endoreg-db 0.6.0__py3-none-any.whl → 0.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of endoreg-db might be problematic. Click here for more details.
- endoreg_db/case_generator/__init__.py +0 -0
- endoreg_db/case_generator/case_generator.py +159 -0
- endoreg_db/case_generator/lab_sample_factory.py +33 -0
- endoreg_db/case_generator/utils.py +30 -0
- endoreg_db/data/__init__.py +118 -0
- endoreg_db/data/agl_service/data.yaml +19 -0
- endoreg_db/data/ai_model/data.yaml +7 -0
- endoreg_db/data/ai_model_label/label/data.yaml +88 -0
- endoreg_db/data/ai_model_label/label-set/data.yaml +21 -0
- endoreg_db/data/ai_model_label/label-type/data.yaml +7 -0
- endoreg_db/data/ai_model_meta/default_multilabel_classification.yaml +5 -0
- endoreg_db/data/ai_model_type/data.yaml +7 -0
- endoreg_db/data/ai_model_video_segmentation_label/base_segmentation.yaml +176 -0
- endoreg_db/data/ai_model_video_segmentation_labelset/data.yaml +20 -0
- endoreg_db/data/case_template/rule/00_patient_lab_sample_add_default_value.yaml +167 -0
- endoreg_db/data/case_template/rule/01_patient-set-age.yaml +8 -0
- endoreg_db/data/case_template/rule/01_patient-set-gender.yaml +9 -0
- endoreg_db/data/case_template/rule/11_create_patient_lab_sample.yaml +23 -0
- endoreg_db/data/case_template/rule/12_create-patient_medication-anticoagulation.yaml +19 -0
- endoreg_db/data/case_template/rule/13_create-patient_medication_schedule-anticoagulation.yaml +19 -0
- endoreg_db/data/case_template/rule/19_create_patient.yaml +17 -0
- endoreg_db/data/case_template/rule_type/base_types.yaml +35 -0
- endoreg_db/data/case_template/rule_value/.init +0 -0
- endoreg_db/data/case_template/rule_value_type/base_types.yaml +59 -0
- endoreg_db/data/case_template/template/base.yaml +8 -0
- endoreg_db/data/case_template/template_type/pre_endoscopy.yaml +3 -0
- endoreg_db/data/case_template/tmp/_rule_value +13 -0
- endoreg_db/data/case_template/tmp/rule/01_atrial_fibrillation.yaml +21 -0
- endoreg_db/data/case_template/tmp/rule/02_create_object.yaml +10 -0
- endoreg_db/data/case_template/tmp/template/atrial_fibrillation_low_risk.yaml +7 -0
- endoreg_db/data/center/data.yaml +90 -0
- endoreg_db/data/center_resource/green_endoscopy_dashboard_CenterResource.yaml +144 -0
- endoreg_db/data/center_waste/green_endoscopy_dashboard_CenterWaste.yaml +48 -0
- endoreg_db/data/contraindication/bleeding.yaml +11 -0
- endoreg_db/data/disease/cardiovascular.yaml +37 -0
- endoreg_db/data/disease/hepatology.yaml +5 -0
- endoreg_db/data/disease/misc.yaml +6 -0
- endoreg_db/data/disease/renal.yaml +5 -0
- endoreg_db/data/disease_classification/chronic_kidney_disease.yaml +6 -0
- endoreg_db/data/disease_classification/coronary_vessel_disease.yaml +6 -0
- endoreg_db/data/disease_classification_choice/chronic_kidney_disease.yaml +41 -0
- endoreg_db/data/disease_classification_choice/coronary_vessel_disease.yaml +20 -0
- endoreg_db/data/distribution/date/patient.yaml +7 -0
- endoreg_db/data/distribution/multiple_categorical/.init +0 -0
- endoreg_db/data/distribution/numeric/data.yaml +14 -0
- endoreg_db/data/distribution/single_categorical/patient.yaml +7 -0
- endoreg_db/data/emission_factor/green_endoscopy_dashboard_EmissionFactor.yaml +132 -0
- endoreg_db/data/endoscope/data.yaml +93 -0
- endoreg_db/data/endoscope_type/data.yaml +11 -0
- endoreg_db/data/endoscopy_processor/data.yaml +47 -0
- endoreg_db/data/event/cardiology.yaml +28 -0
- endoreg_db/data/event/neurology.yaml +14 -0
- endoreg_db/data/event/surgery.yaml +13 -0
- endoreg_db/data/event/thrombembolism.yaml +20 -0
- endoreg_db/data/examination/examinations/data.yaml +66 -0
- endoreg_db/data/examination/time/data.yaml +48 -0
- endoreg_db/data/examination/time-type/data.yaml +8 -0
- endoreg_db/data/examination/type/data.yaml +5 -0
- endoreg_db/data/examination_indication/endoscopy.yaml +8 -0
- endoreg_db/data/examination_indication_classification/endoscopy.yaml +8 -0
- endoreg_db/data/examination_indication_classification_choice/endoscopy.yaml +101 -0
- endoreg_db/data/finding/data.yaml +141 -0
- endoreg_db/data/finding_intervention/endoscopy.yaml +138 -0
- endoreg_db/data/finding_intervention_type/endoscopy.yaml +15 -0
- endoreg_db/data/finding_location_classification/colonoscopy.yaml +46 -0
- endoreg_db/data/finding_location_classification_choice/colonoscopy.yaml +240 -0
- endoreg_db/data/finding_morphology_classification/colonoscopy.yaml +48 -0
- endoreg_db/data/finding_morphology_classification_choice/colon_lesion_circularity_default.yaml +34 -0
- endoreg_db/data/finding_morphology_classification_choice/colon_lesion_nice.yaml +20 -0
- endoreg_db/data/finding_morphology_classification_choice/colon_lesion_paris.yaml +65 -0
- endoreg_db/data/finding_morphology_classification_choice/colon_lesion_planarity_default.yaml +56 -0
- endoreg_db/data/finding_morphology_classification_choice/colon_lesion_surface_intact_default.yaml +39 -0
- endoreg_db/data/finding_morphology_classification_choice/colonoscopy_size.yaml +57 -0
- endoreg_db/data/finding_morphology_classification_type/colonoscopy.yaml +79 -0
- endoreg_db/data/finding_type/data.yaml +30 -0
- endoreg_db/data/gender/data.yaml +35 -0
- endoreg_db/data/information_source/data.yaml +30 -0
- endoreg_db/data/information_source/medication.yaml +6 -0
- endoreg_db/data/lab_value/cardiac_enzymes.yaml +37 -0
- endoreg_db/data/lab_value/coagulation.yaml +54 -0
- endoreg_db/data/lab_value/electrolytes.yaml +228 -0
- endoreg_db/data/lab_value/gastrointestinal_function.yaml +133 -0
- endoreg_db/data/lab_value/hematology.yaml +184 -0
- endoreg_db/data/lab_value/hormones.yaml +59 -0
- endoreg_db/data/lab_value/lipids.yaml +53 -0
- endoreg_db/data/lab_value/misc.yaml +33 -0
- endoreg_db/data/lab_value/renal_function.yaml +12 -0
- endoreg_db/data/log_type/data.yaml +57 -0
- endoreg_db/data/lx_client_tag/base.yaml +54 -0
- endoreg_db/data/lx_client_type/base.yaml +30 -0
- endoreg_db/data/lx_permission/base.yaml +24 -0
- endoreg_db/data/lx_permission/endoreg.yaml +52 -0
- endoreg_db/data/material/material.yaml +91 -0
- endoreg_db/data/medication/anticoagulation.yaml +65 -0
- endoreg_db/data/medication/tah.yaml +70 -0
- endoreg_db/data/medication_indication/anticoagulation.yaml +115 -0
- endoreg_db/data/medication_indication_type/data.yaml +11 -0
- endoreg_db/data/medication_indication_type/thrombembolism.yaml +41 -0
- endoreg_db/data/medication_intake_time/base.yaml +31 -0
- endoreg_db/data/medication_schedule/apixaban.yaml +95 -0
- endoreg_db/data/medication_schedule/ass.yaml +12 -0
- endoreg_db/data/medication_schedule/enoxaparin.yaml +26 -0
