edsl 0.1.39.dev2__py3-none-any.whl → 0.1.39.dev3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (334) hide show
  1. edsl/Base.py +332 -385
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +49 -57
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +867 -1079
  7. edsl/agents/AgentList.py +413 -551
  8. edsl/agents/Invigilator.py +233 -285
  9. edsl/agents/InvigilatorBase.py +270 -254
  10. edsl/agents/PromptConstructor.py +354 -252
  11. edsl/agents/__init__.py +3 -2
  12. edsl/agents/descriptors.py +99 -99
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +279 -279
  26. edsl/config.py +157 -177
  27. edsl/conversation/Conversation.py +290 -290
  28. edsl/conversation/car_buying.py +58 -59
  29. edsl/conversation/chips.py +95 -95
  30. edsl/conversation/mug_negotiation.py +81 -81
  31. edsl/conversation/next_speaker_utilities.py +93 -93
  32. edsl/coop/PriceFetcher.py +54 -54
  33. edsl/coop/__init__.py +2 -2
  34. edsl/coop/coop.py +1028 -1090
  35. edsl/coop/utils.py +131 -131
  36. edsl/data/Cache.py +555 -562
  37. edsl/data/CacheEntry.py +233 -230
  38. edsl/data/CacheHandler.py +149 -170
  39. edsl/data/RemoteCacheSync.py +78 -78
  40. edsl/data/SQLiteDict.py +292 -292
  41. edsl/data/__init__.py +4 -5
  42. edsl/data/orm.py +10 -10
  43. edsl/data_transfer_models.py +73 -74
  44. edsl/enums.py +175 -195
  45. edsl/exceptions/BaseException.py +21 -21
  46. edsl/exceptions/__init__.py +54 -54
  47. edsl/exceptions/agents.py +42 -54
  48. edsl/exceptions/cache.py +5 -5
  49. edsl/exceptions/configuration.py +16 -16
  50. edsl/exceptions/coop.py +10 -10
  51. edsl/exceptions/data.py +14 -14
  52. edsl/exceptions/general.py +34 -34
  53. edsl/exceptions/jobs.py +33 -33
  54. edsl/exceptions/language_models.py +63 -63
  55. edsl/exceptions/prompts.py +15 -15
  56. edsl/exceptions/questions.py +91 -109
  57. edsl/exceptions/results.py +29 -29
  58. edsl/exceptions/scenarios.py +22 -29
  59. edsl/exceptions/surveys.py +37 -37
  60. edsl/inference_services/AnthropicService.py +87 -84
  61. edsl/inference_services/AwsBedrock.py +120 -118
  62. edsl/inference_services/AzureAI.py +217 -215
  63. edsl/inference_services/DeepInfraService.py +18 -18
  64. edsl/inference_services/GoogleService.py +148 -139
  65. edsl/inference_services/GroqService.py +20 -20
  66. edsl/inference_services/InferenceServiceABC.py +147 -80
  67. edsl/inference_services/InferenceServicesCollection.py +97 -122
  68. edsl/inference_services/MistralAIService.py +123 -120
  69. edsl/inference_services/OllamaService.py +18 -18
  70. edsl/inference_services/OpenAIService.py +224 -221
  71. edsl/inference_services/PerplexityService.py +163 -160
  72. edsl/inference_services/TestService.py +89 -92
  73. edsl/inference_services/TogetherAIService.py +170 -170
  74. edsl/inference_services/models_available_cache.py +118 -118
  75. edsl/inference_services/rate_limits_cache.py +25 -25
  76. edsl/inference_services/registry.py +41 -41
  77. edsl/inference_services/write_available.py +10 -10
  78. edsl/jobs/Answers.py +56 -43
  79. edsl/jobs/Jobs.py +898 -757
  80. edsl/jobs/JobsChecks.py +147 -172
  81. edsl/jobs/JobsPrompts.py +268 -270
  82. edsl/jobs/JobsRemoteInferenceHandler.py +239 -287
  83. edsl/jobs/__init__.py +1 -1
  84. edsl/jobs/buckets/BucketCollection.py +63 -104
  85. edsl/jobs/buckets/ModelBuckets.py +65 -65
  86. edsl/jobs/buckets/TokenBucket.py +251 -283
  87. edsl/jobs/interviews/Interview.py +661 -358
  88. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  89. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  90. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  91. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  92. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  93. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  94. edsl/jobs/interviews/ReportErrors.py +66 -66
  95. edsl/jobs/interviews/interview_status_enum.py +9 -9
  96. edsl/jobs/runners/JobsRunnerAsyncio.py +466 -421
  97. edsl/jobs/runners/JobsRunnerStatus.py +330 -330
  98. edsl/jobs/tasks/QuestionTaskCreator.py +242 -244
  99. edsl/jobs/tasks/TaskCreators.py +64 -64
  100. edsl/jobs/tasks/TaskHistory.py +450 -449
  101. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  102. edsl/jobs/tasks/task_status_enum.py +163 -161
  103. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  104. edsl/jobs/tokens/TokenUsage.py +34 -34
  105. edsl/language_models/KeyLookup.py +30 -0
  106. edsl/language_models/LanguageModel.py +668 -571
  107. edsl/language_models/ModelList.py +155 -153
  108. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  109. edsl/language_models/__init__.py +3 -2
  110. edsl/language_models/fake_openai_call.py +15 -15
  111. edsl/language_models/fake_openai_service.py +61 -61
  112. edsl/language_models/registry.py +190 -180
  113. edsl/language_models/repair.py +156 -156
  114. edsl/language_models/unused/ReplicateBase.py +83 -0
  115. edsl/language_models/utilities.py +64 -65
  116. edsl/notebooks/Notebook.py +258 -263
  117. edsl/notebooks/__init__.py +1 -1
  118. edsl/prompts/Prompt.py +362 -352
  119. edsl/prompts/__init__.py +2 -2
  120. edsl/questions/AnswerValidatorMixin.py +289 -334
  121. edsl/questions/QuestionBase.py +664 -509
  122. edsl/questions/QuestionBaseGenMixin.py +161 -165
  123. edsl/questions/QuestionBasePromptsMixin.py +217 -221
  124. edsl/questions/QuestionBudget.py +227 -227
  125. edsl/questions/QuestionCheckBox.py +359 -359
  126. edsl/questions/QuestionExtract.py +182 -182
  127. edsl/questions/QuestionFreeText.py +114 -113
  128. edsl/questions/QuestionFunctional.py +166 -166
  129. edsl/questions/QuestionList.py +231 -229
  130. edsl/questions/QuestionMultipleChoice.py +286 -330
  131. edsl/questions/QuestionNumerical.py +153 -151
  132. edsl/questions/QuestionRank.py +324 -314
  133. edsl/questions/Quick.py +41 -41
  134. edsl/questions/RegisterQuestionsMeta.py +71 -71
  135. edsl/questions/ResponseValidatorABC.py +174 -200
  136. edsl/questions/SimpleAskMixin.py +73 -74
  137. edsl/questions/__init__.py +26 -27
  138. edsl/questions/compose_questions.py +98 -98
  139. edsl/questions/decorators.py +21 -21
  140. edsl/questions/derived/QuestionLikertFive.py +76 -76
  141. edsl/questions/derived/QuestionLinearScale.py +87 -90
  142. edsl/questions/derived/QuestionTopK.py +93 -93
  143. edsl/questions/derived/QuestionYesNo.py +82 -82
  144. edsl/questions/descriptors.py +413 -427
  145. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  146. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  147. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  148. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  149. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  150. edsl/questions/prompt_templates/question_list.jinja +17 -17
  151. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  152. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  153. edsl/questions/question_registry.py +177 -177
  154. edsl/questions/settings.py +12 -12
  155. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  156. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  157. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  158. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  159. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  160. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  161. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  162. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  163. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  164. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  165. edsl/questions/templates/list/question_presentation.jinja +5 -5
  166. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  167. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  168. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  169. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  170. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  171. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  172. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  173. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  174. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  175. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  176. edsl/results/CSSParameterizer.py +108 -108
