eegdash 0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of eegdash might be problematic. Click here for more details.

Files changed (72) hide show
  1. eegdash/SignalStore/__init__.py +0 -0
  2. eegdash/SignalStore/signalstore/__init__.py +3 -0
  3. eegdash/SignalStore/signalstore/adapters/read_adapters/abstract_read_adapter.py +13 -0
  4. eegdash/SignalStore/signalstore/adapters/read_adapters/domain_modeling/schema_read_adapter.py +16 -0
  5. eegdash/SignalStore/signalstore/adapters/read_adapters/domain_modeling/vocabulary_read_adapter.py +19 -0
  6. eegdash/SignalStore/signalstore/adapters/read_adapters/handmade_records/excel_study_organizer_read_adapter.py +114 -0
  7. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/axona/axona_read_adapter.py +912 -0
  8. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/ReadIntanSpikeFile.py +140 -0
  9. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/intan_read_adapter.py +29 -0
  10. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/__init__.py +0 -0
  11. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/data_to_result.py +62 -0
  12. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/get_bytes_per_data_block.py +36 -0
  13. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/notch_filter.py +50 -0
  14. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/qstring.py +41 -0
  15. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/read_header.py +135 -0
  16. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/intanutil/read_one_data_block.py +45 -0
  17. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhd_format/load_intan_rhd_format.py +204 -0
  18. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/__init__.py +0 -0
  19. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/data_to_result.py +60 -0
  20. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/get_bytes_per_data_block.py +37 -0
  21. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/notch_filter.py +50 -0
  22. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/qstring.py +41 -0
  23. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/read_header.py +153 -0
  24. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/intanutil/read_one_data_block.py +47 -0
  25. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/intan/load_intan_rhs_format/load_intan_rhs_format.py +213 -0
  26. eegdash/SignalStore/signalstore/adapters/read_adapters/recording_acquisitions/neurodata_without_borders/neurodata_without_borders_read_adapter.py +14 -0
  27. eegdash/SignalStore/signalstore/operations/__init__.py +4 -0
  28. eegdash/SignalStore/signalstore/operations/handler_executor.py +22 -0
  29. eegdash/SignalStore/signalstore/operations/handler_factory.py +41 -0
  30. eegdash/SignalStore/signalstore/operations/handlers/base_handler.py +44 -0
  31. eegdash/SignalStore/signalstore/operations/handlers/domain/property_model_handlers.py +79 -0
  32. eegdash/SignalStore/signalstore/operations/handlers/domain/schema_handlers.py +3 -0
  33. eegdash/SignalStore/signalstore/operations/helpers/abstract_helper.py +17 -0
  34. eegdash/SignalStore/signalstore/operations/helpers/neuroscikit_extractor.py +33 -0
  35. eegdash/SignalStore/signalstore/operations/helpers/neuroscikit_rawio.py +165 -0
  36. eegdash/SignalStore/signalstore/operations/helpers/spikeinterface_helper.py +100 -0
  37. eegdash/SignalStore/signalstore/operations/helpers/wrappers/neo_wrappers.py +21 -0
  38. eegdash/SignalStore/signalstore/operations/helpers/wrappers/nwb_wrappers.py +27 -0
  39. eegdash/SignalStore/signalstore/store/__init__.py +8 -0
  40. eegdash/SignalStore/signalstore/store/data_access_objects.py +1181 -0
  41. eegdash/SignalStore/signalstore/store/datafile_adapters.py +131 -0
  42. eegdash/SignalStore/signalstore/store/repositories.py +928 -0
  43. eegdash/SignalStore/signalstore/store/store_errors.py +68 -0
  44. eegdash/SignalStore/signalstore/store/unit_of_work.py +97 -0
