evalscope 0.12.0__py3-none-any.whl → 0.13.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of evalscope might be problematic. Click here for more details.
- evalscope/arguments.py +6 -1
- evalscope/benchmarks/aime/aime24_adapter.py +3 -3
- evalscope/benchmarks/aime/aime25_adapter.py +3 -3
- evalscope/benchmarks/arc/arc_adapter.py +15 -18
- evalscope/benchmarks/bbh/bbh_adapter.py +6 -6
- evalscope/benchmarks/benchmark.py +12 -11
- evalscope/benchmarks/ceval/ceval_adapter.py +12 -16
- evalscope/benchmarks/chinese_simple_qa/__init__.py +0 -0
- evalscope/benchmarks/chinese_simple_qa/csimple_qa_adapter.py +168 -0
- evalscope/benchmarks/cmmlu/cmmlu_adapter.py +13 -17
- evalscope/benchmarks/competition_math/competition_math_adapter.py +3 -3
- evalscope/benchmarks/data_adapter.py +59 -21
- evalscope/benchmarks/data_collection/data_collection_adapter.py +0 -1
- evalscope/benchmarks/general_mcq/general_mcq_adapter.py +9 -12
- evalscope/benchmarks/general_qa/general_qa_adapter.py +30 -15
- evalscope/benchmarks/gpqa/gpqa_adapter.py +12 -7
- evalscope/benchmarks/gsm8k/gsm8k_adapter.py +2 -3
- evalscope/benchmarks/hellaswag/hellaswag_adapter.py +23 -31
- evalscope/benchmarks/humaneval/humaneval_adapter.py +10 -7
- evalscope/benchmarks/ifeval/ifeval_adapter.py +2 -3
- evalscope/benchmarks/iquiz/iquiz_adapter.py +9 -5
- evalscope/benchmarks/live_code_bench/__init__.py +0 -0
- evalscope/benchmarks/live_code_bench/evaluate_utils.py +193 -0
- evalscope/benchmarks/live_code_bench/execute_utils.py +267 -0
- evalscope/benchmarks/live_code_bench/extract_utils.py +70 -0
- evalscope/benchmarks/live_code_bench/live_code_bench_adapter.py +90 -0
- evalscope/benchmarks/live_code_bench/load_utils.py +71 -0
- evalscope/benchmarks/live_code_bench/pass_k_utils.py +56 -0
- evalscope/benchmarks/live_code_bench/prompts.py +207 -0
- evalscope/benchmarks/live_code_bench/testing_util.py +721 -0
- evalscope/benchmarks/math_500/math_500_adapter.py +2 -6
- evalscope/benchmarks/mmlu/mmlu_adapter.py +13 -17
- evalscope/benchmarks/mmlu_pro/mmlu_pro_adapter.py +9 -5
- evalscope/benchmarks/musr/musr_adapter.py +8 -5
- evalscope/benchmarks/process_bench/process_bench_adapter.py +8 -5
- evalscope/benchmarks/race/race_adapter.py +12 -16
- evalscope/benchmarks/simple_qa/__init__.py +0 -0
- evalscope/benchmarks/simple_qa/simple_qa_adapter.py +167 -0
- evalscope/benchmarks/super_gpqa/__init__.py +0 -0
- evalscope/benchmarks/super_gpqa/five_shot_prompt.txt +89 -0
- evalscope/benchmarks/super_gpqa/super_gpqa_adapter.py +191 -0
- evalscope/benchmarks/super_gpqa/utils.py +85 -0
- evalscope/benchmarks/super_gpqa/zero_shot_prompt.txt +3 -0
- evalscope/benchmarks/trivia_qa/trivia_qa_adapter.py +3 -4
- evalscope/benchmarks/truthful_qa/truthful_qa_adapter.py +6 -13
- evalscope/benchmarks/utils.py +43 -0
- evalscope/collections/evaluator.py +14 -5
- evalscope/config.py +15 -2
- evalscope/constants.py +14 -0
- evalscope/evaluator/evaluator.py +51 -13
- evalscope/metrics/llm_judge.py +104 -0
- evalscope/metrics/named_metrics.py +1 -0
- evalscope/models/__init__.py +2 -1
- evalscope/models/base_adapter.py +25 -5
- evalscope/models/chat_adapter.py +3 -0
- evalscope/models/choice_adapter.py +4 -0
- evalscope/models/custom_adapter.py +2 -0
- evalscope/models/register.py +28 -0
- evalscope/models/server_adapter.py +35 -8
- evalscope/perf/arguments.py +13 -7
- evalscope/perf/benchmark.py +5 -0
- evalscope/perf/http_client.py +15 -5
- evalscope/perf/main.py +1 -0
- evalscope/perf/utils/analysis_result.py +1 -1
- evalscope/report/app.py +3 -0
- evalscope/report/combinator.py +2 -2
- evalscope/run.py +6 -5
- evalscope/third_party/longbench_write/infer.py +1 -1
- evalscope/third_party/thinkbench/eval.py +220 -55
- evalscope/third_party/thinkbench/infer.py +37 -7
- evalscope/third_party/thinkbench/tools/llm.py +1 -0
- evalscope/third_party/toolbench_static/llm/swift_infer.py +50 -20
- evalscope/utils/chat_service.py +1 -0
- evalscope/utils/filters.py +59 -0
- evalscope/utils/logger.py +3 -3
- evalscope/version.py +2 -2
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/METADATA +31 -12
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/RECORD +85 -62
- tests/cli/test_all.py +144 -0
- tests/cli/test_collection.py +28 -2
- tests/cli/test_run.py +201 -32
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/LICENSE +0 -0
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/WHEEL +0 -0
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/entry_points.txt +0 -0
- {evalscope-0.12.0.dist-info → evalscope-0.13.0.dist-info}/top_level.txt +0 -0
evalscope/arguments.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
import argparse
|
|
2
2
|
import json
|
|
3
3
|
|
|
4
|
-
from evalscope.constants import EvalBackend, EvalStage, EvalType
|
|
4
|
+
from evalscope.constants import EvalBackend, EvalStage, EvalType, JudgeStrategy, OutputType
|
|
5
5
|
|
|
6
6
|
|
|
7
7
|
class ParseStrArgsAction(argparse.Action):
|
|
@@ -73,6 +73,11 @@ def add_argument(parser: argparse.ArgumentParser):
|
|
|
73
73
|
parser.add_argument('--api-url', type=str, default=None, help='The API url for the remote API model.')