  177. edsl/results/Dataset.py +424 -587
  178. edsl/results/DatasetExportMixin.py +731 -653
  179. edsl/results/DatasetTree.py +275 -295
  180. edsl/results/Result.py +465 -451
  181. edsl/results/Results.py +1165 -1172
  182. edsl/results/ResultsDBMixin.py +238 -0
  183. edsl/results/ResultsExportMixin.py +43 -45
  184. edsl/results/ResultsFetchMixin.py +33 -33
  185. edsl/results/ResultsGGMixin.py +121 -121
  186. edsl/results/ResultsToolsMixin.py +98 -98
  187. edsl/results/Selector.py +135 -145
  188. edsl/results/TableDisplay.py +198 -125
  189. edsl/results/__init__.py +2 -2
  190. edsl/results/table_display.css +77 -77
  191. edsl/results/tree_explore.py +115 -115
  192. edsl/scenarios/FileStore.py +632 -511
  193. edsl/scenarios/Scenario.py +601 -498
  194. edsl/scenarios/ScenarioHtmlMixin.py +64 -65
  195. edsl/scenarios/ScenarioJoin.py +127 -131
  196. edsl/scenarios/ScenarioList.py +1287 -1430
  197. edsl/scenarios/ScenarioListExportMixin.py +52 -45
  198. edsl/scenarios/ScenarioListPdfMixin.py +261 -239
  199. edsl/scenarios/__init__.py +4 -3
  200. edsl/shared.py +1 -1
  201. edsl/study/ObjectEntry.py +173 -173
  202. edsl/study/ProofOfWork.py +113 -113
  203. edsl/study/SnapShot.py +80 -80
  204. edsl/study/Study.py +528 -521
  205. edsl/study/__init__.py +4 -4
  206. edsl/surveys/DAG.py +148 -148
  207. edsl/surveys/Memory.py +31 -31
  208. edsl/surveys/MemoryPlan.py +244 -244
  209. edsl/surveys/Rule.py +326 -327
  210. edsl/surveys/RuleCollection.py +387 -385
  211. edsl/surveys/Survey.py +1801 -1229
  212. edsl/surveys/SurveyCSS.py +261 -273
  213. edsl/surveys/SurveyExportMixin.py +259 -259
  214. edsl/surveys/{SurveyFlowVisualization.py → SurveyFlowVisualizationMixin.py} +179 -181
  215. edsl/surveys/SurveyQualtricsImport.py +284 -284
  216. edsl/surveys/__init__.py +3 -5
  217. edsl/surveys/base.py +53 -53
  218. edsl/surveys/descriptors.py +56 -60
  219. edsl/surveys/instructions/ChangeInstruction.py +49 -48
  220. edsl/surveys/instructions/Instruction.py +65 -56
  221. edsl/surveys/instructions/InstructionCollection.py +77 -82
  222. edsl/templates/error_reporting/base.html +23 -23
  223. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  224. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  225. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  226. edsl/templates/error_reporting/interview_details.html +115 -115
  227. edsl/templates/error_reporting/interviews.html +19 -19
  228. edsl/templates/error_reporting/overview.html +4 -4
  229. edsl/templates/error_reporting/performance_plot.html +1 -1
  230. edsl/templates/error_reporting/report.css +73 -73
  231. edsl/templates/error_reporting/report.html +117 -117
  232. edsl/templates/error_reporting/report.js +25 -25
  233. edsl/tools/__init__.py +1 -1
  234. edsl/tools/clusters.py +192 -192
  235. edsl/tools/embeddings.py +27 -27
  236. edsl/tools/embeddings_plotting.py +118 -118
  237. edsl/tools/plotting.py +112 -112
  238. edsl/tools/summarize.py +18 -18
  239. edsl/utilities/SystemInfo.py +28 -28
  240. edsl/utilities/__init__.py +22 -22
  241. edsl/utilities/ast_utilities.py +25 -25
  242. edsl/utilities/data/Registry.py +6 -6
  243. edsl/utilities/data/__init__.py +1 -1
  244. edsl/utilities/data/scooter_results.json +1 -1
  245. edsl/utilities/decorators.py +77 -77
  246. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  247. edsl/utilities/interface.py +627 -627
  248. edsl/utilities/naming_utilities.py +263 -263
  249. edsl/utilities/repair_functions.py +28 -28
  250. edsl/utilities/restricted_python.py +70 -70
  251. edsl/utilities/utilities.py +424 -436
  252. {edsl-0.1.39.dev2.dist-info → edsl-0.1.39.dev3.dist-info}/LICENSE +21 -21
  253. {edsl-0.1.39.dev2.dist-info → edsl-0.1.39.dev3.dist-info}/METADATA +10 -12
  254. edsl-0.1.39.dev3.dist-info/RECORD +277 -0
  255. edsl/agents/QuestionInstructionPromptBuilder.py +0 -128
  256. edsl/agents/QuestionOptionProcessor.py +0 -172
  257. edsl/agents/QuestionTemplateReplacementsBuilder.py +0 -137
  258. edsl/coop/CoopFunctionsMixin.py +0 -15
  259. edsl/coop/ExpectedParrotKeyHandler.py +0 -125
  260. edsl/exceptions/inference_services.py +0 -5
  261. edsl/inference_services/AvailableModelCacheHandler.py +0 -184
  262. edsl/inference_services/AvailableModelFetcher.py +0 -209
  263. edsl/inference_services/ServiceAvailability.py +0 -135
  264. edsl/inference_services/data_structures.py +0 -62
  265. edsl/jobs/AnswerQuestionFunctionConstructor.py +0 -188
  266. edsl/jobs/FetchInvigilator.py +0 -40
  267. edsl/jobs/InterviewTaskManager.py +0 -98
  268. edsl/jobs/InterviewsConstructor.py +0 -48
  269. edsl/jobs/JobsComponentConstructor.py +0 -189
  270. edsl/jobs/JobsRemoteInferenceLogger.py +0 -239
  271. edsl/jobs/RequestTokenEstimator.py +0 -30
  272. edsl/jobs/buckets/TokenBucketAPI.py +0 -211
  273. edsl/jobs/buckets/TokenBucketClient.py +0 -191
  274. edsl/jobs/decorators.py +0 -35
  275. edsl/jobs/jobs_status_enums.py +0 -9
  276. edsl/jobs/loggers/HTMLTableJobLogger.py +0 -304
  277. edsl/language_models/ComputeCost.py +0 -63
  278. edsl/language_models/PriceManager.py +0 -127
  279. edsl/language_models/RawResponseHandler.py +0 -106
  280. edsl/language_models/ServiceDataSources.py +0 -0
  281. edsl/language_models/key_management/KeyLookup.py +0 -63
  282. edsl/language_models/key_management/KeyLookupBuilder.py +0 -273
  283. edsl/language_models/key_management/KeyLookupCollection.py +0 -38
  284. edsl/language_models/key_management/__init__.py +0 -0
  285. edsl/language_models/key_management/models.py +0 -131
  286. edsl/notebooks/NotebookToLaTeX.py +0 -142
  287. edsl/questions/ExceptionExplainer.py +0 -77
  288. edsl/questions/HTMLQuestion.py +0 -103
  289. edsl/questions/LoopProcessor.py +0 -149
  290. edsl/questions/QuestionMatrix.py +0 -265
  291. edsl/questions/ResponseValidatorFactory.py +0 -28
  292. edsl/questions/templates/matrix/__init__.py +0 -1
  293. edsl/questions/templates/matrix/answering_instructions.jinja +0 -5
  294. edsl/questions/templates/matrix/question_presentation.jinja +0 -20
  295. edsl/results/MarkdownToDocx.py +0 -122
  296. edsl/results/MarkdownToPDF.py +0 -111
  297. edsl/results/TextEditor.py +0 -50
  298. edsl/results/smart_objects.py +0 -96
  299. edsl/results/table_data_class.py +0 -12
  300. edsl/results/table_renderers.py +0 -118
  301. edsl/scenarios/ConstructDownloadLink.py +0 -109
  302. edsl/scenarios/DirectoryScanner.py +0 -96
  303. edsl/scenarios/DocumentChunker.py +0 -102
  304. edsl/scenarios/DocxScenario.py +0 -16
  305. edsl/scenarios/PdfExtractor.py +0 -40
  306. edsl/scenarios/ScenarioSelector.py +0 -156
  307. edsl/scenarios/file_methods.py +0 -85
  308. edsl/scenarios/handlers/__init__.py +0 -13
  309. edsl/scenarios/handlers/csv.py +0 -38
  310. edsl/scenarios/handlers/docx.py +0 -76
  311. edsl/scenarios/handlers/html.py +0 -37
  312. edsl/scenarios/handlers/json.py +0 -111
  313. edsl/scenarios/handlers/latex.py +0 -5
  314. edsl/scenarios/handlers/md.py +0 -51
  315. edsl/scenarios/handlers/pdf.py +0 -68
  316. edsl/scenarios/handlers/png.py +0 -39
  317. edsl/scenarios/handlers/pptx.py +0 -105
  318. edsl/scenarios/handlers/py.py +0 -294
  319. edsl/scenarios/handlers/sql.py +0 -313
  320. edsl/scenarios/handlers/sqlite.py +0 -149
  321. edsl/scenarios/handlers/txt.py +0 -33
  322. edsl/surveys/ConstructDAG.py +0 -92
  323. edsl/surveys/EditSurvey.py +0 -221
  324. edsl/surveys/InstructionHandler.py +0 -100
  325. edsl/surveys/MemoryManagement.py +0 -72
  326. edsl/surveys/RuleManager.py +0 -172
  327. edsl/surveys/Simulator.py +0 -75
  328. edsl/surveys/SurveyToApp.py +0 -141
  329. edsl/utilities/PrettyList.py +0 -56
  330. edsl/utilities/is_notebook.py +0 -18
  331. edsl/utilities/is_valid_variable_name.py +0 -11
  332. edsl/utilities/remove_edsl_version.py +0 -24
  333. edsl-0.1.39.dev2.dist-info/RECORD +0 -352
  334. {edsl-0.1.39.dev2.dist-info → edsl-0.1.39.dev3.dist-info}/WHEEL +0 -0
edsl/agents/Agent.py CHANGED
@@ -1,1079 +1,867 @@
1
- """An Agent is an AI agent that can reference a set of traits in answering questions."""