  45. eegdash/SignalStore/signalstore/store/unit_of_work_provider.py +67 -0
  46. eegdash/SignalStore/signalstore/utilities/data_adapters/spike_interface_adapters/si_recording.py +1 -0
  47. eegdash/SignalStore/signalstore/utilities/data_adapters/spike_interface_adapters/si_sorter.py +1 -0
  48. eegdash/SignalStore/signalstore/utilities/testing/data_mocks.py +513 -0
  49. eegdash/SignalStore/signalstore/utilities/tools/dataarrays.py +49 -0
  50. eegdash/SignalStore/signalstore/utilities/tools/mongo_records.py +25 -0
  51. eegdash/SignalStore/signalstore/utilities/tools/operation_response.py +78 -0
  52. eegdash/SignalStore/signalstore/utilities/tools/purge_orchestration_response.py +21 -0
  53. eegdash/SignalStore/signalstore/utilities/tools/quantities.py +15 -0
  54. eegdash/SignalStore/signalstore/utilities/tools/strings.py +38 -0
  55. eegdash/SignalStore/signalstore/utilities/tools/time.py +17 -0
  56. eegdash/SignalStore/tests/conftest.py +799 -0
  57. eegdash/SignalStore/tests/data/valid_data/data_arrays/make_fake_data.py +59 -0
  58. eegdash/SignalStore/tests/unit/store/conftest.py +0 -0
  59. eegdash/SignalStore/tests/unit/store/test_data_access_objects.py +1235 -0
  60. eegdash/SignalStore/tests/unit/store/test_repositories.py +1309 -0
  61. eegdash/SignalStore/tests/unit/store/test_unit_of_work.py +7 -0
  62. eegdash/SignalStore/tests/unit/test_ci_cd.py +8 -0
  63. eegdash/__init__.py +1 -0
  64. eegdash/aws_ingest.py +29 -0
  65. eegdash/data_utils.py +213 -0
  66. eegdash/main.py +17 -0
  67. eegdash/signalstore_data_utils.py +280 -0
  68. eegdash-0.0.1.dist-info/LICENSE +20 -0
  69. eegdash-0.0.1.dist-info/METADATA +72 -0
  70. eegdash-0.0.1.dist-info/RECORD +72 -0
  71. eegdash-0.0.1.dist-info/WHEEL +5 -0
  72. eegdash-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,7 @@
1
+
2
+
3
+ class TestUnitOfWork:
4
+
5
+ def test_initialize(self, unit_of_work):
6
+ with unit_of_work as uow:
7
+ pass
@@ -0,0 +1,8 @@
1
+ import pytest
2
+
3
+ def test_fast_ci_cd():
4
+ assert 5 == 5
5
+
6
+ @pytest.mark.slow()
7
+ def test_slow_ci_cd():
8
+ assert 10 == 10
eegdash/__init__.py ADDED
@@ -0,0 +1 @@
1
+ from eegdash.main import EEGDash
eegdash/aws_ingest.py ADDED
@@ -0,0 +1,29 @@
1
+ import sys
2
+ sys.path.append('..')
3
+ import argparse
4
+ from src.signalstore_data_utils import SignalstoreBIDS
5
+
6
+ def add_bids_dataset(args):
7
+ signalstore_aws = SignalstoreBIDS(
8
+ dbconnectionstring='mongodb://23.21.113.214:27017/?directConnection=true&serverSelectionTimeoutMS=2000&appName=mongosh+2.2.1',
9
+ local_filesystem=False,
10
+ project_name='eegdash',
11
+ )
12
+ signalstore_aws.add_bids_dataset(dataset=args.dataset, data_dir=args.data, raw_format='eeglab')
13
+
14
+ def main():
15
+ # Create the parser
16
+ parser = argparse.ArgumentParser(description="A simple command line argument parser")
17
+
18
+ # Add arguments
19
+ parser.add_argument('--data', type=str, default="/mnt/nemar/openneuro/ds004186", help="Path to data directory (Default: /mnt/nemar/openneuro/ds004186)")
20
+ parser.add_argument('--dataset', type=str, default="ds004186", help="Dataset name (Default: ds004186)")
21
+
22
+ # Parse the arguments
23
+ args = parser.parse_args()
24
+ print('Arguments:', args)
25
+
26
+ add_bids_dataset(args)
27
+
28
+ if __name__ == "__main__":
29
+ main()
eegdash/data_utils.py ADDED
@@ -0,0 +1,213 @@
1
+ import os
2
+ import sys
3
+ from joblib import Parallel, delayed
4
+ import mne
5
+ import numpy as np
6
+ from pathlib import Path
7
+ import re
8
+ import json
9
+
10
+ verbose = False
11
+
12
+
13
+ class BIDSDataset():
14
+ ALLOWED_FILE_FORMAT = ['eeglab', 'brainvision', 'biosemi', 'european']
15
+ RAW_EXTENSION = {
16
+ 'eeglab': '.set',
17
+ 'brainvision': '.vhdr',
18
+ 'biosemi': '.bdf',
19
+ 'european': '.edf'
20
+ }
21
+ METADATA_FILE_EXTENSIONS = ['eeg.json', 'channels.tsv', 'electrodes.tsv', 'events.tsv', 'events.json']
22
+ def __init__(self,
23