|
|
74
74
|
parser.add_argument('--timeout', type=float, default=None, help='The timeout for the remote API model.')
|
|
75
75
|
parser.add_argument('--stream', action='store_true', default=False, help='Stream mode.') # noqa: E501
|
|
76
|
+
|
|
77
|
+
# LLMJudge arguments
|
|
78
|
+
parser.add_argument('--judge-strategy', type=str, default=JudgeStrategy.AUTO, help='The judge strategy.')
|
|
79
|
+
parser.add_argument('--judge-model-args', type=json.loads, default='{}', help='The judge model args, should be a json string.') # noqa: E501
|
|
80
|
+
parser.add_argument('--judge-worker-num', type=int, default=8, help='The number of workers for the judge model.')
|
|
76
81
|
# yapf: enable
|
|
77
82
|
|
|
78
83
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from evalscope.benchmarks import Benchmark, DataAdapter
|
|
2
|
+
from evalscope.constants import OutputType
|
|
2
3
|
from evalscope.metrics.math_parser import extract_answer, math_equal, strip_answer_string
|
|
3
|
-
from evalscope.models import ChatGenerationModelAdapter
|
|
4
4
|
from evalscope.utils.logger import get_logger
|
|
5
5
|
|
|
6
6
|
# flake8: noqa
|
|
@@ -10,8 +10,8 @@ logger = get_logger()
|
|
|
10
10
|
|
|
11
11
|
@Benchmark.register(
|
|
12
12
|
name='aime24',
|
|
13
|
+
pretty_name='AIME-2024',
|
|
13
14
|
dataset_id='HuggingFaceH4/aime_2024',
|
|
14
|
-
model_adapter=ChatGenerationModelAdapter,
|
|
15
15
|
subset_list=['default'],
|
|
16
16
|
metric_list=['AveragePass@1'],
|
|
17
17
|
few_shot_num=0,
|
|
@@ -31,7 +31,7 @@ class AIME24Adapter(DataAdapter):
|
|
|
31
31
|
problem = input_d['problem']
|
|
32
32
|
full_prompt = self.prompt_template.format(query=problem)
|
|
33
33
|
|
|
34
|
-
return
|
|
34
|
+
return self.gen_prompt_data(full_prompt)
|
|
35
35
|
|
|
36
36
|
def get_gold_answer(self, input_d: dict) -> str:
|
|
37
37
|
# Extract the gold answer from the input dict.
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from evalscope.benchmarks import Benchmark, DataAdapter
|
|
2
|
+
from evalscope.constants import OutputType
|
|
2
3
|
from evalscope.metrics.math_parser import extract_answer, math_equal, strip_answer_string
|
|
3
|
-
from evalscope.models import ChatGenerationModelAdapter
|
|
4
4
|
from evalscope.utils.logger import get_logger
|
|
5
5
|
|
|
6
6
|
# flake8: noqa
|
|
@@ -10,8 +10,8 @@ logger = get_logger()
|
|
|
10
10
|
|
|
11
11
|
@Benchmark.register(
|
|
12
12
|
name='aime25',
|
|
13
|
+
pretty_name='AIME-2025',
|
|
13
14
|
dataset_id='TIGER-Lab/AIME25',
|
|
14
|
-
model_adapter=ChatGenerationModelAdapter,
|
|
15
15
|
subset_list=['default'],
|
|
16
16
|
metric_list=['AveragePass@1'],
|
|
17
17
|
few_shot_num=0,
|
|
@@ -31,7 +31,7 @@ class AIME25Adapter(DataAdapter):
|
|
|
31
31
|
problem = input_d['question']
|
|
32
32
|
full_prompt = self.prompt_template.format(query=problem)
|
|
33
33
|
|
|
34
|
-
return
|
|
34
|
+
return self.gen_prompt_data(full_prompt)
|
|
35
35
|
|
|
36
36
|
def get_gold_answer(self, input_d: dict) -> str:
|
|
37
37
|
# Extract the gold answer from the input dict.
|
|
@@ -4,9 +4,8 @@ import json
|
|
|
4
4
|
import os
|
|
5
5
|
|
|
6
6
|
from evalscope.benchmarks import Benchmark, DataAdapter
|
|
7
|
-
from evalscope.constants import EvalType
|
|
7
|
+
from evalscope.constants import EvalType, OutputType
|
|
8
8
|
from evalscope.metrics import exact_match
|
|
9
|
-
from evalscope.models import MultiChoiceModelAdapter
|
|
10
9
|
from evalscope.utils import ResponseParser
|
|
11
10
|
from evalscope.utils.logger import get_logger
|
|
12
11
|
|
|
@@ -17,19 +16,20 @@ logger = get_logger()
|
|
|
17
16
|
|
|
18
17
|
@Benchmark.register(
|
|
19
18
|
name='arc',
|
|
19
|
+
pretty_name='ARC',
|
|
20
20
|
dataset_id='modelscope/ai2_arc',
|
|
21
|
-
model_adapter=
|
|
21
|
+
model_adapter=OutputType.MULTIPLE_CHOICE,
|
|
22
|
+
output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION],
|
|
22
23
|
subset_list=['ARC-Easy', 'ARC-Challenge'],
|
|
23
24
|
metric_list=['AverageAccuracy'],
|
|
24
25
|
few_shot_num=0,
|
|
25
26
|
train_split='train',
|
|
26
27
|
eval_split='test',
|
|
27
|
-
prompt_template=
|
|
28
|
+
prompt_template=
|
|
29
|
+
'Given the following question and four candidate answers (A, B, C and D), choose the best answer.\n{query}\nYour response should end with "The best answer is [the_answer_letter]" where the [the_answer_letter] is one of A, B, C or D.', # noqa
|
|
28
30
|
)
|
|
29
31
|
class ARCAdapter(DataAdapter):
|
|
30
32
|
|
|
31
|
-
choices = ['A', 'B', 'C', 'D']
|
|
32
|
-
|
|
33
33
|
def __init__(self, **kwargs):
|
|
34
34
|
few_shot_num = kwargs.get('few_shot_num', None)
|
|
35
35
|
if few_shot_num is None:
|
|
@@ -42,6 +42,8 @@ class ARCAdapter(DataAdapter):
|
|
|
42
42
|
|
|
43
43
|
super().__init__(**kwargs)
|
|
44
44
|
|
|
45
|
+
self.choices = ['A', 'B', 'C', 'D']
|
|
46
|
+
|
|
45
47
|
def load_from_disk(self, dataset_name_or_path, subset_list, work_dir, **kwargs) -> dict:
|
|
46
48
|
"""
|
|
47
49
|
Load the dataset from local disk.