- endoreg_db/data/names_first/first_names.yaml +51 -0
- endoreg_db/data/names_last/last_names.yaml +51 -0
- endoreg_db/data/network_device/data.yaml +59 -0
- endoreg_db/data/network_device_type/data.yaml +12 -0
- endoreg_db/data/organ/data.yaml +29 -0
- endoreg_db/data/patient_lab_sample_type/generic.yaml +6 -0
- endoreg_db/data/pdf_type/data.yaml +29 -0
- endoreg_db/data/product/green_endoscopy_dashboard_Product.yaml +66 -0
- endoreg_db/data/product_group/green_endoscopy_dashboard_ProductGroup.yaml +33 -0
- endoreg_db/data/product_material/green_endoscopy_dashboard_ProductMaterial.yaml +308 -0
- endoreg_db/data/product_weight/green_endoscopy_dashboard_ProductWeight.yaml +88 -0
- endoreg_db/data/profession/data.yaml +70 -0
- endoreg_db/data/reference_product/green_endoscopy_dashboard_ReferenceProduct.yaml +55 -0
- endoreg_db/data/report_reader_flag/ukw-examination-generic.yaml +30 -0
- endoreg_db/data/report_reader_flag/ukw-histology-generic.yaml +19 -0
- endoreg_db/data/resource/green_endoscopy_dashboard_Resource.yaml +15 -0
- endoreg_db/data/tmp/chronic_kidney_disease.yaml +0 -0
- endoreg_db/data/tmp/congestive_heart_failure.yaml +0 -0
- endoreg_db/data/transport_route/green_endoscopy_dashboard_TransportRoute.yaml +12 -0
- endoreg_db/data/unit/concentration.yaml +92 -0
- endoreg_db/data/unit/data.yaml +17 -0
- endoreg_db/data/unit/length.yaml +31 -0
- endoreg_db/data/unit/misc.yaml +20 -0
- endoreg_db/data/unit/rate.yaml +6 -0
- endoreg_db/data/unit/time.yaml +13 -0
- endoreg_db/data/unit/volume.yaml +35 -0
- endoreg_db/data/unit/weight.yaml +38 -0
- endoreg_db/data/waste/data.yaml +12 -0
- endoreg_db/forms/__init__.py +5 -0
- endoreg_db/forms/examination_form.py +11 -0
- endoreg_db/forms/patient_finding_intervention_form.py +19 -0
- endoreg_db/forms/patient_form.py +26 -0
- endoreg_db/forms/questionnaires/__init__.py +1 -0
- endoreg_db/forms/questionnaires/tto_questionnaire.py +23 -0
- endoreg_db/forms/settings/__init__.py +8 -0
- endoreg_db/forms/unit.py +6 -0
- endoreg_db/management/__init__.py +0 -0
- endoreg_db/management/commands/__init__.py +0 -0
- endoreg_db/management/commands/_load_model_template.py +41 -0
- endoreg_db/management/commands/delete_all.py +18 -0
- endoreg_db/management/commands/fetch_legacy_image_dataset.py +32 -0
- endoreg_db/management/commands/fix_auth_permission.py +20 -0
- endoreg_db/management/commands/load_active_model_data.py +45 -0
- endoreg_db/management/commands/load_ai_model_data.py +79 -0
- endoreg_db/management/commands/load_ai_model_label_data.py +59 -0
- endoreg_db/management/commands/load_base_db_data.py +178 -0
- endoreg_db/management/commands/load_center_data.py +43 -0
- endoreg_db/management/commands/load_contraindication_data.py +41 -0
- endoreg_db/management/commands/load_disease_classification_choices_data.py +41 -0
- endoreg_db/management/commands/load_disease_classification_data.py +41 -0
- endoreg_db/management/commands/load_disease_data.py +62 -0
- endoreg_db/management/commands/load_distribution_data.py +66 -0
- endoreg_db/management/commands/load_endoscope_data.py +68 -0
- endoreg_db/management/commands/load_event_data.py +41 -0
- endoreg_db/management/commands/load_examination_data.py +75 -0
- endoreg_db/management/commands/load_examination_indication_data.py +65 -0
- endoreg_db/management/commands/load_finding_data.py +171 -0
- endoreg_db/management/commands/load_g_play_data.py +113 -0
- endoreg_db/management/commands/load_gender_data.py +44 -0
- endoreg_db/management/commands/load_green_endoscopy_wuerzburg_data.py +133 -0
- endoreg_db/management/commands/load_information_source.py +45 -0
- endoreg_db/management/commands/load_lab_value_data.py +50 -0
- endoreg_db/management/commands/load_logging_data.py +39 -0
- endoreg_db/management/commands/load_lx_data.py +64 -0
- endoreg_db/management/commands/load_medication_data.py +103 -0
- endoreg_db/management/commands/load_medication_indication_data.py +63 -0
- endoreg_db/management/commands/load_medication_indication_type_data.py +41 -0
- endoreg_db/management/commands/load_medication_intake_time_data.py +41 -0
- endoreg_db/management/commands/load_medication_schedule_data.py +55 -0
- endoreg_db/management/commands/load_name_data.py +37 -0
- endoreg_db/management/commands/load_network_data.py +57 -0
- endoreg_db/management/commands/load_organ_data.py +43 -0
- endoreg_db/management/commands/load_pdf_type_data.py +61 -0
- endoreg_db/management/commands/load_profession_data.py +44 -0
- endoreg_db/management/commands/load_report_reader_flag_data.py +46 -0
- endoreg_db/management/commands/load_unit_data.py +46 -0
- endoreg_db/management/commands/load_user_groups.py +28 -0
- endoreg_db/management/commands/register_ai_model.py +64 -0
- endoreg_db/management/commands/reset_celery_schedule.py +9 -0
- endoreg_db/migrations/0001_initial.py +2045 -0
- endoreg_db/migrations/0002_alter_frame_image_alter_rawframe_image.py +23 -0
- endoreg_db/migrations/0003_alter_frame_image_alter_rawframe_image.py +23 -0
- endoreg_db/migrations/0004_alter_rawvideofile_file_alter_video_file.py +25 -0
- endoreg_db/migrations/0005_rawvideofile_frame_count_and_more.py +33 -0
- endoreg_db/migrations/0006_frame_extracted_rawframe_extracted.py +23 -0
- endoreg_db/migrations/0007_rename_pseudo_patient_video_patient_and_more.py +24 -0
- endoreg_db/migrations/0008_remove_reportfile_patient_examination_and_more.py +48 -0
- endoreg_db/migrations/__init__.py +0 -0
- endoreg_db/models/__init__.py +376 -0
- endoreg_db/models/ai_model/__init__.py +4 -0
- endoreg_db/models/ai_model/active_model.py +9 -0
- endoreg_db/models/ai_model/ai_model.py +103 -0
- endoreg_db/models/ai_model/lightning/__init__.py +3 -0
- endoreg_db/models/ai_model/lightning/inference_dataset.py +53 -0
- endoreg_db/models/ai_model/lightning/multilabel_classification_net.py +155 -0
- endoreg_db/models/ai_model/lightning/postprocess.py +53 -0
- endoreg_db/models/ai_model/lightning/predict.py +172 -0
- endoreg_db/models/ai_model/lightning/prediction_visualizer.py +55 -0
- endoreg_db/models/ai_model/lightning/preprocess.py +68 -0
- endoreg_db/models/ai_model/lightning/run_visualizer.py +21 -0
- endoreg_db/models/ai_model/model_meta.py +250 -0
- endoreg_db/models/ai_model/model_type.py +36 -0
- endoreg_db/models/ai_model/utils.py +8 -0
- endoreg_db/models/annotation/__init__.py +32 -0
- endoreg_db/models/annotation/anonymized_image_annotation.py +115 -0
- endoreg_db/models/annotation/binary_classification_annotation_task.py +117 -0
- endoreg_db/models/annotation/image_classification.py +86 -0