+ data_dir=None, # location of asr cleaned data
24
+ dataset='', # dataset name
25
+ raw_format='eeglab', # format of raw data
26
+ ):
27
+ if data_dir is None or not os.path.exists(data_dir):
28
+ raise ValueError('data_dir must be specified and must exist')
29
+ self.bidsdir = Path(data_dir)
30
+ self.dataset = dataset
31
+
32
+ if raw_format.lower() not in self.ALLOWED_FILE_FORMAT:
33
+ raise ValueError('raw_format must be one of {}'.format(self.ALLOWED_FILE_FORMAT))
34
+ self.raw_format = raw_format.lower()
35
+
36
+ # get all .set files in the bids directory
37
+ temp_dir = (Path().resolve() / 'data')
38
+ if not os.path.exists(temp_dir):
39
+ os.mkdir(temp_dir)
40
+ if not os.path.exists(temp_dir / f'{dataset}_files.npy'):
41
+ self.files = self.get_files_with_extension_parallel(self.bidsdir, extension=self.RAW_EXTENSION[self.raw_format])
42
+ np.save(temp_dir / f'{dataset}_files.npy', self.files)
43
+ else:
44
+ self.files = np.load(temp_dir / f'{dataset}_files.npy', allow_pickle=True)
45
+
46
+ def get_property_from_filename(self, property, filename):
47
+ lookup = re.search(rf'{property}-(.*?)[_\/]', filename)
48
+ return lookup.group(1) if lookup else ''
49
+
50
+ def get_bids_file_inheritance(self, path, basename, extension):
51
+ '''
52
+ Get all files with given extension that applies to the basename file
53
+ following the BIDS inheritance principle in the order of lowest level first
54
+ @param
55
+ basename: bids file basename without _eeg.set extension for example
56
+ extension: e.g. channels.tsv
57
+ '''
58
+ top_level_files = ['README', 'dataset_description.json', 'participants.tsv']
59
+ bids_files = []
60
+
61
+ # check if path is str object
62
+ if isinstance(path, str):
63
+ path = Path(path)
64
+ if not path.exists:
65
+ raise ValueError('path {path} does not exist')
66
+
67
+ # check if file is in current path
68
+ for file in os.listdir(path):
69
+ # target_file = path / f"{cur_file_basename}_{extension}"
70
+ if os.path.isfile(path/file):
71
+ cur_file_basename = file[:file.rfind('_')]
72
+ if file.endswith(extension) and cur_file_basename in basename:
73
+ filepath = path / file
74
+ bids_files.append(filepath)
75
+
76
+ # check if file is in top level directory
77
+ if any(file in os.listdir(path) for file in top_level_files):
78
+ return bids_files
79
+ else:
80
+ # call get_bids_file_inheritance recursively with parent directory
81
+ bids_files.extend(self.get_bids_file_inheritance(path.parent, basename, extension))
82
+ return bids_files
83
+
84
+ def get_bids_metadata_files(self, filepath, metadata_file_extension):
85
+ """
86
+ (Wrapper for self.get_bids_file_inheritance)
87
+ Get all BIDS metadata files that are associated with the given filepath, following the BIDS inheritance principle.
88
+
89
+ Args:
90
+ filepath (str or Path): The filepath to get the associated metadata files for.
91
+ metadata_files_extensions (list): A list of file extensions to search for metadata files.
92
+
93
+ Returns:
94
+ list: A list of filepaths for all the associated metadata files
95
+ """
96
+ if isinstance(filepath, str):
97
+ filepath = Path(filepath)
98
+ if not filepath.exists:
99
+ raise ValueError('filepath {filepath} does not exist')
100
+ path, filename = os.path.split(filepath)
101
+ basename = filename[:filename.rfind('_')]
102
+ # metadata files
103
+ meta_files = self.get_bids_file_inheritance(path, basename, metadata_file_extension)
104
+ if not meta_files:
105
+ raise ValueError('No metadata files found for filepath {filepath} and extension {metadata_file_extension}')
106
+ else:
107
+ return meta_files
108
+
109
+ def scan_directory(self, directory, extension):
110
+ result_files = []
111
+ directory_to_ignore = ['.git']
112
+ with os.scandir(directory) as entries:
113
+ for entry in entries:
114
+ if entry.is_file() and entry.name.endswith(extension):
115
+ print('Adding ', entry.path)
116
+ result_files.append(entry.path)
117
+ elif entry.is_dir():
118
