
return 'error'
|
|
56
|
+
|
|
57
|
+
escaped_options_content = [re.escape(option_content) for option_content in options_content]
|
|
58
|
+
escaped_options_content_str = '|'.join(escaped_options_content)
|
|
59
|
+
|
|
60
|
+
text = text.rstrip()
|
|
61
|
+
last_line = text.split('\n')[-1]
|
|
62
|
+
|
|
63
|
+
patterns = [
|
|
64
|
+
f'[Tt]he\s+(?:\w+\s+)?(?:answer|option)(?:\w+\s+)?\s+is:?\s*(?:[\*\$\\{{\(\[\\\\(]*?(?:(?:\\\\boxed|\\\\mathbf|\\\\mathrm|\\\\text){{)?)*\s*({escaped_options_content_str})(?:\\\\?\}}?\$?\)?\]?\}}?)*(?:[\s:\.\*)]|$)',
|
|
65
|
+
f'(?i:Answer)\s*(?:[\*\$\\{{\(\[\\\\(]*?(?:(?:\\\\boxed|\\\\mathbf|\\\\mathrm|\\\\text){{)?)*\s*({escaped_options_content_str})(?:\\\\?\}}?\$?\)?\]?\}}?)*(?:[\s:\.\*)]|$)',
|
|
66
|
+
f'^[^\w\r\n]*(?:[\*\$\\{{\(\[\\\\(]*?(?:(?:\\\\boxed|\\\\mathbf|\\\\mathrm|\\\\text){{)?)*\s*({escaped_options_content_str})(?:\\\\?\}}?\$?\)?\]?\}}?)*(?:[\s:\.\*)]|$)',
|
|
67
|
+
]
|
|
68
|
+
|
|
69
|
+
for pattern in patterns:
|
|
70
|
+
match = safe_regex_search(pattern, last_line)
|
|
71
|
+
if match:
|
|
72
|
+
if match.group(1) in escaped_options_content:
|
|
73
|
+
return options_content[escaped_options_content.index(match.group(1))]
|
|
74
|
+
else:
|
|
75
|
+
return match.group(1)
|
|
76
|
+
|
|
77
|
+
for pattern in patterns:
|
|
78
|
+
match = safe_regex_search(pattern, text)
|
|
79
|
+
if match:
|
|
80
|
+
if match.group(1) in escaped_options_content:
|
|
81
|
+
return options_content[escaped_options_content.index(match.group(1))]
|
|
82
|
+
else:
|
|
83
|
+
return match.group(1)
|
|
84
|
+
|
|
85
|
+
return None
|
|
@@ -5,8 +5,7 @@ import os
|
|
|
5
5
|
|
|
6
6
|
from evalscope.benchmarks import Benchmark
|
|
7
7
|
from evalscope.benchmarks.data_adapter import DataAdapter
|
|
8
|
-
from evalscope.constants import EvalType
|
|
9
|
-
from evalscope.models import ChatGenerationModelAdapter
|
|
8
|
+
from evalscope.constants import EvalType, OutputType
|
|
10
9
|
from evalscope.utils import get_logger
|
|
11
10
|
|
|
12
11
|
# flake8: noqa
|
|
@@ -16,8 +15,8 @@ logger = get_logger()
|
|
|
16
15
|
|
|
17
16
|
@Benchmark.register(
|
|
18
17
|
name='trivia_qa',
|
|
18
|
+
pretty_name='TriviaQA',
|
|
19
19
|
dataset_id='modelscope/trivia_qa',
|
|
20
|
-
model_adapter=ChatGenerationModelAdapter,
|
|
21
20
|
subset_list=['default'],
|
|
22
21
|
metric_list=['AverageAccuracy'],
|
|
23
22
|
few_shot_num=5,
|
|
@@ -100,7 +99,7 @@ class TriviaQaAdapter(DataAdapter):
|
|
|
100
99
|
context += self._generate_prompt(input_d=input_d, include_answer=False)
|
|
101
100
|
full_prompt = context
|
|
102
101
|
|
|
103
|
-
return
|
|
102
|
+
return self.gen_prompt_data(full_prompt)
|
|
104
103
|
|
|
105
104
|
def get_gold_answer(self, input_d: dict) -> list:
|
|
106
105
|
# Get the gold choice
|
|
@@ -8,8 +8,7 @@ from typing import List