|
|
@@ -60,7 +62,7 @@ class ARCAdapter(DataAdapter):
|
|
|
60
62
|
for split_name in ['Train', 'Test']:
|
|
61
63
|
split_path = os.path.join(subset_path, f'{subset_name}-{split_name}.jsonl')
|
|
62
64
|
if os.path.exists(split_path):
|
|
63
|
-
with open(split_path, 'r', errors='ignore') as in_f:
|
|
65
|
+
with open(split_path, 'r', errors='ignore', encoding='utf-8') as in_f:
|
|
64
66
|
rows = []
|
|
65
67
|
for line in in_f:
|
|
66
68
|
item = json.loads(line.strip())
|
|
@@ -107,12 +109,11 @@ class ARCAdapter(DataAdapter):
|
|
|
107
109
|
{'data': ['xxx'], 'multi_choices': ['A', 'B', 'C', 'D']}
|
|
108
110
|
"""
|
|
109
111
|
few_shot_prompts = [self._generate_prompt(input_d=sample, include_answer=True) for sample in few_shot_list]
|
|
110
|
-
context
|
|
112
|
+
context = '\n'.join(few_shot_prompts) + self._generate_prompt(input_d=input_d, include_answer=False)
|
|
111
113
|
|
|
112
|
-
|
|
113
|
-
full_prompt: str = context + self._generate_prompt(input_d=input_d, include_answer=False)
|
|
114
|
+
full_prompt = self.prompt_template.format(query=context)
|
|
114
115
|
|
|
115
|
-
return
|
|
116
|
+
return self.gen_prompt_data(full_prompt)
|
|
116
117
|
|
|
117
118
|
def get_gold_answer(self, input_d: dict) -> str:
|
|
118
119
|
# Get the gold choice
|
|
@@ -130,14 +131,10 @@ class ARCAdapter(DataAdapter):
|
|
|
130
131
|
Returns:
|
|
131
132
|
The parsed answer. Depending on the dataset. Usually a string for chat.
|
|
132
133
|
"""
|
|
133
|
-
if
|
|
134
|
+
if self.model_adapter == OutputType.MULTIPLE_CHOICE:
|
|
134
135
|
return result
|
|
135
|
-
elif eval_type == EvalType.SERVICE:
|
|
136
|
-
return ResponseParser.parse_first_option_with_choices(text=result, options=self.choices)
|
|
137
|
-
elif eval_type == EvalType.CUSTOM:
|
|
138
|
-
return ResponseParser.parse_first_option_with_choices(text=result, options=self.choices)
|
|
139
136
|
else:
|
|
140
|
-
|
|
137
|
+
return ResponseParser.parse_first_option(text=result)
|
|
141
138
|
|
|
142
139
|
def match(self, gold: str, pred: str) -> float:
|
|
143
140
|
return exact_match(gold=gold, pred=pred)
|
|
@@ -152,8 +149,8 @@ class ARCAdapter(DataAdapter):
|
|
|
152
149
|
choices_prompts: str = '\n'.join([label + '. ' + text for text, label in zip(choices_texts, choices_labels)])
|
|
153
150
|
example += '\n' + choices_prompts
|
|
154
151
|
|
|
155
|
-
example += '\nAnswer:'
|
|
156
152
|
if include_answer:
|
|
153
|
+
example += '\nAnswer:'
|
|
157
154
|
example += ' {}\n\n'.format(input_d['answerKey'])
|
|
158
155
|
|
|
159
156
|
return example
|
|
@@ -8,8 +8,6 @@ import re
|
|
|
8
8
|
from evalscope.benchmarks import Benchmark, DataAdapter
|
|
9
9
|
from evalscope.constants import AnswerKeys
|
|
10
10
|
from evalscope.metrics import exact_match
|
|
11
|
-
from evalscope.models.chat_adapter import ChatGenerationModelAdapter
|
|
12
|
-
from evalscope.utils import ResponseParser
|
|
13
11
|
from evalscope.utils.logger import get_logger
|
|
14
12
|
|
|
15
13
|
# flake8: noqa
|
|
@@ -60,8 +58,8 @@ SUBSET_LIST = MULTIPLE_CHOICE_LIST + FREE_FORM_LIST
|
|
|
60
58
|
|
|
61
59
|
@Benchmark.register(
|
|
62
60
|
name='bbh',
|
|
61
|
+
pretty_name='BBH',
|
|
63
62
|
dataset_id='modelscope/bbh',
|
|
64
|
-
model_adapter=ChatGenerationModelAdapter,
|
|
65
63
|
subset_list=SUBSET_LIST,
|
|
66
64
|
metric_list=['AverageAccuracy'],
|
|
67
65
|
few_shot_num=3,
|
|
@@ -94,7 +92,7 @@ class BBHAdapter(DataAdapter):
|
|
|
94
92
|
else:
|
|
95
93
|
file_path: str = os.path.join(work_dir, dataset_name_or_path, f'{subset_name}.json')
|
|
96
94
|
if os.path.exists(file_path):
|
|
97
|
-
with open(file_path, 'r') as f:
|
|
95
|
+
with open(file_path, 'r', encoding='utf-8') as f:
|
|
98
96
|
examples = json.load(f)['examples']
|
|
99
97
|
if subset_name in data_dict:
|
|
100
98
|
data_dict[subset_name].update({split_name: examples})
|
|
@@ -125,7 +123,7 @@ class BBHAdapter(DataAdapter):
|
|
|
125
123
|
cot_prompts = ''
|
|