- endoreg_db/models/annotation/video_segmentation_annotation.py +52 -0
- endoreg_db/models/annotation/video_segmentation_labelset.py +20 -0
- endoreg_db/models/case/__init__.py +1 -0
- endoreg_db/models/case/case.py +34 -0
- endoreg_db/models/case_template/__init__.py +15 -0
- endoreg_db/models/case_template/case_template.py +125 -0
- endoreg_db/models/case_template/case_template_rule.py +276 -0
- endoreg_db/models/case_template/case_template_rule_value.py +88 -0
- endoreg_db/models/case_template/case_template_type.py +28 -0
- endoreg_db/models/center/__init__.py +11 -0
- endoreg_db/models/center/center.py +51 -0
- endoreg_db/models/center/center_product.py +33 -0
- endoreg_db/models/center/center_resource.py +33 -0
- endoreg_db/models/center/center_waste.py +16 -0
- endoreg_db/models/contraindication/__init__.py +21 -0
- endoreg_db/models/data_file/__init__.py +39 -0
- endoreg_db/models/data_file/base_classes/__init__.py +7 -0
- endoreg_db/models/data_file/base_classes/abstract_frame.py +100 -0
- endoreg_db/models/data_file/base_classes/abstract_pdf.py +136 -0
- endoreg_db/models/data_file/base_classes/abstract_video.py +807 -0
- endoreg_db/models/data_file/base_classes/frame_helpers.py +17 -0
- endoreg_db/models/data_file/base_classes/prepare_bulk_frames.py +19 -0
- endoreg_db/models/data_file/base_classes/utils.py +80 -0
- endoreg_db/models/data_file/frame.py +29 -0
- endoreg_db/models/data_file/import_classes/__init__.py +18 -0
- endoreg_db/models/data_file/import_classes/processing_functions/__init__.py +35 -0
- endoreg_db/models/data_file/import_classes/processing_functions/pdf.py +28 -0
- endoreg_db/models/data_file/import_classes/processing_functions/video.py +260 -0
- endoreg_db/models/data_file/import_classes/raw_pdf.py +260 -0
- endoreg_db/models/data_file/import_classes/raw_video.py +288 -0
- endoreg_db/models/data_file/metadata/__init__.py +13 -0
- endoreg_db/models/data_file/metadata/pdf_meta.py +74 -0
- endoreg_db/models/data_file/metadata/sensitive_meta.py +290 -0
- endoreg_db/models/data_file/metadata/video_meta.py +199 -0
- endoreg_db/models/data_file/report_file.py +56 -0
- endoreg_db/models/data_file/video/__init__.py +11 -0
- endoreg_db/models/data_file/video/import_meta.py +25 -0
- endoreg_db/models/data_file/video/video.py +196 -0
- endoreg_db/models/data_file/video_segment.py +214 -0
- endoreg_db/models/disease.py +79 -0
- endoreg_db/models/emission/__init__.py +5 -0
- endoreg_db/models/emission/emission_factor.py +85 -0
- endoreg_db/models/event.py +73 -0
- endoreg_db/models/examination/__init__.py +9 -0
- endoreg_db/models/examination/examination.py +67 -0
- endoreg_db/models/examination/examination_indication.py +170 -0
- endoreg_db/models/examination/examination_time.py +53 -0
- endoreg_db/models/examination/examination_time_type.py +48 -0
- endoreg_db/models/examination/examination_type.py +40 -0
- endoreg_db/models/finding/__init__.py +11 -0
- endoreg_db/models/finding/finding.py +75 -0
- endoreg_db/models/finding/finding_intervention.py +60 -0
- endoreg_db/models/finding/finding_location_classification.py +94 -0
- endoreg_db/models/finding/finding_morphology_classification.py +89 -0
- endoreg_db/models/finding/finding_type.py +22 -0
- endoreg_db/models/hardware/__init__.py +2 -0
- endoreg_db/models/hardware/endoscope.py +60 -0
- endoreg_db/models/hardware/endoscopy_processor.py +155 -0
- endoreg_db/models/information_source.py +29 -0
- endoreg_db/models/label/__init__.py +1 -0
- endoreg_db/models/label/label.py +112 -0
- endoreg_db/models/laboratory/__init__.py +1 -0
- endoreg_db/models/laboratory/lab_value.py +111 -0
- endoreg_db/models/logging/__init__.py +11 -0
- endoreg_db/models/logging/agl_service.py +19 -0
- endoreg_db/models/logging/base.py +22 -0
- endoreg_db/models/logging/log_type.py +23 -0
- endoreg_db/models/logging/network_device.py +27 -0
- endoreg_db/models/lx/__init__.py +4 -0
- endoreg_db/models/lx/client.py +57 -0
- endoreg_db/models/lx/identity.py +34 -0
- endoreg_db/models/lx/permission.py +18 -0
- endoreg_db/models/lx/user.py +16 -0
- endoreg_db/models/medication/__init__.py +19 -0
- endoreg_db/models/medication/medication.py +33 -0
- endoreg_db/models/medication/medication_indication.py +50 -0
- endoreg_db/models/medication/medication_indication_type.py +34 -0
- endoreg_db/models/medication/medication_intake_time.py +26 -0
- endoreg_db/models/medication/medication_schedule.py +37 -0
- endoreg_db/models/network/__init__.py +9 -0
- endoreg_db/models/network/agl_service.py +38 -0
- endoreg_db/models/network/network_device.py +58 -0
- endoreg_db/models/network/network_device_type.py +23 -0
- endoreg_db/models/organ/__init__.py +38 -0
- endoreg_db/models/other/__init__.py +23 -0
- endoreg_db/models/other/distribution/__init__.py +44 -0
- endoreg_db/models/other/distribution/base_value_distribution.py +20 -0
- endoreg_db/models/other/distribution/date_value_distribution.py +91 -0
- endoreg_db/models/other/distribution/multiple_categorical_value_distribution.py +32 -0
- endoreg_db/models/other/distribution/numeric_value_distribution.py +97 -0
- endoreg_db/models/other/distribution/single_categorical_value_distribution.py +22 -0
- endoreg_db/models/other/distribution.py +5 -0
- endoreg_db/models/other/material.py +20 -0
- endoreg_db/models/other/resource.py +18 -0
- endoreg_db/models/other/transport_route.py +22 -0
- endoreg_db/models/other/waste.py +20 -0
- endoreg_db/models/patient/__init__.py +24 -0
- endoreg_db/models/patient/patient_examination.py +182 -0
- endoreg_db/models/patient/patient_finding.py +143 -0
- endoreg_db/models/patient/patient_finding_intervention.py +26 -0
- endoreg_db/models/patient/patient_finding_location.py +120 -0
- endoreg_db/models/patient/patient_finding_morphology.py +166 -0
- endoreg_db/models/permissions/__init__.py +44 -0
- endoreg_db/models/persons/__init__.py +34 -0
- endoreg_db/models/persons/examiner/__init__.py +2 -0
- endoreg_db/models/persons/examiner/examiner.py +60 -0
- endoreg_db/models/persons/examiner/examiner_type.py +2 -0
- endoreg_db/models/persons/first_name.py +18 -0
- endoreg_db/models/persons/gender.py +22 -0
- endoreg_db/models/persons/last_name.py +20 -0
- endoreg_db/models/persons/patient/__init__.py +8 -0
- endoreg_db/models/persons/patient/patient.py +389 -0
- endoreg_db/models/persons/patient/patient_disease.py +22 -0
- endoreg_db/models/persons/patient/patient_event.py +52 -0
- endoreg_db/models/persons/patient/patient_examination_indication.py +32 -0
- endoreg_db/models/persons/patient/patient_lab_sample.py +108 -0
- endoreg_db/models/persons/patient/patient_lab_value.py +197 -0