|
|
|
8
8
|
|
|
9
9
|
from evalscope.benchmarks import Benchmark
|
|
10
10
|
from evalscope.benchmarks.data_adapter import DataAdapter
|
|
11
|
-
from evalscope.constants import EvalType
|
|
12
|
-
from evalscope.models import ContinuationLogitsModelAdapter
|
|
11
|
+
from evalscope.constants import EvalType, OutputType
|
|
13
12
|
from evalscope.utils import get_logger
|
|
14
13
|
|
|
15
14
|
# flake8: noqa
|
|
@@ -21,8 +20,10 @@ logger = get_logger()
|
|
|
21
20
|
|
|
22
21
|
@Benchmark.register(
|
|
23
22
|
name='truthful_qa',
|
|
23
|
+
pretty_name='TruthfulQA',
|
|
24
24
|
dataset_id='modelscope/truthful_qa',
|
|
25
|
-
model_adapter=
|
|
25
|
+
model_adapter=OutputType.CONTINUOUS,
|
|
26
|
+
output_types=[OutputType.CONTINUOUS, OutputType.GENERATION],
|
|
26
27
|
subset_list=['multiple_choice'],
|
|
27
28
|
metric_list=['AverageAccuracy'],
|
|
28
29
|
few_shot_num=0,
|
|
@@ -195,8 +196,7 @@ class TruthfulQaAdapter(DataAdapter):
|
|
|
195
196
|
else:
|
|
196
197
|
raise ValueError(f'** Unknown subset_name: {subset_name}')
|
|
197
198
|
|
|
198
|
-
|
|
199
|
-
return prompt_d
|
|
199
|
+
return self.gen_prompt_data(ctx_continuation_pair_list)
|
|
200
200
|
|
|
201
201
|
def get_gold_answer(self, input_d: dict) -> dict:
|
|
202
202
|
# Get the gold choice
|
|
@@ -215,14 +215,7 @@ class TruthfulQaAdapter(DataAdapter):
|
|
|
215
215
|
Returns:
|
|
216
216
|
The predicted answer.
|
|
217
217
|
"""
|
|
218
|
-
|
|
219
|
-
return result
|
|
220
|
-
elif eval_type == EvalType.SERVICE: # TODO: to be supported !
|
|
221
|
-
return result
|
|
222
|
-
elif eval_type == EvalType.CUSTOM: # TODO: to be supported !
|
|
223
|
-
return result
|
|
224
|
-
else:
|
|
225
|
-
raise ValueError(f'Invalid eval_type: {eval_type}')
|
|
218
|
+
return result
|
|
226
219
|
|
|
227
220
|
def match(self, gold: dict, pred: list) -> dict:
|
|
228
221
|
"""
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from functools import wraps
|
|
3
|
+
from typing import Dict, List, Optional
|
|
4
|
+
|
|
5
|
+
from evalscope.constants import EvalType
|
|
6
|
+
from evalscope.utils.filters import Filter
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@dataclass
|
|
10
|
+
class PromptData:
|
|
11
|
+
data: List[str]
|
|
12
|
+
index: Optional[int] = 0
|
|
13
|
+
system_prompt: Optional[str] = None
|
|
14
|
+
multi_choices: Optional[List[str]] = None
|
|
15
|
+
|
|
16
|
+
def to_dict(self) -> Dict:
|
|
17
|
+
if self.multi_choices is None:
|
|
18
|
+
return {
|
|
19
|
+
'data': self.data,
|
|
20
|
+
'index': self.index,
|
|
21
|
+
'system_prompt': self.system_prompt,
|
|
22
|
+
}
|
|
23
|
+
else:
|
|
24
|
+
return {
|
|
25
|
+
'data': self.data,
|
|
26
|
+
'index': self.index,
|
|
27
|
+
'system_prompt': self.system_prompt,
|
|
28
|
+
'multi_choices': self.multi_choices,