126
124
|
full_prompt = cot_prompts + self.prompt_template.format(query=input_d['input'])
|
|
127
125
|
|
|
128
|
-
return
|
|
126
|
+
return self.gen_prompt_data(full_prompt)
|
|
129
127
|
|
|
130
128
|
def gen_prompts(self, data_dict: dict) -> dict:
|
|
131
129
|
"""
|
|
@@ -153,7 +151,9 @@ class BBHAdapter(DataAdapter):
|
|
|
153
151
|
for sub_name, sub_data_dict in data_dict.items():
|
|
154
152
|
few_shot_data = []
|
|
155
153
|
if self.few_shot_num > 0:
|
|
156
|
-
with open(
|
|
154
|
+
with open(
|
|
155
|
+
os.path.join(os.path.dirname(__file__), 'cot_prompts', f'{sub_name}.txt'), 'r',
|
|
156
|
+
encoding='utf-8') as f:
|
|
157
157
|
cot_prompt_str = f.read()
|
|
158
158
|
few_shot_data = [cot_prompt_str]
|
|
159
159
|
|
|
@@ -1,12 +1,13 @@
|
|
|
1
1
|
import copy
|
|
2
|
-
from
|
|
2
|
+
from collections import OrderedDict
|
|
3
|
+
from dataclasses import dataclass, field, fields
|
|
3
4
|
from typing import TYPE_CHECKING, Dict, List, Optional
|
|
4
5
|
|
|
6
|
+
from evalscope.constants import OutputType
|
|
7
|
+
|
|
5
8
|
if TYPE_CHECKING:
|
|
6
9
|
from evalscope.benchmarks import DataAdapter
|
|
7
10
|
|
|
8
|
-
from evalscope.models import BaseModelAdapter
|
|
9
|
-
|
|
10
11
|
BENCHMARK_MAPPINGS = {}
|
|
11
12
|
|
|
12
13
|
|
|
@@ -15,8 +16,9 @@ class BenchmarkMeta:
|
|
|
15
16
|
name: str
|
|
16
17
|
dataset_id: str
|
|
17
18
|
data_adapter: 'DataAdapter'
|
|
18
|
-
model_adapter:
|
|
19
|
-
|
|
19
|
+
model_adapter: Optional[str] = OutputType.GENERATION
|
|
20
|
+
output_types: Optional[List[str]] = field(default_factory=lambda: [OutputType.GENERATION])
|
|
21
|
+
subset_list: List[str] = field(default_factory=lambda: ['default'])
|
|
20
22
|
metric_list: List[str] = field(default_factory=list)
|
|
21
23
|
few_shot_num: int = 0
|
|
22
24
|
few_shot_random: bool = False
|
|
@@ -26,6 +28,8 @@ class BenchmarkMeta:
|
|
|
26
28
|
system_prompt: Optional[str] = None
|
|
27
29
|
query_template: Optional[str] = None
|
|
28
30
|
pretty_name: Optional[str] = None
|
|
31
|
+
filters: Optional[OrderedDict] = None
|
|
32
|
+
extra_params: Optional[Dict] = field(default_factory=dict)
|
|
29
33
|
|
|
30
34
|
def _update(self, args: dict):
|
|
31
35
|
if args.get('local_path'):
|
|
@@ -37,12 +41,9 @@ class BenchmarkMeta:
|
|
|
37
41
|
return self.__dict__
|
|
38
42
|
|
|
39
43
|
def to_string_dict(self) -> dict:
|
|
40
|
-
cur_dict = copy.deepcopy(self.
|
|
44
|
+
cur_dict = copy.deepcopy(self.to_dict())
|
|
41
45
|
# cur_dict['data_adapter'] = self.data_adapter.__name__
|
|
42
|
-
# cur_dict['model_adapter'] = self.model_adapter.__name__
|
|
43
|
-
# cur_dict['metric_list'] = [metric['name'] for metric in self.metric_list]
|
|
44
46
|
del cur_dict['data_adapter']
|
|
45
|
-
del cur_dict['model_adapter']
|
|
46
47
|
return cur_dict
|
|
47
48
|
|
|
48
49
|
def get_data_adapter(self, config: dict = {}) -> 'DataAdapter':
|
|
@@ -66,13 +67,13 @@ class Benchmark:
|
|
|
66
67
|
return benchmark
|
|
67
68
|
|
|
68
69
|
@classmethod
|
|
69
|
-
def register(cls, name: str, dataset_id: str,
|
|
70
|
+
def register(cls, name: str, dataset_id: str, **kwargs):
|
|
70
71
|
|
|
71
72
|
def register_wrapper(data_adapter):
|
|
72
73
|
if name in BENCHMARK_MAPPINGS:
|
|
73
74
|
raise Exception(f'Benchmark {name} already registered')
|
|
74
75
|
BENCHMARK_MAPPINGS[name] = BenchmarkMeta(
|
|
75
|
-
name=name, data_adapter=data_adapter,
|
|
76
|
+
name=name, data_adapter=data_adapter, dataset_id=dataset_id, **kwargs)
|
|
76
77
|
return data_adapter
|
|
77
78
|
|
|
78
79
|
return register_wrapper
|
|
@@ -3,9 +3,8 @@ import csv
|
|
|
3
3
|
import os
|
|
4
4
|
|
|
5
5
|
from evalscope.benchmarks import Benchmark, DataAdapter
|
|
6
|
-
from evalscope.constants import EvalType
|
|
6
|
+
from evalscope.constants import EvalType, OutputType
|
|
7
7
|
from evalscope.metrics.metrics import exact_match
|
|
8
|
-
from evalscope.models import MultiChoiceModelAdapter
|
|
9
8
|