- endoreg_db/models/persons/patient/patient_medication.py +59 -0
- endoreg_db/models/persons/patient/patient_medication_schedule.py +88 -0
- endoreg_db/models/persons/person.py +31 -0
- endoreg_db/models/persons/portal_user_information.py +27 -0
- endoreg_db/models/prediction/__init__.py +8 -0
- endoreg_db/models/prediction/image_classification.py +51 -0
- endoreg_db/models/prediction/video_prediction_meta.py +306 -0
- endoreg_db/models/product/__init__.py +14 -0
- endoreg_db/models/product/product.py +110 -0
- endoreg_db/models/product/product_group.py +27 -0
- endoreg_db/models/product/product_material.py +28 -0
- endoreg_db/models/product/product_weight.py +38 -0
- endoreg_db/models/product/reference_product.py +115 -0
- endoreg_db/models/questionnaires/__init__.py +114 -0
- endoreg_db/models/quiz/__init__.py +9 -0
- endoreg_db/models/quiz/quiz_answer.py +41 -0
- endoreg_db/models/quiz/quiz_question.py +54 -0
- endoreg_db/models/report_reader/__init__.py +7 -0
- endoreg_db/models/report_reader/report_reader_config.py +53 -0
- endoreg_db/models/report_reader/report_reader_flag.py +20 -0
- endoreg_db/models/rules/__init__.py +5 -0
- endoreg_db/models/rules/rule.py +24 -0
- endoreg_db/models/rules/rule_applicator.py +224 -0
- endoreg_db/models/rules/rule_attribute_dtype.py +19 -0
- endoreg_db/models/rules/rule_type.py +22 -0
- endoreg_db/models/rules/ruleset.py +19 -0
- endoreg_db/models/unit.py +22 -0
- endoreg_db/queries/__init__.py +5 -0
- endoreg_db/queries/annotations/__init__.py +3 -0
- endoreg_db/queries/annotations/legacy.py +158 -0
- endoreg_db/queries/get/__init__.py +6 -0
- endoreg_db/queries/get/annotation.py +0 -0
- endoreg_db/queries/get/center.py +42 -0
- endoreg_db/queries/get/model.py +13 -0
- endoreg_db/queries/get/patient.py +14 -0
- endoreg_db/queries/get/patient_examination.py +20 -0
- endoreg_db/queries/get/prediction.py +0 -0
- endoreg_db/queries/get/report_file.py +33 -0
- endoreg_db/queries/get/video.py +31 -0
- endoreg_db/queries/get/video_import_meta.py +0 -0
- endoreg_db/queries/get/video_prediction_meta.py +0 -0
- endoreg_db/queries/sanity/__init_.py +0 -0
- endoreg_db/serializers/__init__.py +10 -0
- endoreg_db/serializers/ai_model.py +19 -0
- endoreg_db/serializers/annotation.py +14 -0
- endoreg_db/serializers/center.py +11 -0
- endoreg_db/serializers/examination.py +33 -0
- endoreg_db/serializers/frame.py +9 -0
- endoreg_db/serializers/hardware.py +21 -0
- endoreg_db/serializers/label.py +22 -0
- endoreg_db/serializers/patient.py +33 -0
- endoreg_db/serializers/prediction.py +10 -0
- endoreg_db/serializers/raw_video_meta_validation.py +13 -0
- endoreg_db/serializers/report_file.py +7 -0
- endoreg_db/serializers/video.py +20 -0
- endoreg_db/serializers/video_segmentation.py +492 -0
- endoreg_db/templates/admin/patient_finding_intervention.html +253 -0
- endoreg_db/templates/admin/start_examination.html +12 -0
- endoreg_db/templates/timeline.html +176 -0
- endoreg_db/utils/__init__.py +36 -0
- endoreg_db/utils/cropping.py +29 -0
- endoreg_db/utils/dataloader.py +118 -0
- endoreg_db/utils/dates.py +39 -0
- endoreg_db/utils/file_operations.py +30 -0
- endoreg_db/utils/hashs.py +152 -0
- endoreg_db/utils/legacy_ocr.py +201 -0
- endoreg_db/utils/names.py +74 -0
- endoreg_db/utils/ocr.py +190 -0
- endoreg_db/utils/parse_and_generate_yaml.py +46 -0
- endoreg_db/utils/pydantic_models/__init__.py +6 -0
- endoreg_db/utils/pydantic_models/db_config.py +57 -0
- endoreg_db/utils/uuid.py +4 -0
- endoreg_db/utils/validate_endo_roi.py +19 -0
- endoreg_db/utils/validate_subcategory_dict.py +91 -0
- endoreg_db/utils/video/__init__.py +13 -0
- endoreg_db/utils/video/extract_frames.py +121 -0
- endoreg_db/utils/video/transcode_videofile.py +111 -0
- endoreg_db/views/__init__.py +2 -0
- endoreg_db/views/csrf.py +7 -0
- endoreg_db/views/patient_views.py +90 -0
- endoreg_db/views/raw_video_meta_validation_views.py +38 -0
- endoreg_db/views/report_views.py +96 -0
- endoreg_db/views/video_segmentation_views.py +149 -0
- endoreg_db/views/views_for_timeline.py +46 -0
- {endoreg_db-0.6.0.dist-info → endoreg_db-0.6.2.dist-info}/METADATA +14 -4
- endoreg_db-0.6.2.dist-info/RECORD +420 -0
- {endoreg_db-0.6.0.dist-info → endoreg_db-0.6.2.dist-info}/WHEEL +1 -2
- endoreg_db-0.6.0.dist-info/RECORD +0 -11
- endoreg_db-0.6.0.dist-info/top_level.txt +0 -1
- {endoreg_db-0.6.0.dist-info → endoreg_db-0.6.2.dist-info/licenses}/LICENSE +0 -0
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
import shutil
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
from endoreg_db.utils.uuid import get_uuid
|
|
4
|
+
|
|
5
|
+
def get_uuid_filename(file:Path) -> tuple[str, str]:
|
|
6
|
+
"""
|
|
7
|
+
Returns a new filename with a uuid
|
|
8
|
+
"""
|
|
9
|
+
# Get the file extension
|
|
10
|
+
file_extension = file.suffix
|
|
11
|
+
# Generate a new file name
|
|
12
|
+
uuid = get_uuid()
|
|
13
|
+
new_file_name = f"{uuid}{file_extension}"
|
|
14
|
+
return new_file_name, uuid
|
|
15
|
+
|
|
16
|
+
def rename_file_uuid(old_file:Path):
|
|
17
|
+
"""
|
|
18
|
+
Rename a file by assigning a uuid while preserving file extension. Returns new filepath and uuid
|
|
19
|
+
"""
|
|
20
|
+
# Get the file extension
|
|
21
|
+
file_extension = old_file.suffix
|
|
22
|
+
# Generate a new file name
|
|
23
|
+
uuid = get_uuid()
|
|
24
|
+
new_file_name = f"{uuid}{file_extension}"
|
|
25
|
+
|
|
26
|
+
# Rename the file
|
|
27
|
+
new_file = old_file.with_name(new_file_name)
|
|
28
|
+
shutil.move(old_file.resolve().as_posix(), new_file.resolve().as_posix())
|
|
29
|
+
|
|
30
|
+
return new_file, uuid
|
|
@@ -0,0 +1,152 @@
|
|
|
1
|
+
import hashlib
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
from datetime import datetime, date
|
|
4
|
+
|
|
5
|
+
import os
|
|
6
|
+
|
|
7
|
+
SALT = os.getenv("DJANGO_SALT", "default_salt")
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def get_video_hash(video_path):
|
|
11
|
+
"""
|
|
12
|
+
Get the hash of a video file.
|
|
13
|
+
"""
|
|
14
|
+
# Open the video file in read-binary mode:
|
|
15
|
+
with open(video_path, "rb") as f:
|
|
16
|
+
# Create the hash object, passing in the video contents for hashing:
|
|
17
|
+
hash_object = hashlib.sha256(f.read())
|
|
18
|
+
# Get the hexadecimal representation of the hash
|
|
19
|
+
video_hash = hash_object.hexdigest()
|
|
20
|
+
assert len(video_hash) <= 255, "Hash length exceeds 255 characters"
|
|
21
|
+
|
|
22
|
+
return video_hash
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def get_pdf_hash(pdf_path: Path):
|
|
26
|
+
"""
|
|
27
|
+
Get the hash of a pdf file.