|
|
29
|
+
}
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def preprocess_decorator(func):
|
|
33
|
+
|
|
34
|
+
@wraps(func)
|
|
35
|
+
def wrapper(self, result: str, raw_input_d: dict = None, eval_type: str = EvalType.CHECKPOINT):
|
|
36
|
+
filters = self.config_kwargs.get('filters', None)
|
|
37
|
+
if filters:
|
|
38
|
+
# Apply filters to the resultply filters to the result
|
|
39
|
+
for filter_name, filter_value in filters.items():
|
|
40
|
+
result = Filter.apply(filter_name, result, filter_value)
|
|
41
|
+
return func(self, result, raw_input_d, eval_type)
|
|
42
|
+
|
|
43
|
+
return wrapper
|
|
@@ -12,7 +12,7 @@ from evalscope.collections.sampler import DatasetEntry
|
|
|
12
12
|
from evalscope.config import TaskConfig
|
|
13
13
|
from evalscope.constants import AnswerKeys, DumpMode, EvalType
|
|
14
14
|
from evalscope.evaluator import Evaluator
|
|
15
|
-
from evalscope.models import
|
|
15
|
+
from evalscope.models import initialize_model_adapter
|
|
16
16
|
from evalscope.report import ReportGenerator
|
|
17
17
|
from evalscope.utils.io_utils import OutputsStructure, dump_jsonl_data, jsonl_to_list
|
|
18
18
|
from evalscope.utils.logger import get_logger
|
|
@@ -53,11 +53,11 @@ class SimpleEvaluator(Evaluator):
|
|
|
53
53
|
|
|
54
54
|
class EvaluatorCollection:
|
|
55
55
|
|
|
56
|
-
def __init__(self, task_cfg: TaskConfig, data_adapter: DataAdapter, outputs: OutputsStructure):
|
|
56
|
+
def __init__(self, task_cfg: TaskConfig, data_adapter: DataAdapter, outputs: OutputsStructure, base_model):
|
|
57
57
|
self.task_cfg = task_cfg
|
|
58
58
|
self.data_adapter = data_adapter
|
|
59
59
|
self.outputs = outputs
|
|
60
|
-
self.model =
|
|
60
|
+
self.model = base_model
|
|
61
61
|
|
|
62
62
|
self.dataset, self.dataset_name = self.load()
|
|
63
63
|
self.dataset_name_map = EvaluatorCollection._init_name_map(self.dataset)
|
|
@@ -97,8 +97,8 @@ class EvaluatorCollection:
|
|
|
97
97
|
evaluators = {}
|
|
98
98
|
for dataset_name in self.dataset_name_map.keys():
|
|
99
99
|
benchmark = Benchmark.get(dataset_name)
|
|
100
|
+
model_adapter = initialize_model_adapter(self.task_cfg, benchmark, self.model)
|
|
100
101
|
data_adapter = benchmark.get_data_adapter()
|
|
101
|
-
model_adapter = initialize_model_adapter(self.task_cfg, benchmark.model_adapter, self.model)
|
|
102
102
|
evaluators[dataset_name] = SimpleEvaluator(dataset_name, data_adapter, model_adapter, self.task_cfg,
|
|
103
103
|
self.outputs)
|
|
104
104
|
return evaluators
|
|
@@ -238,7 +238,16 @@ class EvaluatorCollection:
|
|
|
238
238
|
if self.task_cfg.use_cache and os.path.exists(review_file_path):
|
|
239
239
|
logger.warning(
|
|
240
240
|
f'Ignore use_cache={self.task_cfg.use_cache}, updating the review file: {review_file_path} ...')
|
|
241
|
-
os.