2
-
3
- from __future__ import annotations
4
- import copy
5
- import inspect
6
- import types
7
- from typing import (
8
- Callable,
9
- Optional,
10
- Union,
11
- Any,
12
- TYPE_CHECKING,
13
- Protocol,
14
- runtime_checkable,
15
- TypeVar,
16
- )
17
- from contextlib import contextmanager
18
- from dataclasses import dataclass
19
-
20
- # Type variable for the Agent class
21
- A = TypeVar("A", bound="Agent")
22
-
23
- if TYPE_CHECKING:
24
- from edsl.data.Cache import Cache
25
- from edsl.surveys.Survey import Survey
26
- from edsl.scenarios.Scenario import Scenario
27
- from edsl.language_models import LanguageModel
28
- from edsl.surveys.MemoryPlan import MemoryPlan
29
- from edsl.questions import QuestionBase
30
- from edsl.agents.Invigilator import InvigilatorBase
31
- from edsl.prompts import Prompt
32
- from edsl.questions.QuestionBase import QuestionBase
33
- from edsl.scenarios.Scenario import Scenario
34
-
35
-
36
- @runtime_checkable
37
- class DirectAnswerMethod(Protocol):
38
- """Protocol defining the required signature for direct answer methods."""
39
-
40
- def __call__(self, self_: A, question: QuestionBase, scenario: Scenario) -> Any: ...
41
-
42
-
43
- from uuid import uuid4
44
-
45
- from edsl.Base import Base
46
- from edsl.exceptions.questions import QuestionScenarioRenderError
47
-
48
- from edsl.exceptions.agents import (
49
- AgentErrors,
50
- AgentCombinationError,
51
- AgentDirectAnswerFunctionError,
52
- AgentDynamicTraitsFunctionError,
53
- )
54
-
55
- from edsl.agents.descriptors import (
56
- TraitsDescriptor,
57
- CodebookDescriptor,
58
- InstructionDescriptor,
59
- NameDescriptor,
60
- )
61
- from edsl.utilities.decorators import (
62
- sync_wrapper,
63
- )
64
- from edsl.utilities.remove_edsl_version import remove_edsl_version
65
- from edsl.data_transfer_models import AgentResponseDict
66
- from edsl.utilities.restricted_python import create_restricted_function
67
-
68
- from edsl.scenarios.Scenario import Scenario
69
-
70
-
71
- class AgentTraits(Scenario):
72
- """A class representing the traits of an agent."""
73
-
74
- def __repr__(self):
75
- return f"{self.data}"
76
-
77
-
78
- class Agent(Base):
79
- """An class representing an agent that can answer questions."""
80
-
81
- __documentation__ = "https://docs.expectedparrot.com/en/latest/agents.html"
82
-
83
- default_instruction = """You are answering questions as if you were a human. Do not break character."""
84
-
85
- _traits = TraitsDescriptor()
86
- codebook = CodebookDescriptor()
87
- instruction = InstructionDescriptor()
88
- name = NameDescriptor()
89
- dynamic_traits_function_name = ""
90
- answer_question_directly_function_name = ""
91
- has_dynamic_traits_function = False
92
-
93
- def __init__(
94
- self,
95
- traits: Optional[dict] = None,
96
- name: Optional[str] = None,
97
- codebook: Optional[dict] = None,
98
- instruction: Optional[str] = None,
99
- traits_presentation_template: Optional[str] = None,
100
- dynamic_traits_function: Optional[Callable] = None,
101
- dynamic_traits_function_source_code: Optional[str] = None,
102
- dynamic_traits_function_name: Optional[str] = None,
103
- answer_question_directly_source_code: Optional[str] = None,
104
- answer_question_directly_function_name: Optional[str] = None,
105
- ):
106
- """Initialize a new instance of Agent.
107
-
108
- :param traits: A dictionary of traits that the agent has. The keys need to be valid identifiers.
109
- :param name: A name for the agent
110
- :param codebook: A codebook mapping trait keys to trait descriptions.
111
- :param instruction: Instructions for the agent in how to answer questions.
112
- :param trait_presentation_template: A template for how to present the agent's traits.
113
- :param dynamic_traits_function: A function that returns a dictionary of traits.
114
- :param dynamic_traits_function_source_code: The source code for the dynamic traits function.
115
- :param dynamic_traits_function_name: The name of the dynamic traits function.
116
-
117
- The `traits` parameter is a dictionary of traits that the agent has.
118
- These traits are used to construct a prompt that is presented to the LLM.
119
- In the absence of a `traits_presentation_template`, the default is used.
120
- This is a template that is used to present the agent's traits to the LLM.
121
- See :py:class:`edsl.prompts.library.agent_persona.AgentPersona` for more information.
122
-
123
- Example usage:
124
-
125
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
126
- >>> a.traits
127
- {'age': 10, 'hair': 'brown', 'height': 5.5}
128
-
129
- These traits are used to construct a prompt that is presented to the LLM.
130
-
131
- In the absence of a `traits_presentation_template`, the default is used.
132
-
133
- >>> a = Agent(traits = {"age": 10}, traits_presentation_template = "I am a {{age}} year old.")
134
- >>> repr(a.agent_persona)
135
- 'Prompt(text=\"""I am a {{age}} year old.\""")'
136
-
137
- When this is rendered for presentation to the LLM, it will replace the `{{age}}` with the actual age.
138
- it is also possible to use the `codebook` to provide a more human-readable description of the trait.
139
- Here is an example where we give a prefix to the age trait (namely the age):
140
-
141
- >>> traits = {"age": 10, "hair": "brown", "height": 5.5}
142
- >>> codebook = {'age': 'Their age is'}
143
- >>> a = Agent(traits = traits, codebook = codebook, traits_presentation_template = "This agent is Dave. {{codebook['age']}} {{age}}")
144
- >>> d = a.traits | {'codebook': a.codebook}
145
- >>> a.agent_persona.render(d)
146
- Prompt(text=\"""This agent is Dave. Their age is 10\""")
147
-
148
- Instructions
149
- ------------
150
- The agent can also have instructions. These are instructions that are given to the agent when answering questions.
151
-
152
- >>> Agent.default_instruction
153
- 'You are answering questions as if you were a human. Do not break character.'
154
-
155
- See see how these are used to actually construct the prompt that is presented to the LLM, see :py:class:`edsl.agents.Invigilator.InvigilatorBase`.
156
-
157
- """
158
- self._initialize_basic_attributes(traits, name, codebook)
159
- self._initialize_instruction(instruction)
160
- self._initialize_dynamic_traits_function(
161
- dynamic_traits_function,
162
- dynamic_traits_function_source_code,
163
- dynamic_traits_function_name,
164
- )
165
- self._initialize_answer_question_directly(
166
- answer_question_directly_source_code, answer_question_directly_function_name
167
- )
168
- self._check_dynamic_traits_function()
169
- self._initialize_traits_presentation_template(traits_presentation_template)
170
- self.current_question = None
171
-
172
- def _initialize_basic_attributes(self, traits, name, codebook) -> None:
173
- """Initialize the basic attributes of the agent."""