|
|
28
|
+
"""
|
|
29
|
+
pdf_hash = None
|
|
30
|
+
|
|
31
|
+
# Open the file in binary mode and read its contents
|
|
32
|
+
with open(pdf_path, "rb") as f:
|
|
33
|
+
pdf_contents = f.read()
|
|
34
|
+
# Create a hash object using SHA-256 algorithm
|
|
35
|
+
|
|
36
|
+
hash_object = hashlib.sha256(pdf_contents, usedforsecurity=False)
|
|
37
|
+
# Get the hexadecimal representation of the hash
|
|
38
|
+
pdf_hash = hash_object.hexdigest()
|
|
39
|
+
assert len(pdf_hash) <= 255, "Hash length exceeds 255 characters"
|
|
40
|
+
|
|
41
|
+
return pdf_hash
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def _get_date_hash_string(date_obj: date) -> str:
|
|
45
|
+
# if date is datetime object, convert to date
|
|
46
|
+
if isinstance(date_obj, datetime):
|
|
47
|
+
# warnings.warn("Date is a datetime object. Converting to date object.")
|
|
48
|
+
date_obj = date_obj.date()
|
|
49
|
+
elif isinstance(date_obj, str):
|
|
50
|
+
# warnings.warn(f"Date is a string ({date_obj}). Converting to date object.")
|
|
51
|
+
date_obj = datetime.strptime(date_obj, "%Y-%m-%d").date()
|
|
52
|
+
|
|
53
|
+
assert isinstance(date_obj, date), "Date must be a date object"
|
|
54
|
+
# if date is 1900-01-01, make it an empty string
|
|
55
|
+
if date_obj == date(1900, 1, 1):
|
|
56
|
+
date_str = ""
|
|
57
|
+
else:
|
|
58
|
+
date_str = date_obj.strftime("%Y-%m-%d")
|
|
59
|
+
|
|
60
|
+
return date_str
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def get_hash_string(
|
|
64
|
+
first_name: str = "",
|
|
65
|
+
last_name: str = "",
|
|
66
|
+
dob: date = date(1900, 1, 1),
|
|
67
|
+
center_name: str = "",
|
|
68
|
+
examination_date: date = date(1900, 1, 1),
|
|
69
|
+
endoscope_sn: str = "",
|
|
70
|
+
salt: str = "",
|
|
71
|
+
):
|
|
72
|
+
"""
|
|
73
|
+
Get the string to be hashed for a patient's first name, last name, date of birth, examination date, and endoscope serial number.
|
|
74
|
+
"""
|
|
75
|
+
if not salt:
|
|
76
|
+
salt = SALT
|
|
77
|
+
|
|
78
|
+
examination_date_str = _get_date_hash_string(examination_date)
|
|
79
|
+
dob_str = _get_date_hash_string(dob)
|
|
80
|
+
|
|
81
|
+
# Concatenate the patient's first name, last name, date of birth, examination date, endoscope serial number, and salt:
|
|
82
|
+
hash_str = f"{first_name}{last_name}{dob_str}{center_name}{dob_str}{examination_date_str}{endoscope_sn}{salt}"
|
|
83
|
+
return hash_str
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def get_patient_hash(
|
|
87
|
+
first_name: str, last_name: str, dob: date, center: str, salt: str = ""
|
|
88
|
+
):
|
|
89
|
+
"""
|
|
90
|
+
Get the hash of a patient's first name, last name, and date of birth.
|
|
91
|
+
"""
|
|
92
|
+
# Concatenate the patient's first name, last name, date of birth, and salt:
|
|
93
|
+
hash_str = get_hash_string(
|
|
94
|
+
first_name=first_name,
|
|
95
|
+
last_name=last_name,
|
|
96
|
+
dob=dob,
|
|
97
|
+
center_name=center,
|
|
98
|
+
salt=salt,
|
|
99
|
+
)
|
|
100
|
+
# Create a hash object using SHA-256 algorithm
|
|
101
|
+
hash_object = hashlib.sha256(hash_str.encode())
|
|
102
|
+
# Get the hexadecimal representation of the hash
|
|
103
|
+
patient_hash = hash_object.hexdigest()
|
|
104
|
+
|
|
105
|
+
return patient_hash
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def get_patient_examination_hash(
|
|
109
|
+
first_name: str,
|
|
110
|
+
last_name: str,
|
|
111
|
+
dob: date,
|
|
112
|
+
center: str,
|
|
113
|
+
examination_date: date,
|
|
114
|
+
salt: str = "",
|
|
115
|
+
):
|
|
116
|
+
"""
|
|
117
|
+
Get the hash of a patient's first name, last name, date of birth, and examination date.
|
|
118
|
+
"""
|
|
119
|
+
# Concatenate the patient's first name, last name, date of birth, examination date, and salt:
|
|
120
|
+
hash_str = get_hash_string(
|
|
121
|
+
first_name=first_name,
|
|
122
|
+
last_name=last_name,
|
|
123
|
+
center_name=center,
|
|
124
|
+
dob=dob,
|
|
125
|
+
examination_date=examination_date,
|
|
126
|
+
salt=salt,
|
|
127
|
+
)
|
|
128
|
+
# Create a hash object using SHA-256 algorithm
|
|
129
|
+
hash_object = hashlib.sha256(hash_str.encode())
|
|
130
|
+
# Get the hexadecimal representation of the hash
|
|
131
|
+
patient_examination_hash = hash_object.hexdigest()
|
|
132
|
+
|
|
133
|
+
return patient_examination_hash
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def get_examiner_hash(first_name, last_name, center_name, salt):
|
|
137
|
+
"""
|
|
138
|
+
Get the hash of an examiner's first name, last name, and center name.
|
|
139
|
+
"""
|
|
140
|
+
# Concatenate the examiner's first name, last name, center name, and salt:
|
|
141
|
+
hash_str = get_hash_string(
|
|
142
|
+
first_name=first_name,
|
|
143
|
+
last_name=last_name,
|
|
144
|
+
center_name=center_name,
|
|
145
|
+
salt=salt,
|
|
146
|
+
)
|
|
147
|
+
# Create a hash object using SHA-256 algorithm
|
|
148
|
+
hash_object = hashlib.sha256(hash_str.encode())
|
|
149
|
+
# Get the hexadecimal representation of the hash
|
|
150
|
+
examiner_hash = hash_object.hexdigest()
|
|
151
|
+
|
|
152
|
+
return examiner_hash
|
|
@@ -0,0 +1,201 @@
|
|
|
1
|
+
import pytesseract
|
|
2
|
+
# import cv2
|
|
3
|
+
from endoreg_db.models import EndoscopyProcessor
|
|
4
|
+
import os
|
|
5
|
+
from collections import Counter
|
|
6
|
+
from tempfile import TemporaryDirectory
|
|
7
|
+
import re
|
|
8
|
+
from datetime import datetime
|
|
9
|
+
from typing import Dict, List
|
|
10
|
+
import numpy as np
|
|
11
|
+
|
|
12
|
+
N_FRAMES_MEAN_OCR = 2
|
|
13
|
+
|
|
14
|
+
# Helper function to process date strings
|
|
15
|
+
def process_date_text(date_text):
|
|
16
|
+
"""
|
|
17
|
+
Processes a string of text that represents a date and returns a datetime.date object.
|
|
18
|
+
|
|
19
|
+
Args:
|
|
20
|
+
date_text (str): A string of text that represents a date.
|
|
21
|
+
|
|
22
|
+
Returns:
|
|
23
|
+
datetime.date: A datetime.date object representing the parsed date, or None if the text cannot be parsed.
|
|
24
|
+
"""
|
|
25
|
+
try:
|
|
26
|
+
# Remove any non-digit characters
|
|
27
|
+
date_text_clean = re.sub(r'\D', '', date_text)
|
|
28
|
+
# Reformat to 'ddmmyyyy' if necessary
|
|
29
|
+
if len(date_text_clean) == 8:
|
|
30
|
+
return datetime.strptime(date_text_clean, "%d%m%Y").date()
|
|
31
|
+
elif len(date_text_clean) == 14:
|
|
32
|
+
return datetime.strptime(date_text_clean, "%d%m%Y%H%M%S").date()
|
|
33
|
+
except ValueError:
|
|
34
|
+
# Return None if the text cannot be parsed into a date
|
|
35
|
+
# set date to 1/1/1900
|
|
36
|
+
return datetime.strptime("01011900", "%d%m%Y").date()
|
|
37
|
+
|
|
38
|
+
# Helper function to process patient names
|
|
39
|
+
def process_name_text(name_text):
|
|
40
|
+
"""
|
|
41
|
+
Remove all numbers, punctuation, and whitespace from a string of text and return the result.
|
|
42
|
+
"""
|
|
43
|
+
name = re.sub(r'[0-9!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\s]+', '', name_text).strip()
|
|
44
|
+
# capitalize first letter of each word
|
|
45
|
+
name = ' '.join([word.capitalize() for word in name.split()])
|
|
46
|
+
return name
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
# Helper function to process endoscope type text
|
|
50
|
+
def process_general_text(endoscope_text):
|
|
51
|
+
"""
|
|
52
|
+
This function takes in a string of text from an endoscope and returns a cleaned version of the text.