|
|
241
|
+
if os.path.isdir(review_file_path):
|
|
242
|
+
for filename in os.listdir(review_file_path):
|
|
243
|
+
file_path = os.path.join(review_file_path, filename)
|
|
244
|
+
try:
|
|
245
|
+
if os.path.isfile(file_path):
|
|
246
|
+
os.remove(file_path)
|
|
247
|
+
except Exception as e:
|
|
248
|
+
logger.error(f'Error deleting file {file_path}: {e}')
|
|
249
|
+
else:
|
|
250
|
+
os.remove(review_file_path)
|
|
242
251
|
|
|
243
252
|
reviews = defaultdict(dict)
|
|
244
253
|
for sample in tqdm(self.dataset, desc='Getting reviews'):
|
evalscope/config.py
CHANGED
|
@@ -4,10 +4,12 @@ import copy
|
|
|
4
4
|
import json
|
|
5
5
|
import os
|
|
6
6
|
from argparse import Namespace
|
|
7
|
+
from collections import OrderedDict
|
|
7
8
|
from dataclasses import dataclass, field
|
|
8
9
|
from typing import Dict, List, Optional, Union
|
|
9
10
|
|
|
10
|
-
from evalscope.constants import DEFAULT_DATASET_CACHE_DIR, DEFAULT_WORK_DIR, EvalBackend, EvalStage, EvalType, HubType
|
|
11
|
+
from evalscope.constants import (DEFAULT_DATASET_CACHE_DIR, DEFAULT_WORK_DIR, EvalBackend, EvalStage, EvalType, HubType,
|
|
12
|
+
JudgeStrategy, OutputType)
|
|
11
13
|
from evalscope.models.custom import CustomModel
|
|
12
14
|
from evalscope.utils import gen_hash
|
|
13
15
|
from evalscope.utils.io_utils import dict_to_yaml, json_to_dict, yaml_to_dict
|
|
@@ -54,7 +56,7 @@ class TaskConfig:
|
|
|
54
56
|
eval_config: Union[str, Dict, None] = None
|
|
55
57
|
stage: str = EvalStage.ALL
|
|
56
58
|
limit: Optional[int] = None
|
|
57
|
-
eval_batch_size: int =
|
|
59
|
+
eval_batch_size: Optional[int] = None
|
|
58
60
|
|
|
59
61
|
# Cache and working directory arguments
|
|
60
62
|
mem_cache: bool = False # Deprecated, will be removed in v1.0.0.
|
|
@@ -71,12 +73,23 @@ class TaskConfig:
|
|
|
71
73
|
timeout: Optional[float] = None # Only used for server model
|
|
72
74
|
stream: bool = False # Only used for server model
|
|
73
75
|
|
|
76
|
+
# LLMJudge arguments
|
|
77
|
+
judge_strategy: str = JudgeStrategy.AUTO
|
|
78
|
+
judge_worker_num: int = 8
|
|
79
|
+
judge_model_args: Optional[Dict] = field(default_factory=lambda: {})
|
|
80
|
+
|
|
74
81
|
def __post_init__(self):
|
|
75
82
|
if (not self.model_id) and self.model:
|
|
76
83
|
if isinstance(self.model, CustomModel):
|
|
77
84
|
self.model_id = type(self.model).__name__
|
|
78
85
|
else:
|
|
79
86
|
self.model_id = os.path.basename(self.model).rstrip(os.sep)
|
|
87
|
+
# fix path error, see http://github.com/modelscope/evalscope/issues/377
|
|
88
|
+
self.model_id = self.model_id.replace(':', '-')
|
|
89
|
+
|
|
90
|
+
# Set default eval_batch_size based on eval_type
|
|
91
|
+
if self.eval_batch_size is None:
|
|
92
|
+
self.eval_batch_size = 8 if self.eval_type == EvalType.SERVICE else 1
|
|
80
93
|
|
|
81
94
|
def to_dict(self):
|
|
82
95
|
return self.__dict__
|
evalscope/constants.py
CHANGED
|
@@ -139,6 +139,13 @@ class EvalType:
|
|
|