174
- self.name = name
175
- self._traits = AgentTraits(traits or dict())
176
- self.codebook = codebook or dict()
177
-
178
- def _initialize_instruction(self, instruction) -> None:
179
- """Initialize the instruction for the agent i.e., how the agent should answer questions."""
180
- if instruction is None:
181
- self.instruction = self.default_instruction
182
- self._instruction = self.default_instruction
183
- self.set_instructions = False
184
- else:
185
- self.instruction = instruction
186
- self._instruction = instruction
187
- self.set_instructions = True
188
-
189
- def _initialize_traits_presentation_template(
190
- self, traits_presentation_template
191
- ) -> None:
192
- """Initialize the traits presentation template. How the agent's traits are presented to the LLM."""
193
- if traits_presentation_template is not None:
194
- self._traits_presentation_template = traits_presentation_template
195
- self.traits_presentation_template = traits_presentation_template
196
- self.set_traits_presentation_template = True
197
- else:
198
- self.traits_presentation_template = "Your traits: {{traits}}"
199
- self.set_traits_presentation_template = False
200
-
201
- def _initialize_dynamic_traits_function(
202
- self,
203
- dynamic_traits_function,
204
- dynamic_traits_function_source_code,
205
- dynamic_traits_function_name,
206
- ) -> None:
207
- """Initialize the dynamic traits function i.e., a function that returns a dictionary of traits based on the question."""
208
- # Deal with dynamic traits function
209
- self.dynamic_traits_function = dynamic_traits_function
210
-
211
- if self.dynamic_traits_function:
212
- self.dynamic_traits_function_name = self.dynamic_traits_function.__name__
213
- self.has_dynamic_traits_function = True
214
- else:
215
- self.has_dynamic_traits_function = False
216
-
217
- if dynamic_traits_function_source_code:
218
- self.dynamic_traits_function_name = dynamic_traits_function_name
219
- self.dynamic_traits_function = create_restricted_function(
220
- dynamic_traits_function_name, dynamic_traits_function
221
- )
222
-
223
- def _initialize_answer_question_directly(
224
- self,
225
- answer_question_directly_source_code,
226
- answer_question_directly_function_name,
227
- ) -> None:
228
- if answer_question_directly_source_code:
229
- self.answer_question_directly_function_name = (
230
- answer_question_directly_function_name
231
- )
232
- protected_method = create_restricted_function(
233
- answer_question_directly_function_name,
234
- answer_question_directly_source_code,
235
- )
236
- bound_method = types.MethodType(protected_method, self)
237
- setattr(self, "answer_question_directly", bound_method)
238
-
239
- def _initialize_traits_presentation_template(
240
- self, traits_presentation_template
241
- ) -> None:
242
- if traits_presentation_template is not None:
243
- self._traits_presentation_template = traits_presentation_template
244
- self.traits_presentation_template = traits_presentation_template
245
- self.set_traits_presentation_template = True
246
- else:
247
- self.traits_presentation_template = "Your traits: {{traits}}"
248
- self.set_traits_presentation_template = False
249
-
250
- def duplicate(self) -> Agent:
251
- """Return a duplicate of the agent.
252
-
253
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5}, codebook = {'age': 'Their age is'})
254
- >>> a2 = a.duplicate()
255
- >>> a2 == a
256
- True
257
- >>> id(a) == id(a2)
258
- False
259
- >>> def f(self, question, scenario): return "I am a direct answer."
260
- >>> a.add_direct_question_answering_method(f)
261
- >>> hasattr(a, "answer_question_directly")
262
- True
263
- >>> a2 = a.duplicate()
264
- >>> a2.answer_question_directly(None, None)
265
- 'I am a direct answer.'
266
-
267
- >>> a = Agent(traits = {'age': 10}, instruction = "Have fun!")
268
- >>> a2 = a.duplicate()
269
- >>> a2.instruction
270
- 'Have fun!'
271
- """
272
- new_agent = Agent.from_dict(self.to_dict())
273
- if hasattr(self, "answer_question_directly"):
274
- answer_question_directly = self.answer_question_directly
275
- newf = lambda self, question, scenario: answer_question_directly(
276
- question, scenario
277
- )
278
- new_agent.add_direct_question_answering_method(newf)
279
- if hasattr(self, "dynamic_traits_function"):
280
- dynamic_traits_function = self.dynamic_traits_function
281
- new_agent.dynamic_traits_function = dynamic_traits_function
282
- return new_agent
283
-
284
- @property
285
- def agent_persona(self) -> Prompt:
286
- """Return the agent persona template."""
287
- from edsl.prompts.Prompt import Prompt
288
-
289
- return Prompt(text=self.traits_presentation_template)
290
-
291
- def prompt(self) -> str:
292
- """Return the prompt for the agent.
293
-
294
- Example usage:
295
-
296
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
297
- >>> a.prompt()
298
- Prompt(text=\"""Your traits: {'age': 10, 'hair': 'brown', 'height': 5.5}\""")
299
- """
300
- replacement_dict = (
301
- self.traits | {"traits": self.traits} | {"codebook": self.codebook}
302
- )
303
- if undefined := self.agent_persona.undefined_template_variables(
304
- replacement_dict
305
- ):
306
- raise QuestionScenarioRenderError(
307
- f"Agent persona still has variables that were not rendered: {undefined}"
308
- )
309
- else:
310
- return self.agent_persona.render(replacement_dict)
311
-
312
- def _check_dynamic_traits_function(self) -> None:
313
- """Check whether dynamic trait function is valid.
314
-
315
- This checks whether the dynamic traits function is valid.
316
-
317
- >>> def f(question): return {"age": 10, "hair": "brown", "height": 5.5}
318
- >>> a = Agent(dynamic_traits_function = f)
319
- >>> a._check_dynamic_traits_function()
320
-
321
- >>> def g(question, poo): return {"age": 10, "hair": "brown", "height": 5.5}
322
- >>> a = Agent(dynamic_traits_function = g)
323
- Traceback (most recent call last):
324
- ...
325
- edsl.exceptions.agents.AgentDynamicTraitsFunctionError: ...
326
- """
327
- if self.has_dynamic_traits_function:
328
- sig = inspect.signature(self.dynamic_traits_function)
329
- if "question" in sig.parameters:
330
- if len(sig.parameters) > 1:
331
- raise AgentDynamicTraitsFunctionError(
332
- message=f"The dynamic traits function {self.dynamic_traits_function} has too many parameters. It should only have one parameter: 'question'."
333
- )
334
- else:
335
- if len(sig.parameters) > 0:
336
- raise AgentDynamicTraitsFunctionError(
337
- f"""The dynamic traits function {self.dynamic_traits_function} has too many parameters. It should have no parameters or
338
- just a single parameter: 'question'."""
339
- )
340
-
341
- @property
342
- def traits(self) -> dict[str, str]:
343
- """An agent's traits, which is a dictionary.
344
-
345
- The agent could have a a dynamic traits function (`dynamic_traits_function`) that returns a dictionary of traits
346
- when called. This function can also take a `question` as an argument.
347
- If so, the dynamic traits function is called and the result is returned.
348
- Otherwise, the traits are returned.
349
-
350
- Example:
351
-
352
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
353
- >>> a.traits
354
- {'age': 10, 'hair': 'brown', 'height': 5.5}
355
-
356
- """
357
- if self.has_dynamic_traits_function:
358
- sig = inspect.signature(self.dynamic_traits_function)
359
- if "question" in sig.parameters:
360
- return self.dynamic_traits_function(question=self.current_question)
361
- else:
362
- return self.dynamic_traits_function()
363
- else:
364
- return dict(self._traits)
365
-
366
- @contextmanager
367
- def modify_traits_context(self):
368
- self._check_before_modifying_traits()
369
- try:
370
- yield
371
- finally:
372
- self._traits = AgentTraits(self._traits)
373
-
374
- def _check_before_modifying_traits(self):
375
- """Check before modifying traits."""
376
- if self.has_dynamic_traits_function:
377
- raise AgentErrors(
378
- "You cannot modify the traits of an agent that has a dynamic traits function.",
379
- "If you want to modify the traits, you should remove the dynamic traits function.",
380
- )
381
-
382
- @traits.setter
383
- def traits(self, traits: dict[str, str]):
384
- with self.modify_traits_context():
385
- self._traits = traits
386
- # self._check_before_modifying_traits()
387
- # self._traits = AgentTraits(traits)
388
-
389
- def rename(
390
- self,
391
- old_name_or_dict: Union[str, dict[str, str]],
392
- new_name: Optional[str] = None,
393
- ) -> Agent:
394
- """Rename a trait.