+ # check that entry path doesn't contain any name in ignore list
119
+ if not any(name in entry.name for name in directory_to_ignore):
120
+ result_files.append(entry.path) # Add directory to scan later
121
+ return result_files
122
+
123
+ def get_files_with_extension_parallel(self, directory, extension='.set', max_workers=-1):
124
+ result_files = []
125
+ dirs_to_scan = [directory]
126
+
127
+ # Use joblib.Parallel and delayed to parallelize directory scanning
128
+ while dirs_to_scan:
129
+ print(f"Scanning {len(dirs_to_scan)} directories...", dirs_to_scan)
130
+ # Run the scan_directory function in parallel across directories
131
+ results = Parallel(n_jobs=max_workers, prefer="threads", verbose=1)(
132
+ delayed(self.scan_directory)(d, extension) for d in dirs_to_scan
133
+ )
134
+
135
+ # Reset the directories to scan and process the results
136
+ dirs_to_scan = []
137
+ for res in results:
138
+ for path in res:
139
+ if os.path.isdir(path):
140
+ dirs_to_scan.append(path) # Queue up subdirectories to scan
141
+ else:
142
+ result_files.append(path) # Add files to the final result
143
+ print(f"Current number of files: {len(result_files)}")
144
+
145
+ return result_files
146
+
147
+ def load_and_preprocess_raw(self, raw_file, preprocess=False):
148
+ print(f"Loading {raw_file}")
149
+ EEG = mne.io.read_raw_eeglab(raw_file, preload=True, verbose='error')
150
+
151
+ if preprocess:
152
+ # highpass filter
153
+ EEG = EEG.filter(l_freq=0.25, h_freq=25, verbose=False)
154
+ # remove 60Hz line noise
155
+ EEG = EEG.notch_filter(freqs=(60), verbose=False)
156
+ # bring to common sampling rate
157
+ sfreq = 128
158
+ if EEG.info['sfreq'] != sfreq:
159
+ EEG = EEG.resample(sfreq)
160
+ # # normalize data to zero mean and unit variance
161
+ # scalar = preprocessing.StandardScaler()
162
+ # mat_data = scalar.fit_transform(mat_data.T).T # scalar normalize for each feature and expects shape data x features
163
+
164
+ mat_data = EEG.get_data()
165
+
166
+ if len(mat_data.shape) > 2:
167
+ raise ValueError('Expect raw data to be CxT dimension')
168
+ return mat_data
169
+
170
+ def get_files(self):
171
+ return self.files
172
+
173
+ def resolve_bids_json(self, json_files: list):
174
+ """
175
+ Resolve the BIDS JSON files and return a dictionary of the resolved values.
176
+ Args:
177
+ json_files (list): A list of JSON files to resolve in order of leaf level first
178
+
179
+ Returns:
180
+ dict: A dictionary of the resolved values.
181
+ """
182
+ if len(json_files) == 0:
183
+ raise ValueError('No JSON files provided')
184
+ json_files.reverse() # TODO undeterministic
185
+
186
+ json_dict = {}
187
+ for json_file in json_files:
188
+ with open(json_file) as f:
189
+ json_dict.update(json.load(f))
190
+ return json_dict
191
+
192
+ def sfreq(self, data_filepath):
193
+ json_files = self.get_bids_metadata_files(data_filepath, 'eeg.json')
194
+ if len(json_files) == 0:
195
+ raise ValueError('No eeg.json found')
196
+
197
+ metadata = self.resolve_bids_json(json_files)
198
+ if 'SamplingFrequency' not in metadata:
199
+ raise ValueError('SamplingFrequency not found in metadata')
200
+ else:
201
+ return metadata['SamplingFrequency']
202
+
203
+ def task(self, data_filepath):
204
+ return self.get_property_from_filename('task', data_filepath)
205
+
206
+ def session(self, data_filepath):
207
+ return self.get_property_from_filename('session', data_filepath)
208
+
209
+ def run(self, data_filepath):
210
+ return self.get_property_from_filename('run', data_filepath)
211
+
212
+ def subject(self, data_filepath):
213
+ return self.get_property_from_filename('sub', data_filepath)
eegdash/main.py ADDED
@@ -0,0 +1,17 @@
1
+ from eegdash.signalstore_data_utils import SignalstoreBIDS
2
+
3
+ class EEGDash:
4
+ def __init__(self):
5
+ self.sstore = SignalstoreBIDS(
6
+ # dbconnectionstring='mongodb://127.0.0.1:27017/?directConnection=true&serverSelectionTimeoutMS=2000&appName=mongosh+2.3.1',