139
139
|
SERVICE = 'service' # model service
|
|
140
140
|
|
|
141
141
|
|
|
142
|
+
class OutputType:
|
|
143
|
+
LOGITS = 'logits' # for multiple choice tasks
|
|
144
|
+
GENERATION = 'generation' # for text generation tasks and general tasks
|
|
145
|
+
MULTIPLE_CHOICE = 'multiple_choice_logits' # for multiple choice tasks
|
|
146
|
+
CONTINUOUS = 'continuous_logits' # for continuous tasks
|
|
147
|
+
|
|
148
|
+
|
|
142
149
|
class EvalBackend:
|
|
143
150
|
NATIVE = 'Native'
|
|
144
151
|
OPEN_COMPASS = 'OpenCompass'
|
|
@@ -149,3 +156,10 @@ class EvalBackend:
|
|
|
149
156
|
|
|
150
157
|
class DataCollection:
|
|
151
158
|
NAME = 'data_collection'
|
|
159
|
+
|
|
160
|
+
|
|
161
|
+
class JudgeStrategy:
|
|
162
|
+
AUTO = 'auto'
|
|
163
|
+
RULE = 'rule'
|
|
164
|
+
LLM = 'llm'
|
|
165
|
+
LLM_RECALL = 'llm_recall'
|
evalscope/evaluator/evaluator.py
CHANGED
|
@@ -11,7 +11,7 @@ from typing import Any, Dict, List, Optional, Union
|
|
|
11
11
|
|
|
12
12
|
from evalscope.benchmarks import DataAdapter
|
|
13
13
|
from evalscope.config import TaskConfig
|
|
14
|
-
from evalscope.constants import AnswerKeys, DumpMode, EvalStage, EvalType, ReviewKeys
|
|
14
|
+
from evalscope.constants import AnswerKeys, DumpMode, EvalStage, EvalType, JudgeStrategy, ReviewKeys
|
|
15
15
|
from evalscope.models import BaseModelAdapter
|
|
16
16
|
from evalscope.report import Report, gen_table
|
|
17
17
|
from evalscope.utils import dict_torch_dtype_to_str, gen_hash
|
|
@@ -58,9 +58,17 @@ class Evaluator(object):
|
|
|
58
58
|
self.task_cfg = task_cfg
|
|
59
59
|
# Deal with the output paths
|
|
60
60
|
self.outputs_structure = outputs
|
|
61
|
-
|
|
62
61
|
self.kwargs = kwargs
|
|
63
62
|
|
|
63
|
+
self._init_judge()
|
|
64
|
+
|
|
65
|
+
def _init_judge(self):
|
|
66
|
+
if self.task_cfg.judge_strategy == JudgeStrategy.RULE:
|
|
67
|
+
self.judge = None
|
|
68
|
+
else:
|
|
69
|
+
from evalscope.metrics.llm_judge import LLMJudge
|
|
70
|
+
self.judge = LLMJudge(**self.task_cfg.judge_model_args)
|
|
71
|
+
|
|
64
72
|
def load_dataset(self):
|
|
65
73
|
dataset = self.data_adapter.load(
|
|
66
74
|
work_dir=os.path.expanduser(self.task_cfg.dataset_dir), datasets_hub=self.dataset_hub, **self.kwargs)
|
|
@@ -200,17 +208,40 @@ class Evaluator(object):
|
|
|
200
208
|
for choice in choices:
|
|
201
209
|
raw_input_d: dict = review_res[AnswerKeys.RAW_INPUT]
|
|
202
210
|
answer_content = choice[ReviewKeys.MESSAGE][ReviewKeys.CONTENT]
|
|
203
|
-
answer_content = self.data_adapter.parse_pred_result(
|
|
204
|
-
result=answer_content, raw_input_d=raw_input_d, eval_type=self.eval_type)
|
|
205
211
|
gold_content = self.data_adapter.get_gold_answer(raw_input_d)
|
|
206
212
|
|
|
207
|
-
|
|
213
|
+
# Get review result based on judge strategy
|
|
214
|
+
use_llm = (
|
|
215
|
+
self.task_cfg.judge_strategy == JudgeStrategy.LLM
|
|
216
|
+
or (self.task_cfg.judge_strategy == JudgeStrategy.AUTO and self.data_adapter.llm_as_a_judge))