|
|
53
|
+
"""
|
|
54
|
+
return ' '.join(endoscope_text.split())
|
|
55
|
+
|
|
56
|
+
def roi_values_valid(roi):
|
|
57
|
+
"""
|
|
58
|
+
Check if all values in an ROI dictionary are valid (>=0).
|
|
59
|
+
"""
|
|
60
|
+
return all([value >= 0 for value in roi.values()])
|
|
61
|
+
|
|
62
|
+
# Function to extract text from ROIs
|
|
63
|
+
def extract_text_from_rois(image_path, processor:EndoscopyProcessor):
|
|
64
|
+
"""
|
|
65
|
+
Extracts text from regions of interest (ROIs) in an image using OCR.
|
|
66
|
+
|
|
67
|
+
Args:
|
|
68
|
+
image_path (str): The path to the image file.
|
|
69
|
+
processor (EndoscopyProcessor): An instance of the EndoscopyProcessor class.
|
|
70
|
+
|
|
71
|
+
Returns:
|
|
72
|
+
dict: A dictionary containing the extracted text for each ROI.
|
|
73
|
+
"""
|
|
74
|
+
# Read the image using OpenCV
|
|
75
|
+
image = cv2.imread(image_path)
|
|
76
|
+
|
|
77
|
+
# Initialize the dictionary to hold the extracted text
|
|
78
|
+
extracted_texts = {}
|
|
79
|
+
|
|
80
|
+
# Define your ROIs and their corresponding post-processing functions in tuples
|
|
81
|
+
rois_with_postprocessing = [
|
|
82
|
+
('examination_date', processor.get_roi_examination_date, process_date_text),
|
|
83
|
+
("patient_first_name", processor.get_roi_patient_first_name, process_name_text),
|
|
84
|
+
('patient_last_name', processor.get_roi_patient_last_name, process_name_text),
|
|
85
|
+
('patient_dob', processor.get_roi_patient_dob, process_date_text),
|
|
86
|
+
('endoscope_type', processor.get_roi_endoscope_type, process_general_text),
|
|
87
|
+
('endoscope_sn', processor.get_roi_endoscopy_sn, process_general_text),
|
|
88
|
+
]
|
|
89
|
+
|
|
90
|
+
# Extract and post-process text for each ROI
|
|
91
|
+
for roi_name, roi_function, post_process in rois_with_postprocessing:
|
|
92
|
+
# Get the ROI dictionary
|
|
93
|
+
roi = roi_function()
|
|
94
|
+
|
|
95
|
+
# Check if the ROI has values
|
|
96
|
+
|
|
97
|
+
if roi_values_valid(roi):
|
|
98
|
+
# Crop the image to the ROI
|
|
99
|
+
x, y, w, h = roi['x'], roi['y'], roi['width'], roi['height']
|
|
100
|
+
roi_cropped = image[y:y+h, x:x+w]
|
|
101
|
+
# Convert to grayscale
|
|
102
|
+
gray = cv2.cvtColor(roi_cropped, cv2.COLOR_BGR2GRAY)
|
|
103
|
+
|
|
104
|
+
# Invert colors for white text on black background
|
|
105
|
+
gray = cv2.bitwise_not(gray)
|
|
106
|
+
|
|
107
|
+
# Binarize the image - using Otsu's method
|
|
108
|
+
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
|
109
|
+
|
|
110
|
+
# Dilate the image to improve the contour of the pixelated text
|
|
111
|
+
kernel = np.ones((2,2), np.uint8)
|
|
112
|
+
dilation = cv2.dilate(binary, kernel, iterations=1)
|
|
113
|
+
|
|
114
|
+
# OCR configuration: Recognize white text on black background without corrections
|
|
115
|
+
config = '--psm 10 -c tessedit_char_whitelist=0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-üöäÜÖÄß'
|
|
116
|
+
|
|
117
|
+
# Use pytesseract to do OCR on the preprocessed ROI
|
|
118
|
+
text = pytesseract.image_to_string(dilation, config=config).strip()
|
|
119
|
+
|
|
120
|
+
# Post-process extracted text
|
|
121
|
+
processed_text = post_process(text)
|
|
122
|
+
# processed_text = text
|
|
123
|
+
|
|
124
|
+
# Store the processed text in the dictionary
|
|
125
|
+
extracted_texts[roi_name] = processed_text
|
|
126
|
+
|
|
127
|
+
else:
|
|
128
|
+
pass
|
|
129
|
+
# ic(roi_name)
|
|
130
|
+
# ic(roi)
|
|
131
|
+
# ic("No values for this ROI")
|
|
132
|
+
|
|
133
|
+
return extracted_texts
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def get_most_frequent_values(rois_texts: Dict[str, List[str]]) -> Dict[str, str]:
|
|
137
|
+
"""
|
|
138
|
+
Given a dictionary of ROIs and their corresponding texts, returns a dictionary of the most frequent text for each ROI.
|
|
139
|
+
|
|
140
|
+
Args:
|
|
141
|
+
rois_texts: A dictionary where the keys are the names of the ROIs and the values are lists of texts.
|
|
142
|
+
|
|
143
|
+
Returns:
|
|
144
|
+
A dictionary where the keys are the names of the ROIs and the values are the most frequent text for each ROI.
|
|
145
|
+
"""
|
|
146
|
+
most_frequent = {}
|
|
147
|
+
for key in rois_texts.keys():
|
|
148
|
+
counter = Counter([text for text in rois_texts[key] if text])
|
|
149
|
+
# ic(key)
|
|
150
|
+
# ic(counter)
|
|
151
|
+
most_frequent[key], _ = counter.most_common(1)[0] if counter else (None, None)
|
|
152
|
+
return most_frequent
|
|
153
|
+
|
|
154
|
+
def process_video(video_path, processor):
|
|
155
|
+
"""
|
|
156
|
+
Processes a video file by extracting text from regions of interest (ROIs) in each frame.
|
|
157
|
+
|
|
158
|
+
Args:
|
|
159
|
+
video_path (str): The path to the video file to process.
|
|
160
|
+
processor (OCRProcessor): An instance of the OCRProcessor class that defines the ROIs to extract text from.
|
|
161
|
+
|
|
162
|
+
Returns:
|
|
163
|
+
dict: A dictionary containing the most frequent text values extracted from each ROI.
|
|
164
|
+
"""
|
|
165
|
+
# Create a temporary directory to store frames
|
|
166
|
+
with TemporaryDirectory() as temp_dir:
|
|
167
|
+
# ic(temp_dir)
|
|
168
|
+
# Capture the video
|
|
169
|
+
video = cv2.VideoCapture(video_path)
|
|
170
|
+
success, frame_number = True, 0
|
|
171
|
+
rois_texts = {roi_name: [] for roi_name in processor.get_rois().keys()}
|
|
172
|
+
frames_for_mean_extraction = 0
|
|
173
|
+
|
|
174
|
+
while success:
|
|
175
|
+
success, frame = video.read()
|
|
176
|
+
|
|
177
|
+
# Check if this is the 200th frame
|
|
178
|
+
if frame_number % 1000 == 0 and success:
|
|
179
|
+
frame_path = os.path.join(temp_dir, f"frame_{frame_number}.jpg")
|
|
180
|
+
cv2.imwrite(frame_path, frame) # Save the frame as a JPEG file
|
|
181
|
+
# cv2.imwrite(f"_tmp/frame_{frame_number}.jpg", frame)
|
|
182
|
+
|
|
183
|
+
# Extract text from ROIs
|
|
184
|
+
extracted_texts = extract_text_from_rois(frame_path, processor)
|
|
185
|
+
# ic(extracted_texts)
|
|
186
|
+
|
|
187
|
+
# Store the extracted text from each ROI
|
|
188
|
+
for key, text in extracted_texts.items():
|
|
189
|
+
rois_texts[key].append(text)
|
|
190
|
+
frames_for_mean_extraction += 1
|
|
191
|
+
|
|
192
|
+
frame_number += 1
|
|
193
|
+
|
|
194
|
+
if frames_for_mean_extraction >= N_FRAMES_MEAN_OCR: break
|
|
195
|
+
|
|
196
|
+
# Release the video capture object
|
|
197
|
+
video.release()
|
|
198
|
+
|
|
199
|
+
# Get the most frequent values for each ROI
|
|
200
|
+
return get_most_frequent_values(rois_texts)
|
|
201
|
+
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
# Use faker library to generate fake names by gender
|
|
2
|
+
# Use german names by default
|
|
3
|
+
|
|
4
|
+
from faker import Faker
|
|
5
|
+
import gender_guesser.detector as gender_detector
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def create_mock_examiner_name() -> tuple[str, str]:
|
|
9
|
+
"""
|
|
10
|
+
Generate a mock examiner's name using the Faker library.