7
+ dbconnectionstring='mongodb+srv://eegdash-user:mdzoMjQcHWTVnKDq@cluster0.vz35p.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0',
8
+ is_public=True,
9
+ local_filesystem=False,
10
+ project_name='eegdash'
11
+ )
12
+
13
+ def find(self, *args):
14
+ return self.sstore.find(*args)
15
+
16
+ def get(self, *args):
17
+ return self.sstore.get(*args)
@@ -0,0 +1,280 @@
1
+ from pathlib import Path
2
+ from dotenv import load_dotenv
3
+ import re
4
+ import numpy as np
5
+ import xarray as xr
6
+ import os
7
+ from eegdash.SignalStore.signalstore.store import UnitOfWorkProvider
8
+ # from mongomock import MongoClient
9
+ from pymongo.mongo_client import MongoClient
10
+ from pymongo.server_api import ServerApi
11
+ from fsspec.implementations.local import LocalFileSystem
12
+ from fsspec.implementations.dirfs import DirFileSystem
13
+ import pandas as pd
14
+ import json
15
+ import s3fs
16
+ from eegdash.data_utils import BIDSDataset
17
+
18
+
19
+ class SignalstoreBIDS():
20
+ AWS_BUCKET = 'eegdash'
21
+ def __init__(self,
22
+ project_name=AWS_BUCKET,
23
+ dbconnectionstring="mongodb://127.0.0.1:27017/?directConnection=true&serverSelectionTimeoutMS=2000&appName=mongosh+2.3.1",
24
+ is_public=False,
25
+ local_filesystem=True,
26
+ ):
27
+ self.is_public = is_public
28
+ if is_public:
29
+ dbconnectionstring='mongodb+srv://eegdash-user:mdzoMjQcHWTVnKDq@cluster0.vz35p.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0',
30
+ else:
31
+ load_dotenv()
32
+ dbconnectionstring = os.getenv('DB_CONNECTION_STRING')
33
+
34
+ # Create a new client and connect to the server
35
+ client = MongoClient(dbconnectionstring, server_api=ServerApi('1'))
36
+ # Send a ping to confirm a successful connection
37
+ try:
38
+ client.admin.command('ping')
39
+ print("Pinged your deployment. You successfully connected to MongoDB!")
40
+ except Exception as e:
41
+ print(e)
42
+
43
+ memory_store = {}
44
+ filesystem = self.set_up_filesystem(is_local=local_filesystem)
45
+ self.uow_provider = UnitOfWorkProvider(
46
+ mongo_client=client,
47
+ filesystem=filesystem,
48
+ memory_store=memory_store,
49
+ default_filetype='zarr'
50
+ )
51
+
52
+ self.project_name=project_name
53
+ self.uow = self.uow_provider(self.project_name)
54
+ # self.load_domain_models()
55
+
56
+ def set_up_filesystem(self, is_local=True):
57
+ if is_local:
58
+ cache_path='/mnt/nemar/dtyoung/eeg-ssl-data' # path where signalstore netCDF files are stored
59
+ # Create a directory for the dataset
60
+ store_path = Path(cache_path)
61
+ if not os.path.exists(store_path):
62
+ os.makedirs(store_path)
63
+
64
+ filesystem = LocalFileSystem()
65
+ tmp_dir_fs = DirFileSystem(
66
+ store_path,
67
+ filesystem=filesystem
68
+ )
69
+ return tmp_dir_fs
70
+ else:
71
+ if self.is_public:
72
+ s3 = s3fs.S3FileSystem(anon=True, client_kwargs={'region_name': 'us-east-2'})
73
+ else:
74
+ s3 = s3fs.S3FileSystem(client_kwargs={'region_name': 'us-east-2'})
75
+ return s3
76
+
77
+ def load_domain_models(self):
78
+ cwd = Path.cwd()
79
+ domain_models_path = cwd / f"DomainModels/{self.project_name}/data_models.json"
80
+ metamodel_path = cwd / f"DomainModels/{self.project_name}/metamodels.json"
81
+ property_path = cwd / f"DomainModels/{self.project_name}/property_models.json"
82
+ with open(metamodel_path) as f:
83
+ metamodels = json.load(f)
84
+
85
+ with open(property_path) as f:
86
+ property_models = json.load(f)
87
+
88
+ # load domain models json file
89
+ with open(domain_models_path) as f:
90
+ domain_models = json.load(f)
91
+
92
+ with self.uow as uow:
93
+ for property_model in property_models:
94
+ uow.domain_models.add(property_model)
95
+ model = uow.domain_models.get(property_model['schema_name'])
96
+ print('property model: ', model['schema_name'])
97
+ for metamodel in metamodels:
98
+ uow.domain_models.add(metamodel)
99
+ model = uow.domain_models.get(metamodel['schema_name'])
100
+ print('meta model: ', model['schema_name'])