395
-
396
- :param old_name_or_dict: The old name of the trait or a dictionary of old names and new names.
397
- :param new_name: The new name of the trait.
398
-
399
- Example usage:
400
-
401
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
402
- >>> newa = a.rename("age", "years")
403
- >>> newa == Agent(traits = {'years': 10, 'hair': 'brown', 'height': 5.5})
404
- True
405
-
406
- >>> newa.rename({'years': 'smage'}) == Agent(traits = {'smage': 10, 'hair': 'brown', 'height': 5.5})
407
- True
408
-
409
- """
410
- self._check_before_modifying_traits()
411
- if isinstance(old_name_or_dict, dict) and new_name:
412
- raise AgentErrors(
413
- f"You passed a dict: {old_name_or_dict} and a new name: {new_name}. You should pass only a dict."
414
- )
415
-
416
- if isinstance(old_name_or_dict, dict) and new_name is None:
417
- return self._rename_dict(old_name_or_dict)
418
-
419
- if isinstance(old_name_or_dict, str):
420
- return self._rename(old_name_or_dict, new_name)
421
-
422
- raise AgentErrors("Something is not right with Agent renaming")
423
-
424
- def _rename_dict(self, renaming_dict: dict[str, str]) -> Agent:
425
- """
426
- Internal method to rename traits using a dictionary.
427
- The keys should all be old names and the values should all be new names.
428
-
429
- Example usage:
430
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
431
- >>> a._rename_dict({"age": "years", "height": "feet"})
432
- Agent(traits = {'years': 10, 'hair': 'brown', 'feet': 5.5})
433
-
434
- """
435
- try:
436
- assert all(k in self.traits for k in renaming_dict.keys())
437
- except AssertionError:
438
- raise AgentErrors(
439
- f"The trait(s) {set(renaming_dict.keys()) - set(self.traits.keys())} do not exist in the agent's traits, which are {self.traits}."
440
- )
441
- new_agent = self.duplicate()
442
- new_agent.traits = {renaming_dict.get(k, k): v for k, v in self.traits.items()}
443
- return new_agent
444
-
445
- def _rename(self, old_name: str, new_name: str) -> Agent:
446
- """Rename a trait.
447
-
448
- Example usage:
449
-
450
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
451
- >>> a._rename(old_name="age", new_name="years")
452
- Agent(traits = {'years': 10, 'hair': 'brown', 'height': 5.5})
453
-
454
- """
455
- try:
456
- assert old_name in self.traits
457
- except AssertionError:
458
- raise AgentErrors(
459
- f"The trait '{old_name}' does not exist in the agent's traits, which are {self.traits}."
460
- )
461
- newagent = self.duplicate()
462
- newagent.traits = {
463
- new_name if k == old_name else k: v for k, v in self.traits.items()
464
- }
465
- newagent.codebook = {
466
- new_name if k == old_name else k: v for k, v in self.codebook.items()
467
- }
468
- return newagent
469
-
470
- def __getitem__(self, key):
471
- """Allow for accessing traits using the bracket notation.
472
-
473
- Example:
474
-
475
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
476
- >>> a['traits']['age']
477
- 10
478
-
479
- """
480
- return getattr(self, key)
481
-
482
- def remove_direct_question_answering_method(self) -> None:
483
- """Remove the direct question answering method.
484
-
485
- Example usage:
486
-
487
- >>> a = Agent()
488
- >>> def f(self, question, scenario): return "I am a direct answer."
489
- >>> a.add_direct_question_answering_method(f)
490
- >>> a.remove_direct_question_answering_method()
491
- >>> hasattr(a, "answer_question_directly")
492
- False
493
- """
494
- if hasattr(self, "answer_question_directly"):
495
- delattr(self, "answer_question_directly")
496
-
497
- def add_direct_question_answering_method(
498
- self,
499
- method: DirectAnswerMethod,
500
- validate_response: bool = False,
501
- translate_response: bool = False,
502
- ) -> None:
503
- """Add a method to the agent that can answer a particular question type.
504
- https://docs.expectedparrot.com/en/latest/agents.html#agent-direct-answering-methods
505
-
506
- :param method: A method that can answer a question directly.
507
- :param validate_response: Whether to validate the response.
508
- :param translate_response: Whether to translate the response.
509
-
510
- Example usage:
511
-
512
- >>> a = Agent()
513
- >>> def f(self, question, scenario): return "I am a direct answer."
514
- >>> a.add_direct_question_answering_method(f)
515
- >>> a.answer_question_directly(question = None, scenario = None)
516
- 'I am a direct answer.'
517
- """
518
- if hasattr(self, "answer_question_directly"):
519
- import warnings
520
-
521
- warnings.warn(
522
- "Warning: overwriting existing answer_question_directly method"
523
- )
524
-
525
- self.validate_response = validate_response
526
- self.translate_response = translate_response
527
-
528
- # if not isinstance(method, DirectAnswerMethod):
529
- # raise AgentDirectAnswerFunctionError(
530
- # f"Method {method} does not match required signature. "
531
- # "Must take (self, question, scenario) parameters."
532
- # )
533
-
534
- signature = inspect.signature(method)
535
- for argument in ["question", "scenario", "self"]:
536
- if argument not in signature.parameters:
537
- raise AgentDirectAnswerFunctionError(
538
- f"The method {method} does not have a '{argument}' parameter."
539
- )
540
- bound_method = types.MethodType(method, self)
541
- setattr(self, "answer_question_directly", bound_method)
542
- self.answer_question_directly_function_name = bound_method.__name__
543
-
544
- def create_invigilator(
545
- self,
546
- *,
547
- question: "QuestionBase",
548
- cache: "Cache",
549
- survey: Optional["Survey"] = None,
550
- scenario: Optional["Scenario"] = None,
551
- model: Optional["LanguageModel"] = None,
552
- # debug: bool = False,
553
- memory_plan: Optional["MemoryPlan"] = None,
554
- current_answers: Optional[dict] = None,
555
- iteration: int = 1,
556
- # sidecar_model=None,
557
- raise_validation_errors: bool = True,
558
- ) -> "InvigilatorBase":
559
- """Create an Invigilator.
560
-
561
- An invigilator is an object that is responsible for administering a question to an agent.
562
- There are several different types of invigilators, depending on the type of question and the agent.
563
- For example, there are invigilators for functional questions (i.e., question is of type :class:`edsl.questions.QuestionFunctional`:), for direct questions, and for LLM questions.
564
-
565
- >>> a = Agent(traits = {})
566
- >>> a.create_invigilator(question = None, cache = False)
567
- InvigilatorAI(...)
568
-
569
- An invigator is an object that is responsible for administering a question to an agent and
570
- recording the responses.
571
- """
572
- from edsl.language_models.registry import Model
573
-
574
- from edsl.scenarios.Scenario import Scenario
575
-
576
- cache = cache
577
- self.current_question = question
578
- model = model or Model()
579
- scenario = scenario or Scenario()
580
- invigilator = self._create_invigilator(
581
- question=question,
582
- scenario=scenario,
583
- survey=survey,
584
- model=model,
585
- # debug=debug,
586
- memory_plan=memory_plan,
587
- current_answers=current_answers,
588
- iteration=iteration,
589
- cache=cache,
590
- # sidecar_model=sidecar_model,
591
- raise_validation_errors=raise_validation_errors,
592
- )
593
- if hasattr(self, "validate_response"):
594
- invigilator.validate_response = self.validate_response
595
- if hasattr(self, "translate_response"):
596
- invigilator.translate_response = self.translate_response
597
- return invigilator
598
-
599
- async def async_answer_question(
600
- self,
601
- *,
602
- question: QuestionBase,
603
- cache: Cache,
604
- scenario: Optional[Scenario] = None,
605
- survey: Optional[Survey] = None,
606
- model: Optional[LanguageModel] = None,
607
- debug: bool = False,
608
- memory_plan: Optional[MemoryPlan] = None,
609
- current_answers: Optional[dict] = None,
610
- iteration: int = 0,
611
- ) -> AgentResponseDict:
612
- """
613
- Answer a posed question.
614
-
615
- :param question: The question to answer.
616
- :param scenario: The scenario in which the question is asked.
617
- :param model: The language model to use.