|
|
11
|
+
This function creates a tuple with a first name and a last name for a mock examiner. It utilizes the "de_DE" locale for generating German names.
|
|
12
|
+
Returns:
|
|
13
|
+
tuple[str, str]: A tuple containing the first name and the last name.
|
|
14
|
+
"""
|
|
15
|
+
|
|
16
|
+
fake = Faker("de_DE")
|
|
17
|
+
first_name = fake.first_name()
|
|
18
|
+
last_name = fake.last_name()
|
|
19
|
+
return first_name, last_name
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def create_mock_patient_name(gender: str) -> tuple[str, str]:
|
|
23
|
+
"""
|
|
24
|
+
Generate a mock patient's name based on the provided gender using the Faker library.
|
|
25
|
+
This function creates a tuple with a first name and a last name for a mock patient. It utilizes the "de_DE" locale for generating German names. When the input gender string is checked:
|
|
26
|
+
- If it contains "male", a male name is generated.
|
|
27
|
+
- If it contains "female", a female name is generated.
|
|
28
|
+
- Otherwise, a generic name is generated without considering gender.
|
|
29
|
+
Parameters:
|
|
30
|
+
gender (str): A string indicating the gender to be used for generating the name.
|
|
31
|
+
Returns:
|
|
32
|
+
tuple[str, str]: A tuple containing the first name and the last name.
|
|
33
|
+
"""
|
|
34
|
+
|
|
35
|
+
fake = Faker("de_DE")
|
|
36
|
+
|
|
37
|
+
if "male" in gender.lower():
|
|
38
|
+
gender = "male"
|
|
39
|
+
elif "female" in gender.lower():
|
|
40
|
+
gender = "female"
|
|
41
|
+
|
|
42
|
+
if gender == "male":
|
|
43
|
+
first_name = fake.first_name_male()
|
|
44
|
+
last_name = fake.last_name_male()
|
|
45
|
+
|
|
46
|
+
elif gender == "female":
|
|
47
|
+
first_name = fake.first_name_female()
|
|
48
|
+
last_name = fake.last_name_female()
|
|
49
|
+
|
|
50
|
+
else:
|
|
51
|
+
first_name = fake.first_name()
|
|
52
|
+
last_name = fake.last_name()
|
|
53
|
+
|
|
54
|
+
return first_name, last_name
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def guess_name_gender(name: str) -> str:
|
|
58
|
+
"""
|
|
59
|
+
Guesses the gender for a given name by using a gender detector and retrieving the corresponding Gender model instance.
|
|
60
|
+
Parameters:
|
|
61
|
+
name (str): The name for which the gender is to be determined.
|
|
62
|
+
Returns:
|
|
63
|
+
Gender: The Gender object corresponding to the detected gender name.
|
|
64
|
+
Raises:
|
|
65
|
+
Gender.DoesNotExist: If no Gender object matching the detected gender is found.
|
|
66
|
+
Exception: For any other exceptions that occur during gender detection or database lookup.
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
from endoreg_db.models import Gender
|
|
70
|
+
|
|
71
|
+
detector = gender_detector.Detector(case_sensitive=False)
|
|
72
|
+
gender_name = detector.get_gender(name)
|
|
73
|
+
gender = Gender.objects.get(name=gender_name)
|
|
74
|
+
return gender
|
endoreg_db/utils/ocr.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
1
|
+
import pytesseract
|
|
2
|
+
from PIL import Image, ImageOps, ImageFilter
|
|
3
|
+
import os
|
|
4
|
+
from collections import Counter
|
|
5
|
+
from tempfile import TemporaryDirectory
|
|
6
|
+
import re
|
|
7
|
+
from datetime import datetime
|
|
8
|
+
from typing import Dict, List
|
|
9
|
+
import numpy as np
|
|
10
|
+
from endoreg_db.utils.cropping import crop_and_insert
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
N_FRAMES_MEAN_OCR = 2
|
|
15
|
+
|
|
16
|
+
# Helper function to process date strings
|
|
17
|
+
def process_date_text(date_text):
|
|
18
|
+
"""
|
|
19
|
+
Processes a string of text that represents a date and returns a datetime.date object.
|
|
20
|
+
|
|
21
|
+
Args:
|
|
22
|
+
date_text (str): A string of text that represents a date.
|
|
23
|
+
|
|
24
|
+
Returns:
|
|
25
|
+
datetime.date: A datetime.date object representing the parsed date, or None if the text cannot be parsed.
|
|
26
|
+
"""
|
|
27
|
+
try:
|
|
28
|
+
# Remove any non-digit characters
|
|
29
|
+
date_text_clean = re.sub(r'\D', '', date_text)
|
|
30
|
+
# Reformat to 'ddmmyyyy' if necessary
|
|
31
|
+
if len(date_text_clean) == 8:
|
|
32
|
+
return datetime.strptime(date_text_clean, "%d%m%Y").date()
|
|
33
|
+
elif len(date_text_clean) == 14:
|
|
34
|
+
return datetime.strptime(date_text_clean, "%d%m%Y%H%M%S").date()
|
|
35
|
+
except ValueError:
|
|
36
|
+
# Return None if the text cannot be parsed into a date
|
|
37
|
+
# set date to 1/1/1900
|
|
38
|
+
return datetime.strptime("01011900", "%d%m%Y").date()
|
|
39
|
+
|
|
40
|
+
# Helper function to process patient names
|
|
41
|
+
def process_name_text(name_text):
|
|
42
|
+
"""
|
|
43
|
+
Remove all numbers, punctuation, and whitespace from a string of text and return the result.
|
|
44
|
+
"""
|
|
45
|
+
name = re.sub(r'[0-9!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\s]+', '', name_text).strip()
|
|
46
|
+
# capitalize first letter of each word
|
|
47
|
+
name = ' '.join([word.capitalize() for word in name.split()])
|
|
48
|
+
return name
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
# Helper function to process endoscope type text
|
|
52
|
+
def process_general_text(endoscope_text):
|
|
53
|
+
"""
|
|
54
|
+
This function takes in a string of text from an endoscope and returns a cleaned version of the text.
|
|
55
|
+
"""
|
|
56
|
+
return ' '.join(endoscope_text.split())
|
|
57
|
+
|
|
58
|
+
def roi_values_valid(roi):
|
|
59
|
+
"""
|
|
60
|
+
Check if all values in an ROI dictionary are valid (>=0).
|
|
61
|
+
"""
|
|
62
|
+
return all([value >= 0 for value in roi.values()])
|
|
63
|
+
|
|
64
|
+
# Function to extract text from ROIs
|
|
65
|
+
def extract_text_from_rois(image_path, processor):
|
|
66
|
+
"""
|
|
67
|
+
Extracts text from regions of interest (ROIs) in an image using OCR.
|
|
68
|
+
|
|
69
|
+
Args:
|
|
70
|
+
image_path (str): The path to the image file.
|
|
71
|
+
processor (EndoscopyProcessor): An instance of the EndoscopyProcessor class.
|
|
72
|
+
|
|
73
|
+
Returns:
|
|
74
|
+
dict: A dictionary containing the extracted text for each ROI.