from evalscope.utils import ResponseParser
|
|
10
9
|
from evalscope.utils.logger import get_logger
|
|
11
10
|
|
|
@@ -126,19 +125,20 @@ SUBJECT_MAPPING = {
|
|
|
126
125
|
|
|
127
126
|
@Benchmark.register(
|
|
128
127
|
name='ceval',
|
|
128
|
+
pretty_name='C-Eval',
|
|
129
129
|
dataset_id='modelscope/ceval-exam',
|
|
130
|
-
model_adapter=
|
|
130
|
+
model_adapter=OutputType.MULTIPLE_CHOICE,
|
|
131
|
+
output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION],
|
|
131
132
|
subset_list=SUBSET_LIST,
|
|
132
133
|
metric_list=['AverageAccuracy'],
|
|
133
134
|
few_shot_num=0,
|
|
134
135
|
train_split='dev',
|
|
135
136
|
eval_split='val',
|
|
136
|
-
prompt_template=
|
|
137
|
+
prompt_template=
|
|
138
|
+
'以下是中国关于{subset_name}考试的单项选择题,请选出其中的正确答案。你的回答的最后一行应该是这样的格式:“答案是:LETTER”(不带引号),其中 LETTER 是 A、B、C、D 中的一个。\n{query}',
|
|
137
139
|
)
|
|
138
140
|
class CEVALAdapter(DataAdapter):
|
|
139
141
|
|
|
140
|
-
choices = ['A', 'B', 'C', 'D']
|
|
141
|
-
|
|
142
142
|
def __init__(self, **kwargs):
|
|
143
143
|
|
|
144
144
|
few_shot_num = kwargs.get('few_shot_num', 0)
|
|
@@ -148,6 +148,7 @@ class CEVALAdapter(DataAdapter):
|
|
|
148
148
|
super().__init__(**kwargs)
|
|
149
149
|
|
|
150
150
|
self.category_map = {k: v[-1] for k, v in SUBJECT_MAPPING.items()}
|
|
151
|
+
self.choices = ['A', 'B', 'C', 'D']
|
|
151
152
|
|
|
152
153
|
def load_from_disk(self, dataset_name_or_path, subset_list, work_dir, **kwargs) -> dict:
|
|
153
154
|
data_dict = {}
|
|
@@ -207,7 +208,7 @@ class CEVALAdapter(DataAdapter):
|
|
|
207
208
|
subject_name: str = SUBJECT_MAPPING.get(subset_name)[1] if SUBJECT_MAPPING.get(subset_name) else subset_name
|
|
208
209
|
full_prompt = self.prompt_template.format(subset_name=subject_name, query=query)
|
|
209
210
|
|
|
210
|
-
return
|
|
211
|
+
return self.gen_prompt_data(full_prompt)
|
|
211
212
|
|
|
212
213
|
def get_gold_answer(self, input_d: dict) -> str:
|
|
213
214
|
# Get the gold choice
|
|
@@ -225,22 +226,17 @@ class CEVALAdapter(DataAdapter):
|
|
|
225
226
|
Returns:
|
|
226
227
|
The parsed answer. Depending on the dataset. Usually a string for chat.
|
|
227
228
|
"""
|
|
228
|
-
if
|
|
229
|
+
if self.model_adapter == OutputType.MULTIPLE_CHOICE:
|
|
229
230
|
return result
|
|
230
|
-
elif eval_type == EvalType.SERVICE:
|
|
231
|
-
return ResponseParser.parse_first_option_with_choices(result, self.choices)
|
|
232
|
-
elif eval_type == EvalType.CUSTOM:
|
|
233
|
-
return ResponseParser.parse_first_option_with_choices(result, self.choices)
|
|
234
231
|
else:
|
|
235
|
-
|
|
232
|
+
return ResponseParser.parse_first_option_with_choices(text=result, options=self.choices)
|
|
236
233
|
|
|
237
234
|
def match(self, gold: str, pred: str) -> float:
|
|
238
235
|
return exact_match(gold=gold, pred=pred)
|
|
239
236
|
|
|
240
|
-
|
|
241
|
-
def _format_example(cls, input_d: dict, include_answer=True):
|
|
237
|
+
def _format_example(self, input_d: dict, include_answer=True):
|
|
242
238
|
example = '问题:' + input_d['question']
|
|
243
|
-
for choice in
|
|
239
|
+
for choice in self.choices:
|
|
244
240
|
example += f'\n{choice}. {input_d[f"{choice}"]}'
|
|
245
241
|
|
|
246
242
|
if include_answer:
|
|
File without changes
|
|
@@ -0,0 +1,168 @@
|
|
|
1
|
+
import re
|
|
2
|
+
from collections import defaultdict
|
|
3
|
+
from typing import Any, List
|
|
4
|
+
|
|
5
|
+
from evalscope.benchmarks import Benchmark, DataAdapter
|
|
6
|
+
from evalscope.metrics import Metric, mean, metric_registry
|
|
7
|
+
from evalscope.metrics.llm_judge import LLMJudge
|
|
8
|
+
from evalscope.utils.logger import get_logger
|
|
9
|
+
|
|
10
|
+
# flake8: noqa
|
|
11
|
+
|
|
12
|
+
logger = get_logger()
|
|
13
|
+
|
|
14
|
+
GRADER_TEMPLATE = """
|
|
15
|
+
请根据给定问题、标准答案和模型预测的答案来评估模型的回答是否正确。您的任务是将结果评定为:【正确】、【错误】或【未尝试】。
|
|
16
|
+
|
|
17
|
+
首先,我们将列出每个评定类别的示例,然后请您对新问题的预测答案进行评定。
|
|
18
|
+
以下是【正确】的答复示例:
|
|
19
|
+
```
|
|
20
|
+
问题:贝拉克·奥巴马的孩子叫什么名字?