618
- :param debug: Whether to run in debug mode.
619
- :param memory_plan: The memory plan to use.
620
- :param current_answers: The current answers.
621
- :param iteration: The iteration number.
622
-
623
- >>> a = Agent(traits = {})
624
- >>> a.add_direct_question_answering_method(lambda self, question, scenario: "I am a direct answer.")
625
- >>> from edsl.questions.QuestionFreeText import QuestionFreeText
626
- >>> q = QuestionFreeText.example()
627
- >>> a.answer_question(question = q, cache = False).answer
628
- 'I am a direct answer.'
629
-
630
- This is a function where an agent returns an answer to a particular question.
631
- However, there are several different ways an agent can answer a question, so the
632
- actual functionality is delegated to an :class:`edsl.agents.InvigilatorBase`: object.
633
- """
634
- invigilator = self.create_invigilator(
635
- question=question,
636
- cache=cache,
637
- scenario=scenario,
638
- survey=survey,
639
- model=model,
640
- # debug=debug,
641
- memory_plan=memory_plan,
642
- current_answers=current_answers,
643
- iteration=iteration,
644
- )
645
- response: AgentResponseDict = await invigilator.async_answer_question()
646
- return response
647
-
648
- answer_question = sync_wrapper(async_answer_question)
649
-
650
- def _get_invigilator_class(self, question: QuestionBase) -> Type[InvigilatorBase]:
651
- """Get the invigilator class for a question.
652
-
653
- This method returns the invigilator class that should be used to answer a question.
654
- The invigilator class is determined by the type of question and the type of agent.
655
- """
656
- from edsl.agents.Invigilator import (
657
- InvigilatorHuman,
658
- InvigilatorFunctional,
659
- InvigilatorAI,
660
- )
661
-
662
- if hasattr(question, "answer_question_directly"):
663
- return InvigilatorFunctional
664
- elif hasattr(self, "answer_question_directly"):
665
- return InvigilatorHuman
666
- else:
667
- return InvigilatorAI
668
-
669
- def _create_invigilator(
670
- self,
671
- question: QuestionBase,
672
- cache: Optional[Cache] = None,
673
- scenario: Optional[Scenario] = None,
674
- model: Optional[LanguageModel] = None,
675
- survey: Optional[Survey] = None,
676
- # debug: bool = False,
677
- memory_plan: Optional[MemoryPlan] = None,
678
- current_answers: Optional[dict] = None,
679
- iteration: int = 0,
680
- # sidecar_model=None,
681
- raise_validation_errors: bool = True,
682
- ) -> "InvigilatorBase":
683
- """Create an Invigilator."""
684
- from edsl.language_models.registry import Model
685
- from edsl.scenarios.Scenario import Scenario
686
-
687
- model = model or Model()
688
- scenario = scenario or Scenario()
689
-
690
- if cache is None:
691
- from edsl.data.Cache import Cache
692
-
693
- cache = Cache()
694
-
695
- invigilator_class = self._get_invigilator_class(question)
696
-
697
- # if sidecar_model is not None:
698
- # # this is the case when a 'simple' model is being used
699
- # # from edsl.agents.Invigilator import InvigilatorSidecar
700
- # # invigilator_class = InvigilatorSidecar
701
- # raise DeprecationWarning("Sidecar models are deprecated.")
702
-
703
- invigilator = invigilator_class(
704
- self,
705
- question=question,
706
- scenario=scenario,
707
- survey=survey,
708
- model=model,
709
- memory_plan=memory_plan,
710
- current_answers=current_answers,
711
- iteration=iteration,
712
- cache=cache,
713
- # sidecar_model=sidecar_model,
714
- raise_validation_errors=raise_validation_errors,
715
- )
716
- return invigilator
717
-
718
- def select(self, *traits: str) -> Agent:
719
- """Selects agents with only the references traits
720
-
721
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5}, codebook = {'age': 'Their age is'})
722
- >>> a
723
- Agent(traits = {'age': 10, 'hair': 'brown', 'height': 5.5}, codebook = {'age': 'Their age is'})
724
-
725
-
726
- >>> a.select("age", "height")
727
- Agent(traits = {'age': 10, 'height': 5.5}, codebook = {'age': 'Their age is'})
728
-
729
- >>> a.select("height")
730
- Agent(traits = {'height': 5.5})
731
-
732
- """
733
-
734
- if len(traits) == 1:
735
- traits_to_select = [list(traits)[0]]
736
- else:
737
- traits_to_select = list(traits)
738
-
739
- def _remove_none(d):
740
- return {k: v for k, v in d.items() if v is not None}
741
-
742
- newagent = self.duplicate()
743
- newagent.traits = {
744
- trait: self.traits.get(trait, None) for trait in traits_to_select
745
- }
746
- newagent.codebook = _remove_none(
747
- {trait: self.codebook.get(trait, None) for trait in traits_to_select}
748
- )
749
- return newagent
750
-
751
- def __add__(self, other_agent: Optional[Agent] = None) -> Agent:
752
- """
753
- Combine two agents by joining their traits.
754
-
755
- The agents must not have overlapping traits.
756
-
757
- Example usage:
758
-
759
- >>> a1 = Agent(traits = {"age": 10})
760
- >>> a2 = Agent(traits = {"height": 5.5})
761
- >>> a1 + a2
762
- Agent(traits = {'age': 10, 'height': 5.5})
763
- >>> a1 + a1
764
- Traceback (most recent call last):
765
- ...
766
- edsl.exceptions.agents.AgentCombinationError: The agents have overlapping traits: {'age'}.
767
- ...
768
- >>> a1 = Agent(traits = {"age": 10}, codebook = {"age": "Their age is"})
769
- >>> a2 = Agent(traits = {"height": 5.5}, codebook = {"height": "Their height is"})
770
- >>> a1 + a2
771
- Agent(traits = {'age': 10, 'height': 5.5}, codebook = {'age': 'Their age is', 'height': 'Their height is'})
772
- """
773
- if other_agent is None:
774
- return self
775
- elif common_traits := set(self.traits.keys()) & set(other_agent.traits.keys()):
776
- raise AgentCombinationError(
777
- f"The agents have overlapping traits: {common_traits}."
778
- )
779
- else:
780
- new_codebook = copy.deepcopy(self.codebook) | copy.deepcopy(
781
- other_agent.codebook
782
- )
783
- d = self.traits | other_agent.traits
784
- newagent = self.duplicate()
785
- newagent.traits = d
786
- newagent.codebook = new_codebook
787
- return newagent
788
-
789
- def __eq__(self, other: Agent) -> bool:
790
- """Check if two agents are equal.
791
-
792
- This only checks the traits.
793
- >>> a1 = Agent(traits = {"age": 10})
794
- >>> a2 = Agent(traits = {"age": 10})
795
- >>> a1 == a2
796
- True
797
- >>> a3 = Agent(traits = {"age": 11})
798
- >>> a1 == a3
799
- False
800
- """
801
- return self.data == other.data
802
-
803
- def __getattr__(self, name):
804
- """
805
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
806
- >>> a.age
807
- 10
808
- """
809
- if name == "has_dynamic_traits_function":
810
- return self.has_dynamic_traits_function
811
-
812
- if name in self._traits:
813
- return self._traits[name]
814
-
815
- raise AttributeError(
816
- f"'{type(self).__name__}' object has no attribute '{name}'"
817
- )
818
-
819
- def __getstate__(self):
820
- state = self.__dict__.copy()
821
- # Include any additional state that needs to be serialized
822
- return state
823
-
824
- def __setstate__(self, state):
825
- self.__dict__.update(state)
826
- # Ensure _traits is initialized if it's missing
827
- if "_traits" not in self.__dict__:
828
- self._traits = {}
829
-
830
- def __repr__(self) -> str:
831
- """Return representation of Agent."""
832
- class_name = self.__class__.__name__
833
- items = [
834
- f'{k} = """{v}"""' if isinstance(v, str) else f"{k} = {v}"
835
- for k, v in self.data.items()
836
- if k != "question_type"
837
- ]
838
- return f"{class_name}({', '.join(items)})"
839
-
840
- @property
841
- def data(self) -> dict:
842
- """Format the data for serialization.
843
-
844
- TODO: Warn if has dynamic traits function or direct answer function that cannot be serialized.
845
- TODO: Add ability to have coop-hosted functions that are serializable.