101
+ for domain_model in domain_models:
102
+ uow.domain_models.add(domain_model)
103
+ model = uow.domain_models.get(domain_model['schema_name'])
104
+ print('domain model: ', model['schema_name'])
105
+ uow.commit()
106
+
107
+ def extract_attribute(self, pattern, filename):
108
+ match = re.search(pattern, filename)
109
+ return match.group(1) if match else None
110
+
111
+ def load_eeg_attrs_from_bids_file(self, bids_dataset: BIDSDataset, bids_file):
112
+ '''
113
+ bids_file must be a file of the bids_dataset
114
+ '''
115
+ if bids_file not in bids_dataset.files:
116
+ raise ValueError(f'{bids_file} not in {bids_dataset.dataset}')
117
+ f = os.path.basename(bids_file)
118
+ attrs = {
119
+ 'schema_ref': 'eeg_signal',
120
+ 'data_name': f'{bids_dataset.dataset}_{f}',
121
+ 'dataset': bids_dataset.dataset,
122
+ 'subject': bids_dataset.subject(bids_file),
123
+ 'task': bids_dataset.task(bids_file),
124
+ 'session': bids_dataset.session(bids_file),
125
+ 'run': bids_dataset.run(bids_file),
126
+ 'sampling_frequency': bids_dataset.sfreq(bids_file),
127
+ 'modality': 'EEG',
128
+ }
129
+
130
+ return attrs
131
+
132
+ def load_eeg_data_from_bids_file(self, bids_dataset: BIDSDataset, bids_file, eeg_attrs=None):
133
+ '''
134
+ bids_file must be a file of the bids_dataset
135
+ '''
136
+ if bids_file not in bids_dataset.files:
137
+ raise ValueError(f'{bids_file} not in {bids_dataset.dataset}')
138
+
139
+ attrs = self.load_eeg_attrs_from_bids_file(bids_dataset, bids_file) if eeg_attrs is None else eeg_attrs
140
+
141
+ eeg_data = bids_dataset.load_and_preprocess_raw(bids_file)
142
+ print('data shape:', eeg_data.shape)
143
+
144
+ fs = attrs['sampling_frequency']
145
+ max_time = eeg_data.shape[1] / fs
146
+ time_steps = np.linspace(0, max_time, eeg_data.shape[1]).squeeze() # in seconds
147
+ # print('time steps', len(time_steps))
148
+
149
+ # replace eeg.set with channels.tsv
150
+ # todo this is still a hacky way
151
+ channels_tsv = bids_dataset.get_bids_metadata_files(bids_file, 'channels.tsv')
152
+ channels_tsv = Path(channels_tsv[0])
153
+ if channels_tsv.exists():
154
+ channels = pd.read_csv(channels_tsv, sep='\t')
155
+ # get channel names from channel_coords
156
+ channel_names = channels['name'].values
157
+
158
+ eeg_xarray = xr.DataArray(
159
+ data=eeg_data,
160
+ dims=['channel','time'],
161
+ coords={
162
+ 'time': time_steps,
163
+ 'channel': channel_names
164
+ },
165
+ attrs=attrs
166
+ )
167
+ return eeg_xarray
168
+
169
+ def exist(self, schema_ref='eeg_signal', data_name=''):
170
+ with self.uow as uow:
171
+ query = {
172
+ "schema_ref": schema_ref,
173
+ "data_name": data_name
174
+ }
175
+ sessions = uow.data.find(query)
176
+ if len(sessions) > 0:
177
+ return True
178
+ else:
179
+ return False
180
+
181
+ def add_bids_dataset(self, dataset, data_dir, raw_format='eeglab', overwrite=False, record_only=False):
182
+ if self.is_public:
183
+ raise ValueError('This operation is not allowed for public users')
184
+
185
+ bids_dataset = BIDSDataset(
186
+ data_dir=data_dir,
187
+ dataset=dataset,
188
+ raw_format=raw_format,
189
+ )
190
+ for bids_file in bids_dataset.get_files():
191
+ print('bids raw file', bids_file)
192
+
193
+ signalstore_data_id = f"{dataset}_{os.path.basename(bids_file)}"
194
+ if overwrite:
195
+ self.remove(signalstore_data_id)
196
+
197
+ if self.exist(data_name=signalstore_data_id):
198
+ print('data already exist. skipped')
199
+ continue
200
+ else:
201
+ eeg_attrs = self.load_eeg_attrs_from_bids_file(bids_dataset, bids_file)
202
+ with self.uow as uow:
203
+ # Assume raw data already exists, recreating record only
204
+ eeg_attrs['has_file'] = True
205
+ print('adding record', eeg_attrs['data_name'])
206
+ uow.data.add(eeg_attrs)
207
+ uow.commit()
208
+ if not record_only:
209
+ eeg_xarray = self.load_eeg_data_from_bids_file(bids_dataset, bids_file, eeg_attrs)
210
+ with self.uow as uow:
211