|
|
217
|
+
|
|
218
|
+
if use_llm:
|
|
219
|
+
# Use LLM as judge
|
|
220
|
+
assert self.judge is not None, f'Judge model is required for LLM judging {self.data_adapter.name}'
|
|
221
|
+
review_result = self.data_adapter.llm_match(
|
|
222
|
+
gold_content, answer_content, self.judge, raw_input=raw_input_d)
|
|
223
|
+
pred = answer_content
|
|
224
|
+
else:
|
|
225
|
+
# Use rule-based judging
|
|
226
|
+
pred_content = self.data_adapter.parse_pred_result(
|
|
227
|
+
result=answer_content, raw_input_d=raw_input_d, eval_type=self.eval_type)
|
|
228
|
+
review_result = self.data_adapter.match(gold_content, pred_content)
|
|
229
|
+
|
|
230
|
+
# For LLM_RECALL strategy, use LLM to re-judge if rule-based result is not good
|
|
231
|
+
if (self.task_cfg.judge_strategy == JudgeStrategy.LLM_RECALL
|
|
232
|
+
and isinstance(review_result, (bool, int, float)) and not bool(review_result)):
|
|
233
|
+
assert self.judge is not None, f'Judge model is required for LLM_RECALL strategy {self.data_adapter.name}' # noqa: E501
|
|
234
|
+
review_result = self.data_adapter.llm_match(
|
|
235
|
+
gold_content, answer_content, self.judge, raw_input=raw_input_d)
|
|
236
|
+
pred = answer_content
|
|
237
|
+
else:
|
|
238
|
+
pred = pred_content
|
|
239
|
+
|
|
208
240
|
choice[ReviewKeys.REVIEW] = {
|
|
209
241
|
ReviewKeys.GOLD: gold_content,
|
|
210
|
-
ReviewKeys.PRED:
|
|
242
|
+
ReviewKeys.PRED: pred,
|
|
211
243
|
ReviewKeys.RESULT: review_result
|
|
212
244
|
}
|
|
213
|
-
|
|
214
245
|
rev_choices.append(choice)
|
|
215
246
|
|
|
216
247
|
review_res[AnswerKeys.CHOICES] = rev_choices
|
|
@@ -252,16 +283,23 @@ class Evaluator(object):
|
|
|
252
283
|
logger.warning(f'Ignore use_cache={self.use_cache}, updating the review file: {review_file_path} ...')
|
|
253
284
|
os.remove(review_file_path)
|
|
254
285
|
|
|
255
|
-
|
|
286
|
+
def process_single_review(answer_d):
|
|
256
287
|
review_id, reviewer_spec = self._generate_review_id(answer_d)
|
|
257
288
|
# Get review
|
|
258
289
|
review_d = self._get_review(answer_d=answer_d, review_id=review_id, reviewer_spec=reviewer_spec)
|
|
259
|
-
|
|
260
290
|
logger.debug(review_d)
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
291
|
+
return review_d
|
|
292
|
+
|
|
293
|
+
with ThreadPoolExecutor(max_workers=self.task_cfg.judge_worker_num) as executor:
|
|
294
|
+
# Submit all tasks and get futures
|
|
295
|
+
futures = [executor.submit(process_single_review, answer_d) for answer_d in answers_list]
|
|
296
|
+
|
|
297
|
+
# Process completed futures with progress bar
|
|
298
|
+
for future in tqdm(as_completed(futures), total=len(futures), desc=f'Reviewing({subset_name}): '):
|
|
299
|
+
review_d = future.result()
|
|
300
|
+
reviews_list.append(review_d)
|
|
301
|
+
# Dump reviews
|
|
302
|
+
dump_jsonl_data(review_d, review_file_path, dump_mode=DumpMode.APPEND)
|
|
265
303
|
|
|
266
304
|
return reviews_list
|
|
267
305
|
|