|
|
21
|
+
标准答案:玛丽亚·奥巴马和萨莎·奥巴马
|
|
22
|
+
模型预测1:Malia Obama and Sasha Obama
|
|
23
|
+
模型预测2:玛丽亚和萨沙
|
|
24
|
+
模型预测3:大多数人会说是玛丽亚和萨莎,但我不确定,需要再确认
|
|
25
|
+
模型预测4:巴拉克·奥巴马有两个女儿,她们分别是玛丽亚·安和娜塔莎·玛丽安,但通常称作玛丽亚·奥巴马和萨莎·奥巴马。玛丽亚出生于1998年7月4日,萨莎出生于2001年6月10日。
|
|
26
|
+
```
|
|
27
|
+
这些答复均为【正确】,因为:
|
|
28
|
+
- 完整地包含了标准答案中的重要信息。
|
|
29
|
+
- 不包含任何与标准答案矛盾的信息。
|
|
30
|
+
- 只关注语义内容,中英文,大小写、标点、语法和顺序不重要。
|
|
31
|
+
- 答复中出现模糊语句或猜测是可以接受的,前提是包含了标准答案且不含有不正确信息或矛盾。
|
|
32
|
+
|
|
33
|
+
以下是【错误】的答复示例:
|
|
34
|
+
```
|
|
35
|
+
问题:巴拉克·奥巴马的孩子叫什么名字?
|
|
36
|
+
标准答案:玛丽亚·奥巴马和萨莎·奥巴马
|
|
37
|
+
模型预测1:玛丽亚
|
|
38
|
+
模型预测2:玛丽亚、萨莎和苏珊
|
|
39
|
+
模型预测3:巴拉克·奥巴马没有孩子
|
|
40
|
+
模型预测4:我认为是玛丽亚和萨莎。或者是玛丽亚和杰基。或者是乔伊和玛丽亚。
|
|
41
|
+
模型预测5:虽然我不知道他们的确切名字,但能说出巴拉克·奥巴马有三个孩子。
|
|
42
|
+
模型预测6:你可能是想说贝茜和奥利维亚。不过您应通过最新的参考资料确认详细信息。那是正确的答案吗?
|
|
43
|
+
```
|
|
44
|
+
这些答复均为【错误】,因为:
|
|
45
|
+
- 答复中包含与标准答案矛盾的事实陈述。即使在陈述中略带保留(例如:“可能是”,“虽然我不确定,但我认为”),也视为错误。
|
|
46
|
+
|
|
47
|
+
以下是【未尝试】的答复示例:
|
|
48
|
+
```
|
|
49
|
+
问题:巴拉克·奥巴马的孩子叫什么名字?
|
|
50
|
+
标准答案:玛丽亚·奥巴马和萨莎·奥巴马
|
|
51
|
+
模型预测1:我不知道。
|
|
52
|
+
模型预测2:我需要更多关于您所指奥巴马的上下文。
|
|
53
|
+
模型预测3:不查阅网络我无法回答这个问题,不过我知道巴拉克·奥巴马有两个孩子。
|
|
54
|
+
模型预测4:巴拉克·奥巴马有两个孩子。我知道其中一个叫玛丽亚,但我不确定另一个的名字。
|
|
55
|
+
```
|
|
56
|
+
这些答复均为【未尝试】,因为:
|
|
57
|
+
- 没有包含标准答案中的重要信息。
|
|
58
|
+
- 回复中没有与标准答案矛盾的陈述。
|
|
59
|
+
|
|
60
|
+
另外注意以下几点:
|
|
61
|
+
- 对于标准答案为数字的问题,预测答案应和标准答案一致。例如,考虑问题“金山铁路黄浦江特大桥的全长是多少米?”,标准答案为“3518.17”:
|
|
62
|
+
- 预测答案“3518”、“3518.1”、“3518.17”均为【正确】。
|
|
63
|
+
- 预测答案“3520”和“3600”均为【错误】。
|
|
64
|
+
- 预测答案“大约3500米”和“超过3000米”被视为【未尝试】,因为它们既不确认也不与标准答案矛盾。
|
|
65
|
+
- 如果标准答案包含比问题更多的信息,预测答案只需包含问题中提到的信息。
|
|
66
|
+
- 例如,考虑问题“菱镁矿的主要化学成分是什么?”标准答案为“碳酸镁(MgCO3)”。“碳酸镁”或“MgCO3”均视为【正确】答案。
|
|
67
|
+
- 如果从问题中明显可以推断出预测答案省略的信息,那么算作正确。
|
|
68
|
+
- 例如,问题“巴鲁米尼的努拉吉遗迹在1997年被联合国教科文组织列为世界文化遗产,那么这遗址在哪个地区?”标准答案为“意大利撒丁岛”,预测答案“撒丁岛”被视为【正确】。
|
|
69
|
+
- 如果能明显看出名字翻译版本不同但是是同一个人也认为正确。
|
|
70
|
+
- 例如,如果标准答案是“Robinson”,那么回答鲁滨逊或者鲁滨孙均正确。
|
|
71
|
+
|
|
72
|
+
下面是一个新的问题示例。请只回复A、B、C之一,不要道歉或纠正自己的错误,只需要评估该回答。
|
|
73
|
+
```
|
|
74
|
+
问题: {question}
|
|
75
|
+
正确答案: {target}
|
|
76
|
+
预测答案: {predicted_answer}
|
|
77
|
+
```
|
|
78
|
+
|
|
79
|
+
将此新问题的预测答案评定为以下之一:
|
|
80
|
+
A:【正确】
|
|
81
|
+
B:【错误】
|
|
82
|
+
C:【未尝试】
|
|
83
|
+
|
|
84
|
+
只返回字母"A"、"B"或"C",无须添加其他文本。
|
|
85
|
+
""".strip() # noqa E501
|
|
86
|
+
|
|
87
|
+
SUBSET_LIST = ['中华文化', '人文与社会科学', '工程、技术与应用科学', '生活、艺术与文化', '社会', '自然与自然科学']
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
@Benchmark.register(
|
|
91
|
+
name='chinese_simpleqa',
|
|
92
|
+
pretty_name='Chinese SimpleQA',
|
|
93
|
+
subset_list=SUBSET_LIST,
|
|
94
|
+
dataset_id='AI-ModelScope/Chinese-SimpleQA',
|
|
95
|
+
metric_list=['is_correct', 'is_incorrect', 'is_not_attempted'],
|
|
96
|
+
few_shot_num=0,
|
|
97
|
+
train_split=None,
|
|
98
|
+
eval_split='train')
|
|
99
|
+
class ChineseSimpleQAAdapter(DataAdapter):