+ print('adding data', eeg_xarray.attrs['data_name'])
212
+ uow.data.add(eeg_xarray)
213
+ uow.commit()
214
+
215
+ def remove(self, schema_ref='eeg_signal', data_name=''):
216
+ if self.is_public:
217
+ raise ValueError('This operation is not allowed for public users')
218
+
219
+ with self.uow as uow:
220
+ sessions = uow.data.find({'schema_ref': schema_ref, 'data_name': data_name})
221
+ if len(session) > 0:
222
+ for session in range(len(sessions)):
223
+ uow.data.remove(session['schema_ref'], session['data_name'])
224
+ uow.commit()
225
+
226
+ def remove_all(self):
227
+ if self.is_public:
228
+ raise ValueError('This operation is not allowed for public users')
229
+
230
+ with self.uow as uow:
231
+ sessions = uow.data.find({})
232
+ print(len(sessions))
233
+ for session in range(len(sessions)):
234
+ uow.data.remove(session['schema_ref'], session['data_name'])
235
+ uow.commit()
236
+
237
+ uow.purge()
238
+
239
+ print('Verifying deletion job. Dataset length: ', len(uow.data.find({})))
240
+
241
+ def find(self, query:dict, validate=False, get_data=False):
242
+ '''
243
+ query: {
244
+ 'dataset': 'dsxxxx',
245
+
246
+ }'''
247
+ with self.uow as uow:
248
+ sessions = uow.data.find(query, validate=validate, get_data=get_data)
249
+ if sessions:
250
+ print(f'Found {len(sessions)} records')
251
+ return sessions
252
+ else:
253
+ return []
254
+
255
+ def get(self, query:dict, validate=False):
256
+ '''
257
+ query: {
258
+ 'dataset': 'dsxxxx',
259
+
260
+ }'''
261
+ with self.uow as uow:
262
+ sessions = uow.data.find(query, validate=validate, get_data=True)
263
+ if sessions:
264
+ print(f'Found {len(sessions)} records')
265
+ return sessions
266
+ else:
267
+ return []
268
+
269
+ if __name__ == "__main__":
270
+ # sstore_hbn = SignalstoreHBN()
271
+ # sstore_hbn.add_data()
272
+ # sstore_ds004584 = SignalstoreHBN(
273
+ # data_path='/mnt/nemar/openneuro/ds004584',
274
+ # dataset_name='eegdash',
275
+ # local_filesystem=False,
276
+ # dbconnectionstring='mongodb://23.21.113.214:27017/?directConnection=true&serverSelectionTimeoutMS=2000&appName=mongosh+2.2.1'
277
+ # )
278
+ # sstore_ds004584.load_domain_models()
279
+ # sstore_ds004584.add_data()
280
+ pass
@@ -0,0 +1,20 @@
1
+ GNU General Public License
2
+
3
+ Copyright (C) 2024-2025
4
+
5
+ Young Truong, UCSD, dt.young112@gmail.com
6
+ Arnaud Delorme, UCSD, adelorme@ucsd.edu
7
+
8
+ This program is free software; you can redistribute it and/or modify
9
+ it under the terms of the GNU General Public License as published by
10
+ the Free Software Foundation; either version 2 of the License, or
11
+ (at your option) any later version.
12
+
13
+ This program is distributed in the hope that it will be useful,
14
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
15
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
+ GNU General Public License for more details.
17
+
18
+ You should have received a copy of the GNU General Public License
19
+ along with this program; if not, write to the Free Software
20
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1.07 USA
@@ -0,0 +1,72 @@
1
+ Metadata-Version: 2.1
2
+ Name: eegdash
3
+ Version: 0.0.1
4
+ Summary: EEG data for machine learning
5
+ Author-email: Young Truong <dt.young112@gmail.com>, Arnaud Delorme <adelorme@gmail.com>
6
+ License: GNU General Public License
7
+
8
+ Copyright (C) 2024-2025
9
+
10
+ Young Truong, UCSD, dt.young112@gmail.com
11
+ Arnaud Delorme, UCSD, adelorme@ucsd.edu
12
+
13
+ This program is free software; you can redistribute it and/or modify
14
+ it under the terms of the GNU General Public License as published by
15
+ the Free Software Foundation; either version 2 of the License, or
16
+ (at your option) any later version.
17
+
18
+ This program is distributed in the hope that it will be useful,
19
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
20
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21
+ GNU General Public License for more details.