|
|
75
|
+
"""
|
|
76
|
+
# Read the image using Pillow
|
|
77
|
+
image = Image.open(image_path)
|
|
78
|
+
image_dimensions = image.size # (width, height)
|
|
79
|
+
|
|
80
|
+
####### Adjust Image #######
|
|
81
|
+
# Convert to grayscale
|
|
82
|
+
gray = image.convert('L')
|
|
83
|
+
|
|
84
|
+
# Invert colors for white text on black background
|
|
85
|
+
inverted = ImageOps.invert(gray)
|
|
86
|
+
|
|
87
|
+
# Initialize the dictionary to hold the extracted text
|
|
88
|
+
extracted_texts = {}
|
|
89
|
+
|
|
90
|
+
# Define your ROIs and their corresponding post-processing functions in tuples
|
|
91
|
+
rois_with_postprocessing = [
|
|
92
|
+
('examination_date', processor.get_roi_examination_date, process_date_text),
|
|
93
|
+
("patient_first_name", processor.get_roi_patient_first_name, process_name_text),
|
|
94
|
+
('patient_last_name', processor.get_roi_patient_last_name, process_name_text),
|
|
95
|
+
('patient_dob', processor.get_roi_patient_dob, process_date_text),
|
|
96
|
+
('endoscope_type', processor.get_roi_endoscope_type, process_general_text),
|
|
97
|
+
('endoscope_sn', processor.get_roi_endoscopy_sn, process_general_text),
|
|
98
|
+
]
|
|
99
|
+
|
|
100
|
+
# Extract and post-process text for each ROI
|
|
101
|
+
for roi_name, roi_function, post_process in rois_with_postprocessing:
|
|
102
|
+
# Get the ROI dictionary
|
|
103
|
+
roi = roi_function()
|
|
104
|
+
|
|
105
|
+
# Check if the ROI has values
|
|
106
|
+
|
|
107
|
+
if roi_values_valid(roi):
|
|
108
|
+
x, y, w, h = roi['x'], roi['y'], roi['width'], roi['height']
|
|
109
|
+
|
|
110
|
+
# Get white image with original shape and just the roi remaining
|
|
111
|
+
roi_image = crop_and_insert(inverted, x,y,h,w)
|
|
112
|
+
|
|
113
|
+
# OCR configuration: Recognize white text on black background without corrections
|
|
114
|
+
config = '--psm 10 -c tessedit_char_whitelist=0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-üöäÜÖÄß'
|
|
115
|
+
|
|
116
|
+
# Use pytesseract to do OCR on the preprocessed ROI
|
|
117
|
+
text = pytesseract.image_to_string(roi_image, config=config).strip()
|
|
118
|
+
|
|
119
|
+
# Post-process extracted text
|
|
120
|
+
processed_text = post_process(text)
|
|
121
|
+
|
|
122
|
+
extracted_texts[roi_name] = processed_text
|
|
123
|
+
|
|
124
|
+
else:
|
|
125
|
+
pass
|
|
126
|
+
|
|
127
|
+
return extracted_texts
|
|
128
|
+
|
|
129
|
+
def get_most_frequent_values(rois_texts: Dict[str, List[str]]) -> Dict[str, str]:
|
|
130
|
+
"""
|
|
131
|
+
Given a dictionary of ROIs and their corresponding texts, returns a dictionary of the most frequent text for each ROI.
|
|
132
|
+
|
|
133
|
+
Args:
|
|
134
|
+
rois_texts: A dictionary where the keys are the names of the ROIs and the values are lists of texts.
|
|
135
|
+
|
|
136
|
+
Returns:
|
|
137
|
+
A dictionary where the keys are the names of the ROIs and the values are the most frequent text for each ROI.
|
|
138
|
+
"""
|
|
139
|
+
most_frequent = {}
|
|
140
|
+
for key in rois_texts.keys():
|
|
141
|
+
counter = Counter([text for text in rois_texts[key] if text])
|
|
142
|
+
most_frequent[key], _ = counter.most_common(1)[0] if counter else (None, None)
|
|
143
|
+
return most_frequent
|
|
144
|
+
|
|
145
|
+
def process_video(video_path, processor):
|
|
146
|
+
"""
|
|
147
|
+
Processes a video file by extracting text from regions of interest (ROIs) in each frame.
|
|
148
|
+
|
|
149
|
+
Args:
|
|
150
|
+
video_path (str): The path to the video file to process.
|
|
151
|
+
processor (OCRProcessor): An instance of the OCRProcessor class that defines the ROIs to extract text from.
|
|
152
|
+
|
|
153
|
+
Returns:
|
|
154
|
+
dict: A dictionary containing the most frequent text values extracted from each ROI.
|
|
155
|
+
"""
|
|
156
|
+
# Create a temporary directory to store frames
|
|
157
|
+
with TemporaryDirectory() as temp_dir:
|
|
158
|
+
# Capture the video
|
|
159
|
+
video = cv2.VideoCapture(video_path)
|
|
160
|
+
success, frame_number = True, 0
|
|
161
|
+
rois_texts = {roi_name: [] for roi_name in processor.get_rois().keys()}
|
|
162
|
+
frames_for_mean_extraction = 0
|
|
163
|
+
|
|
164
|
+
while success:
|
|
165
|
+
success, frame = video.read()
|
|
166
|
+
|
|
167
|
+
# Check if this is the 200th frame
|
|
168
|
+
if frame_number % 1000 == 0 and success:
|
|
169
|
+
frame_path = os.path.join(temp_dir, f"frame_{frame_number}.jpg")
|
|
170
|
+
cv2.imwrite(frame_path, frame) # Save the frame as a JPEG file
|
|
171
|
+
# cv2.imwrite(f"_tmp/frame_{frame_number}.jpg", frame)
|
|
172
|
+
|
|
173
|
+
# Extract text from ROIs
|
|
174
|
+
extracted_texts = extract_text_from_rois(frame_path, processor)
|
|
175
|
+
|
|
176
|
+
# Store the extracted text from each ROI
|
|
177
|
+
for key, text in extracted_texts.items():
|
|
178
|
+
rois_texts[key].append(text)
|
|
179
|
+
frames_for_mean_extraction += 1
|
|
180
|
+
|
|
181
|
+
frame_number += 1
|
|
182
|
+
|
|
183
|
+
if frames_for_mean_extraction >= N_FRAMES_MEAN_OCR: break
|
|
184
|
+
|
|
185
|
+
# Release the video capture object
|
|
186
|
+
video.release()
|
|
187
|
+
|
|
188
|
+
# Get the most frequent values for each ROI
|
|
189
|
+
return get_most_frequent_values(rois_texts)
|
|
190
|
+
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
import yaml
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
|
|
4
|
+
# get this files path
|
|
5
|
+
file_path = Path(__file__)
|
|
6
|
+
module_root = file_path.parent.parent
|
|
7
|
+
data_dir = module_root / "data"
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def collect_center_names(
|
|
11
|
+
):
|
|
12
|
+
input_file_path = data_dir / "center/data.yaml"
|
|
13
|
+
fist_name_dir = data_dir / "names_first"
|
|
14
|
+
last_name_dir = data_dir / "names_last"
|
|
15
|
+
# Load the input YAML file
|
|
16
|
+
with open(input_file_path, 'r', encoding='utf-8') as file:
|
|
17
|
+
data = yaml.safe_load(file)
|
|
18
|
+
|
|
19
|
+
# Containers for first and last names
|
|
20
|
+
first_names_set = set()
|
|
21
|
+
last_names_set = set()
|
|
22
|
+
|
|
23
|
+
# Extract first and last names from the YAML data
|
|
24
|
+
for entry in data:
|
|
25
|
+
fields = entry.get('fields', {})
|
|
26
|
+
first_names_set.update(fields.get('first_names', []))
|
|
27
|
+
last_names_set.update(fields.get('last_names', []))
|
|
28
|
+
|
|
29
|
+
# Create a list of dictionaries for first and last names
|
|
30
|
+
first_names_data = [
|
|
31
|
+
{"model": "endoreg_db.first_name", "fields": {"name": name}}
|
|
32
|
+
for name in sorted(first_names_set)
|
|
33
|
+
]
|
|
34
|
+
last_names_data = [
|
|
35
|
+
{"model": "endoreg_db.last_name", "fields": {"name": name}}
|
|
36
|
+
for name in sorted(last_names_set)
|
|
37
|
+
]
|
|
38
|
+
|
|
39
|
+
# Write the data to separate YAML files
|
|
40
|
+
with open(fist_name_dir/"first_names.yaml", "w", encoding='utf-8') as first_file:
|
|
41
|
+
yaml.dump(first_names_data, first_file, allow_unicode=True, sort_keys=False)
|
|
42
|
+
|
|
43
|
+
with open(last_name_dir/"last_names.yaml", "w", encoding='utf-8') as last_file:
|
|
44
|
+
yaml.dump(last_names_data, last_file, allow_unicode=True, sort_keys=False)
|
|
45
|
+
|
|
46
|
+
# print("Generated first_names.yaml and last_names.yaml successfully.")
|