|
|
100
|
+
|
|
101
|
+
def __init__(self, *args, **kwargs):
|
|
102
|
+
super().__init__(*args, **kwargs)
|
|
103
|
+
|
|
104
|
+
# register metrics
|
|
105
|
+
metric_registry.register(Metric(name='is_correct', object=mean))
|
|
106
|
+
metric_registry.register(Metric(name='is_incorrect', object=mean))
|
|
107
|
+
metric_registry.register(Metric(name='is_not_attempted', object=mean))
|
|
108
|
+
|
|
109
|
+
# whether to use LLM as a judge
|
|
110
|
+
self.llm_as_a_judge = True
|
|
111
|
+
|
|
112
|
+
def load(self, **kwargs):
|
|
113
|
+
kwargs['subset_list'] = ['default']
|
|
114
|
+
data_dict = super().load(**kwargs)
|
|
115
|
+
return self.reformat_subset(data_dict, subset_key='primary_category', format='{}')
|
|
116
|
+
|
|
117
|
+
def gen_prompt(self, input_d: dict, subset_name: str, few_shot_list: list, **kwargs) -> dict:
|
|
118
|
+
question = input_d['question']
|
|
119
|
+
return self.gen_prompt_data(question)
|
|
120
|
+
|
|
121
|
+
def get_gold_answer(self, input_d: dict) -> str:
|
|
122
|
+
return input_d['answer']
|
|
123
|
+
|
|
124
|
+
def parse_pred_result(self, result: str, raw_input_d: dict = None, **kwargs) -> str:
|
|
125
|
+
return result.strip()
|
|
126
|
+
|
|
127
|
+
def match(self, gold: str, pred: str) -> float:
|
|
128
|
+
# simple match
|
|
129
|
+
logger.warning(f'Please use LLMJudge to match the result for ChineseSimpleQA')
|
|
130
|
+
is_correct = 1 if gold.lower().strip() == pred.lower().strip() else 0
|
|
131
|
+
is_incorrect = not is_correct
|
|
132
|
+
is_not_attempted = 0
|
|
133
|
+
return {
|
|
134
|
+
'is_correct': is_correct,
|
|
135
|
+
'is_incorrect': is_incorrect,
|
|
136
|
+
'is_not_attempted': is_not_attempted,
|
|
137
|
+
}
|
|
138
|
+
|
|
139
|
+
def llm_match(self, gold: Any, pred: Any, judge: LLMJudge, **kwargs) -> dict:
|
|
140
|
+
raw_input = kwargs.get('raw_input', None)
|
|
141
|
+
question = raw_input['question']
|
|
142
|
+
# get grading response
|
|
143
|
+
prompt = GRADER_TEMPLATE.format(question=question, target=gold, predicted_answer=pred)
|
|
144
|
+
system_prompt = '你是一个智能助手,请根据给定问题、标准答案和模型预测的答案来评估模型的回答是否正确。'
|
|
145
|
+
grading_response = judge(prompt, system_prompt)
|
|
146
|
+
# parse grading response
|
|
147
|
+
match = re.search(r'(A|B|C)', grading_response)
|
|
148
|
+
res = match.group(0) if match else 'C'
|
|
149
|
+
return {
|
|
150
|
+
'is_correct': 1 if res == 'A' else 0,
|
|
151
|
+
'is_incorrect': 1 if res == 'B' else 0,
|
|
152
|
+
'is_not_attempted': 1 if res == 'C' else 0,
|
|
153
|
+
}
|
|
154
|
+
|
|
155
|
+
def compute_metric(self, review_res_list: List[dict], **kwargs) -> List[dict]:
|
|
156
|
+
"""
|
|
157
|
+
compute weighted mean of the bleu score of all samples
|
|
158
|
+
|
|
159
|
+
Args:
|
|
160
|
+
review_res_list: [{'is_correct': 1, 'is_incorrect': 0, 'is_not_attempted': 0}, ...]