846
- """
847
-
848
- raw_data = {
849
- k.replace("_", "", 1): v
850
- for k, v in self.__dict__.items()
851
- if k.startswith("_")
852
- }
853
-
854
- if hasattr(self, "set_instructions"):
855
- if not self.set_instructions:
856
- raw_data.pop("instruction")
857
- if self.codebook == {}:
858
- raw_data.pop("codebook")
859
- if self.name == None:
860
- raw_data.pop("name")
861
-
862
- if hasattr(self, "dynamic_traits_function"):
863
- raw_data.pop(
864
- "dynamic_traits_function", None
865
- ) # in case dynamic_traits_function will appear with _ in self.__dict__
866
- dynamic_traits_func = self.dynamic_traits_function
867
- if dynamic_traits_func:
868
- func = inspect.getsource(dynamic_traits_func)
869
- raw_data["dynamic_traits_function_source_code"] = func
870
- raw_data["dynamic_traits_function_name"] = (
871
- self.dynamic_traits_function_name
872
- )
873
- if hasattr(self, "answer_question_directly"):
874
- raw_data.pop(
875
- "answer_question_directly", None
876
- ) # in case answer_question_directly will appear with _ in self.__dict__
877
- answer_question_directly_func = self.answer_question_directly
878
-
879
- if (
880
- answer_question_directly_func
881
- and raw_data.get("answer_question_directly_source_code", None) != None
882
- ):
883
- raw_data["answer_question_directly_source_code"] = inspect.getsource(
884
- answer_question_directly_func
885
- )
886
- raw_data["answer_question_directly_function_name"] = (
887
- self.answer_question_directly_function_name
888
- )
889
- raw_data["traits"] = dict(raw_data["traits"])
890
-
891
- return raw_data
892
-
893
- def __hash__(self) -> int:
894
- """Return a hash of the agent.
895
-
896
- >>> hash(Agent.example())
897
- 2067581884874391607
898
- """
899
- from edsl.utilities.utilities import dict_hash
900
-
901
- return dict_hash(self.to_dict(add_edsl_version=False))
902
-
903
- def to_dict(self, add_edsl_version=True) -> dict[str, Union[dict, bool]]:
904
- """Serialize to a dictionary with EDSL info.
905
-
906
- Example usage:
907
-
908
- >>> a = Agent(name = "Steve", traits = {"age": 10, "hair": "brown", "height": 5.5})
909
- >>> a.to_dict()
910
- {'traits': {'age': 10, 'hair': 'brown', 'height': 5.5}, 'name': 'Steve', 'edsl_version': '...', 'edsl_class_name': 'Agent'}
911
-
912
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5}, instruction = "Have fun.")
913
- >>> a.to_dict()
914
- {'traits': {'age': 10, 'hair': 'brown', 'height': 5.5}, 'instruction': 'Have fun.', 'edsl_version': '...', 'edsl_class_name': 'Agent'}
915
- """
916
- d = {}
917
- d["traits"] = copy.deepcopy(self.traits)
918
- if self.name:
919
- d["name"] = self.name
920
- if self.set_instructions:
921
- d["instruction"] = self.instruction
922
- if self.set_traits_presentation_template:
923
- d["traits_presentation_template"] = self.traits_presentation_template
924
- if self.codebook:
925
- d["codebook"] = self.codebook
926
- if add_edsl_version:
927
- from edsl import __version__
928
-
929
- d["edsl_version"] = __version__
930
- d["edsl_class_name"] = self.__class__.__name__
931
-
932
- return d
933
-
934
- @classmethod
935
- @remove_edsl_version
936
- def from_dict(cls, agent_dict: dict[str, Union[dict, bool]]) -> Agent:
937
- """Deserialize from a dictionary.
938
-
939
- Example usage:
940
-
941
- >>> Agent.from_dict({'name': "Steve", 'traits': {'age': 10, 'hair': 'brown', 'height': 5.5}})
942
- Agent(name = \"""Steve\""", traits = {'age': 10, 'hair': 'brown', 'height': 5.5})
943
-
944
- """
945
- if "traits" in agent_dict:
946
- return cls(
947
- traits=agent_dict["traits"],
948
- name=agent_dict.get("name", None),
949
- instruction=agent_dict.get("instruction", None),
950
- traits_presentation_template=agent_dict.get(
951
- "traits_presentation_template", None
952
- ),
953
- codebook=agent_dict.get("codebook", None),
954
- )
955
- else: # old-style agent - we used to only store the traits
956
- return cls(**agent_dict)
957
-
958
- def _table(self) -> tuple[dict, list]:
959
- """Prepare generic table data."""
960
- table_data = []
961
- for attr_name, attr_value in self.__dict__.items():
962
- table_data.append({"Attribute": attr_name, "Value": repr(attr_value)})
963
- column_names = ["Attribute", "Value"]
964
- return table_data, column_names
965
-
966
- def add_trait(self, trait_name_or_dict: str, value: Optional[Any] = None) -> Agent:
967
- """Adds a trait to an agent and returns that agent
968
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
969
- >>> a.add_trait("weight", 150)
970
- Agent(traits = {'age': 10, 'hair': 'brown', 'height': 5.5, 'weight': 150})
971
- """
972
- if isinstance(trait_name_or_dict, dict) and value is None:
973
- newagent = self.duplicate()
974
- newagent.traits = {**self.traits, **trait_name_or_dict}
975
- return newagent
976
-
977
- if isinstance(trait_name_or_dict, dict) and value:
978
- raise AgentErrors(
979
- f"You passed a dict: {trait_name_or_dict} and a value: {value}. You should pass only a dict."
980
- )
981
-
982
- if isinstance(trait_name_or_dict, str):
983
- newagent = self.duplicate()
984
- newagent.traits = {**self.traits, **{trait_name_or_dict: value}}
985
- return newagent
986
-
987
- raise AgentErrors("Something is not right with adding a trait to an Agent")
988
-
989
- def remove_trait(self, trait: str) -> Agent:
990
- """Remove a trait from the agent.
991
-
992
- Example usage:
993
-
994
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
995
- >>> a.remove_trait("age")
996
- Agent(traits = {'hair': 'brown', 'height': 5.5})
997
- """
998
- newagent = self.duplicate()
999
- newagent.traits = {k: v for k, v in self.traits.items() if k != trait}
1000
- return newagent
1001
-
1002
- def translate_traits(self, values_codebook: dict) -> Agent:
1003
- """Translate traits to a new codebook.
1004
-
1005
- >>> a = Agent(traits = {"age": 10, "hair": 1, "height": 5.5})
1006
- >>> a.translate_traits({"hair": {1:"brown"}})
1007
- Agent(traits = {'age': 10, 'hair': 'brown', 'height': 5.5})
1008
-
1009
- :param values_codebook: The new codebook.
1010
- """
1011
- new_traits = {}
1012
- for key, value in self.traits.items():
1013
- if key in values_codebook:
1014
- new_traits[key] = values_codebook[key].get(value, value)
1015
- else:
1016
- new_traits[key] = value
1017
- newagent = self.duplicate()
1018
- newagent.traits = new_traits
1019
- return newagent
1020
-
1021
- @classmethod
1022
- def example(cls, randomize: bool = False) -> Agent:
1023
- """
1024
- Returns an example Agent instance.
1025
-
1026
- :param randomize: If True, adds a random string to the value of an example key.
1027
-
1028
- >>> Agent.example()
1029
- Agent(traits = {'age': 22, 'hair': 'brown', 'height': 5.5})
1030
- """
1031
- addition = "" if not randomize else str(uuid4())
1032
- return cls(traits={"age": 22, "hair": f"brown{addition}", "height": 5.5})
1033
-
1034
- def code(self) -> str:
1035
- """Return the code for the agent.
1036
-
1037
- Example usage:
1038
-
1039
- >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
1040
- >>> print(a.code())
1041
- from edsl.agents.Agent import Agent
1042
- agent = Agent(traits={'age': 10, 'hair': 'brown', 'height': 5.5})
1043
- """
1044
- return (
1045
- f"from edsl.agents.Agent import Agent\nagent = Agent(traits={self.traits})"
1046
- )
1047
-
1048
-
1049
- def main():
1050
- """
1051
- Give an example of usage.