22
+
23
+ You should have received a copy of the GNU General Public License
24
+ along with this program; if not, write to the Free Software
25
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1.07 USA
26
+
27
+ Project-URL: Homepage, https://github.com/sccn/EEG-Dash-Data
28
+ Project-URL: Issues, https://github.com/sccn/EEG-Dash-Data/issues
29
+ Classifier: Programming Language :: Python :: 3
30
+ Classifier: License :: OSI Approved :: MIT License
31
+ Classifier: Operating System :: OS Independent
32
+ Requires-Python: >=3.8
33
+ Description-Content-Type: text/markdown
34
+ License-File: LICENSE
35
+
36
+ # EEG-Dash
37
+ To leverage recent and ongoing advancements in large-scale computational methods and to ensure the preservation of scientific data generated from publicly funded research, the EEG-DaSh data archive will create a data-sharing resource for MEEG (EEG, MEG) data contributed by collaborators for machine learning (ML) and deep learning (DL) applications.
38
+
39
+ ## Data source
40
+ The data in EEG-DaSh originates from a collaboration involving 25 laboratories, encompassing 27,053 participants. This extensive collection includes MEEG data, which is a combination of EEG and MEG signals. The data is sourced from various studies conducted by these labs, involving both healthy subjects and clinical populations with conditions such as ADHD, depression, schizophrenia, dementia, autism, and psychosis. Additionally, data spans different mental states like sleep, meditation, and cognitive tasks. In addition, EEG-DaSh will also incorporate data converted from NEMAR, which includes a subset of the 330 MEEG BIDS-formatted datasets available on OpenNeuro, further expanding the archive with well-curated, standardized neuroelectromagnetic data.
41
+
42
+ ## Data formatting
43
+ The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep learning (DL) applications by using a simplified structure commonly adopted by these communities. This will involve converting raw MEEG data into a matrix format, where samples (e.g., individual EEG or MEG recordings) are represented by rows, and values (such as time or channel data) are represented by columns. The data is also divided into training and testing sets, with 80% of the data allocated for training and 20% for testing, ensuring a balanced representation of relevant labels across sets. Hierarchical Event Descriptor (HED) tags will be used to annotate labels, which will be stored in a text table, and detailed metadata, including dataset origins and methods. This formatting process will ensure that data is ready for ML/DL models, allowing for efficient training and testing of algorithms while preserving data integrity and reusability.
44
+
45
+ ![Screenshot 2024-10-03 at 09 07 28](https://github.com/user-attachments/assets/b30a79bb-0d94-410a-843c-44c3fcea01fc)
46
+
47
+ ## Data access
48
+ The data in EEG-DaSh is formatted to facilitate machine learning (ML) and deep learning (DL) applications by using a simplified structure commonly adopted by these communities. This will involve converting raw MEEG data into a matrix format, where samples (e.g., individual EEG or MEG recordings) are represented by rows, and values (such as time or channel data) are represented by columns. The data is also divided into training and testing sets, with 80% of the data allocated for training and 20% for testing, ensuring a balanced representation of relevant labels across sets. Hierarchical Event Descriptor (HED) tags will be used to annotate labels, which will be stored in a text table, and detailed metadata, including dataset origins and methods. This formatting process will ensure that data is ready for ML/DL models, allowing for efficient training and testing of algorithms while preserving data integrity and reusability.
49
+
50
+ The data in EEG-DaSh is accessed through Python and MATLAB libraries specifically designed for this platform. These libraries will use objects compatible with deep learning data storage formats in each language, such as <i>Torchvision.dataset</i> in Python and <i>DataStore</i> in MATLAB. Users can dynamically fetch data from the EEG-DaSh server which is then cached locally.
51
+
52
+ ### AWS S3
53
+
54
+ Coming soon...
55
+
56
+ ### EEG-Dash API
57
+
58
+ Coming soon...
59
+
60
+ ## Education
61
+
62
+ We organize workshops and educational events to foster cross-cultural education and student training, offering both online and in-person opportunities in collaboration with US and Israeli partners. There is no event planned for 2024. Events for 2025 will be advertised on the EEGLABNEWS mailing list so make sure to [subscribe](https://sccn.ucsd.edu/mailman/listinfo/eeglabnews).
63
+
64
+ ## About EEG-DaSh
65
+
66
+ EEG-DaSh is a collaborative initiative between the United States and Israel, supported by the National Science Foundation (NSF). The partnership brings together experts from the Swartz Center for Computational Neuroscience (SCCN) at the University of California San Diego (UCSD) and Ben-Gurion University (BGU) in Israel.
67
+
68
+ ![Screenshot 2024-10-03 at 09 14 06](https://github.com/user-attachments/assets/327639d3-c3b4-46b1-9335-37803209b0d3)
69
+
70
+
71
+
72
+