|
|
161
|
+
"""
|
|
162
|
+
# zip dict answers
|
|
163
|
+
res_dict = defaultdict(list)
|
|
164
|
+
for res in review_res_list:
|
|
165
|
+
for key, value in res.items():
|
|
166
|
+
res_dict[key].append(value)
|
|
167
|
+
|
|
168
|
+
return super().compute_metric(res_dict, **kwargs)
|
|
@@ -4,9 +4,8 @@ import csv
|
|
|
4
4
|
import os
|
|
5
5
|
|
|
6
6
|
from evalscope.benchmarks import Benchmark, DataAdapter
|
|
7
|
-
from evalscope.constants import EvalType
|
|
7
|
+
from evalscope.constants import EvalType, OutputType
|
|
8
8
|
from evalscope.metrics import exact_match
|
|
9
|
-
from evalscope.models import MultiChoiceModelAdapter
|
|
10
9
|
from evalscope.utils import ResponseParser
|
|
11
10
|
from evalscope.utils.logger import get_logger
|
|
12
11
|
|
|
@@ -103,23 +102,25 @@ SUBJECT_MAPPING = {
|
|
|
103
102
|
|
|
104
103
|
@Benchmark.register(
|
|
105
104
|
name='cmmlu',
|
|
105
|
+
pretty_name='C-MMLU',
|
|
106
106
|
dataset_id='modelscope/cmmlu',
|
|
107
|
-
model_adapter=
|
|
107
|
+
model_adapter=OutputType.MULTIPLE_CHOICE,
|
|
108
|
+
output_types=[OutputType.MULTIPLE_CHOICE, OutputType.GENERATION],
|
|
108
109
|
subset_list=SUBSET_LIST,
|
|
109
110
|
metric_list=['AverageAccuracy'],
|
|
110
111
|
few_shot_num=5,
|
|
111
112
|
train_split='dev',
|
|
112
113
|
eval_split='test',
|
|
113
|
-
prompt_template=
|
|
114
|
+
prompt_template=
|
|
115
|
+
'以下是关于{subset_name}的单项选择题,请给出正确答案的选项。你的回答的最后一行应该是这样的格式:“答案:LETTER”(不带引号),其中 LETTER 是 A、B、C、D 中的一个。\n{query}',
|
|
114
116
|
)
|
|
115
117
|
class CMMLUAdapter(DataAdapter):
|
|
116
118
|
|
|
117
|
-
choices = ['A', 'B', 'C', 'D']
|
|
118
|
-
|
|
119
119
|
def __init__(self, **kwargs):
|
|
120
120
|
super().__init__(**kwargs)
|
|
121
121
|
|
|
122
122
|
self.category_map = {k: v[-1] for k, v in SUBJECT_MAPPING.items()}
|
|
123
|
+
self.choices = ['A', 'B', 'C', 'D']
|
|
123
124
|
|
|
124
125
|
def load_from_disk(self, dataset_name_or_path, subset_list, work_dir, **kwargs) -> dict:
|
|
125
126
|
data_dict = {}
|
|
@@ -172,7 +173,7 @@ class CMMLUAdapter(DataAdapter):
|
|
|
172
173
|
|
|
173
174
|
full_prompt = self.prompt_template.format(subset_name=self._format_subject(subset_name), query=context.strip())
|
|
174
175
|
|
|
175
|
-
return
|
|
176
|
+
return self.gen_prompt_data(full_prompt)
|
|
176
177
|
|
|
177
178
|
def get_gold_answer(self, input_d: dict) -> str:
|
|
178
179
|
# Get the gold choice
|
|
@@ -190,26 +191,21 @@ class CMMLUAdapter(DataAdapter):
|
|
|
190
191
|
Returns:
|
|
191
192
|
The parsed answer. Depending on the dataset. Usually a string for chat.
|
|
192
193
|
"""
|
|
193
|
-
if
|
|
194
|
+
if self.model_adapter == OutputType.MULTIPLE_CHOICE:
|
|
194
195
|
return result
|
|
195
|
-
elif eval_type == EvalType.SERVICE:
|
|
196
|
-
return ResponseParser.parse_first_option_with_choices(result, self.choices)
|
|
197
|
-
elif eval_type == EvalType.CUSTOM:
|
|
198
|
-
return ResponseParser.parse_first_option_with_choices(result, self.choices)
|
|
199
196
|
else:
|
|
200
|
-
|
|
197
|
+
return ResponseParser.parse_first_option_with_choices(text=result, options=self.choices)
|
|
201
198
|
|
|
202
199
|
def match(self, gold: str, pred: str) -> float:
|
|
203
200
|
return exact_match(gold=gold, pred=pred)
|
|
204
201
|
|
|
205
|
-
|
|
206
|
-
def _generate_prompt(cls, input_d: dict, include_answer=True) -> str:
|
|
202
|
+
def _generate_prompt(self, input_d: dict, include_answer=True) -> str:
|
|
207
203
|
|
|
208
204
|
input_choices: list = [input_d['A'], input_d['B'], input_d['C'], input_d['D']]
|
|
209
205
|
|
|
210
206
|
example: str = input_d['Question']
|
|
211
|
-
for j in range(len(
|
|
212
|
-
example += '\n{}. {}'.format(
|
|
207
|
+
for j in range(len(self.choices)):
|
|
208
|
+
example += '\n{}. {}'.format(self.choices[j], input_choices[j])
|
|
213
209
|
|
|
214
210
|
example += '\nAnswer:'
|
|
215
211
|
if include_answer:
|
|
@@ -18,8 +18,8 @@ logger = get_logger()
|
|
|
18
18
|
|
|
19
19
|
@Benchmark.register(
|
|
20
20
|
name='competition_math',
|
|
21
|
+
pretty_name='MATH',
|
|
21
22
|
dataset_id='modelscope/competition_math',
|
|
22
|
-
model_adapter=ChatGenerationModelAdapter,
|
|
23
23
|
subset_list=['Level 1', 'Level 2', 'Level 3', 'Level 4', 'Level 5'],
|
|
24
24
|
metric_list=['AveragePass@1'],
|
|
25
25
|
few_shot_num=4,
|
|
@@ -58,7 +58,7 @@ class CompetitionMathAdapter(DataAdapter):
|
|
|
58
58
|
split_data = []
|
|
59
59
|
for file_path in split_files:
|
|
60
60
|
if os.path.exists(file_path):
|
|
61
|
-
with open(file_path, 'r') as f:
|
|
61
|
+
with open(file_path, 'r', encoding='utf-8') as f:
|
|
62
62
|
split_data.append(json.load(f))
|
|
63
63
|
data_dict[subset_name][split_name] = split_data
|
|
64
64
|
|
|
@@ -81,7 +81,7 @@ class CompetitionMathAdapter(DataAdapter):
|
|
|
81
81
|
use_fewshot = self.few_shot_num > 0
|
|
82
82
|
query = self._generate_prompt(input_d, use_fewshot=use_fewshot)
|
|
83
83
|
full_prompt = self.prompt_template.format(query=query)
|
|
84
|
-
return
|
|
84
|
+
return self.gen_prompt_data(full_prompt)
|
|
85
85
|
|
|
86
86
|
def get_gold_answer(self, input_d: dict) -> str:
|
|
87
87
|
# Extract the gold answer from the input dict.
|