1052
-
1053
- WARNING: Consume API credits
1054
- """
1055
- from edsl.agents import Agent
1056
- from edsl.questions import QuestionMultipleChoice
1057
-
1058
- # a simple agent
1059
- agent = Agent(traits={"age": 10, "hair": "brown", "height": 5.5})
1060
- agent.traits
1061
- agent.print()
1062
- # combining two agents
1063
- agent = Agent(traits={"age": 10}) + Agent(traits={"height": 5.5})
1064
- agent.traits
1065
- # Agent -> Job using the to() method
1066
- agent = Agent(traits={"allergies": "peanut"})
1067
- question = QuestionMultipleChoice(
1068
- question_text="Would you enjoy a PB&J?",
1069
- question_options=["Yes", "No"],
1070
- question_name="food_preference",
1071
- )
1072
- job = question.by(agent)
1073
- results = job.run()
1074
-
1075
-
1076
- if __name__ == "__main__":
1077
- import doctest
1078
-
1079
- doctest.testmod(optionflags=doctest.ELLIPSIS)
1
+ """An Agent is an AI agent that can reference a set of traits in answering questions."""
2
+
3
+ from __future__ import annotations
4
+ import copy
5
+ import inspect
6
+ import types
7
+ from typing import Callable, Optional, Union, Any, TYPE_CHECKING
8
+
9
+ if TYPE_CHECKING:
10
+ from edsl import Cache, Survey, Scenario
11
+ from edsl.language_models import LanguageModel
12
+ from edsl.surveys.MemoryPlan import MemoryPlan
13
+ from edsl.questions import QuestionBase
14
+ from edsl.agents.Invigilator import InvigilatorBase
15
+
16
+ from uuid import uuid4
17
+
18
+ from edsl.Base import Base
19
+ from edsl.prompts import Prompt
20
+ from edsl.exceptions import QuestionScenarioRenderError
21
+
22
+ from edsl.exceptions.agents import (
23
+ AgentErrors,
24
+ AgentCombinationError,
25
+ AgentDirectAnswerFunctionError,
26
+ AgentDynamicTraitsFunctionError,
27
+ )
28
+
29
+ from edsl.agents.descriptors import (
30
+ TraitsDescriptor,
31
+ CodebookDescriptor,
32
+ InstructionDescriptor,
33
+ NameDescriptor,
34
+ )
35
+ from edsl.utilities.decorators import (
36
+ sync_wrapper,
37
+ add_edsl_version,
38
+ remove_edsl_version,
39
+ )
40
+ from edsl.data_transfer_models import AgentResponseDict
41
+ from edsl.utilities.restricted_python import create_restricted_function
42
+
43
+
44
+ class Agent(Base):
45
+ """An class representing an agent that can answer questions."""
46
+
47
+ __doc__ = "https://docs.expectedparrot.com/en/latest/agents.html"
48
+
49
+ default_instruction = """You are answering questions as if you were a human. Do not break character."""
50
+
51
+ _traits = TraitsDescriptor()
52
+ codebook = CodebookDescriptor()
53
+ instruction = InstructionDescriptor()
54
+ name = NameDescriptor()
55
+ dynamic_traits_function_name = ""
56
+ answer_question_directly_function_name = ""
57
+ has_dynamic_traits_function = False
58
+
59
+ def __init__(
60
+ self,
61
+ traits: Optional[dict] = None,
62
+ name: Optional[str] = None,
63
+ codebook: Optional[dict] = None,
64
+ instruction: Optional[str] = None,
65
+ traits_presentation_template: Optional[str] = None,
66
+ dynamic_traits_function: Optional[Callable] = None,
67
+ dynamic_traits_function_source_code: Optional[str] = None,
68
+ dynamic_traits_function_name: Optional[str] = None,
69
+ answer_question_directly_source_code: Optional[str] = None,
70
+ answer_question_directly_function_name: Optional[str] = None,
71
+ ):
72
+ """Initialize a new instance of Agent.
73
+
74
+ :param traits: A dictionary of traits that the agent has. The keys need to be valid identifiers.
75
+ :param name: A name for the agent
76
+ :param codebook: A codebook mapping trait keys to trait descriptions.
77
+ :param instruction: Instructions for the agent in how to answer questions.
78
+ :param trait_presentation_template: A template for how to present the agent's traits.
79
+ :param dynamic_traits_function: A function that returns a dictionary of traits.
80
+
81
+ The `traits` parameter is a dictionary of traits that the agent has.
82
+ These traits are used to construct a prompt that is presented to the LLM.
83
+ In the absence of a `traits_presentation_template`, the default is used.
84
+ This is a template that is used to present the agent's traits to the LLM.
85
+ See :py:class:`edsl.prompts.library.agent_persona.AgentPersona` for more information.
86
+
87
+ Example usage:
88
+
89
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
90
+ >>> a.traits
91
+ {'age': 10, 'hair': 'brown', 'height': 5.5}
92
+
93
+ These traits are used to construct a prompt that is presented to the LLM.
94
+
95
+ In the absence of a `traits_presentation_template`, the default is used.
96
+
97
+ >>> a = Agent(traits = {"age": 10}, traits_presentation_template = "I am a {{age}} year old.")
98
+ >>> repr(a.agent_persona)
99
+ 'Prompt(text=\"""I am a {{age}} year old.\""")'
100
+
101
+ When this is rendered for presentation to the LLM, it will replace the `{{age}}` with the actual age.
102
+ it is also possible to use the `codebook` to provide a more human-readable description of the trait.
103
+ Here is an example where we give a prefix to the age trait (namely the age):
104
+
105
+ >>> traits = {"age": 10, "hair": "brown", "height": 5.5}
106
+ >>> codebook = {'age': 'Their age is'}
107
+ >>> a = Agent(traits = traits, codebook = codebook, traits_presentation_template = "This agent is Dave. {{codebook['age']}} {{age}}")
108
+ >>> d = a.traits | {'codebook': a.codebook}
109
+ >>> a.agent_persona.render(d)
110
+ Prompt(text=\"""This agent is Dave. Their age is 10\""")
111
+
112
+ Instructions
113
+ ------------
114
+ The agent can also have instructions. These are instructions that are given to the agent when answering questions.
115
+
116
+ >>> Agent.default_instruction
117
+ 'You are answering questions as if you were a human. Do not break character.'
118
+
119
+ See see how these are used to actually construct the prompt that is presented to the LLM, see :py:class:`edsl.agents.Invigilator.InvigilatorBase`.
120
+
121
+ """
122
+ self.name = name
123
+ self._traits = traits or dict()
124
+ self.codebook = codebook or dict()
125
+ if instruction is None:
126
+ self.instruction = self.default_instruction
127
+ else:
128
+ self.instruction = instruction
129
+ # self.instruction = instruction or self.default_instruction
130
+ self.dynamic_traits_function = dynamic_traits_function
131
+
132
+ # Deal with dynamic traits function
133
+ if self.dynamic_traits_function:
134
+ self.dynamic_traits_function_name = self.dynamic_traits_function.__name__
135
+ self.has_dynamic_traits_function = True
136
+ else:
137
+ self.has_dynamic_traits_function = False
138
+
139
+ if dynamic_traits_function_source_code:
140
+ self.dynamic_traits_function_name = dynamic_traits_function_name
141
+ self.dynamic_traits_function = create_restricted_function(
142
+ dynamic_traits_function_name, dynamic_traits_function
143
+ )
144
+
145
+ # Deal with direct answer function
146
+ if answer_question_directly_source_code:
147
+ self.answer_question_directly_function_name = (
148
+ answer_question_directly_function_name
149
+ )
150
+ protected_method = create_restricted_function(
151
+ answer_question_directly_function_name,
152
+ answer_question_directly_source_code,
153
+ )
154
+ bound_method = types.MethodType(protected_method, self)
155
+ setattr(self, "answer_question_directly", bound_method)
156
+
157
+ self._check_dynamic_traits_function()
158
+
159
+ self.current_question = None
160
+
161
+ if traits_presentation_template is not None:
162
+ self._traits_presentation_template = traits_presentation_template
163
+ self.traits_presentation_template = traits_presentation_template
164
+ else:
165
+ self.traits_presentation_template = "Your traits: {{traits}}"
166
+
167
+ @property
168
+ def agent_persona(self) -> Prompt:
169
+ return Prompt(text=self.traits_presentation_template)
170
+
171
+ def prompt(self) -> str:
172
+ """Return the prompt for the agent.
173
+
174
+ Example usage:
175
+
176
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
177
+ >>> a.prompt()
178
+ Prompt(text=\"""Your traits: {'age': 10, 'hair': 'brown', 'height': 5.5}\""")
179
+ """
180
+ replacement_dict = (
181
+ self.traits | {"traits": self.traits} | {"codebook": self.codebook}
182
+ )
183
+ if undefined := self.agent_persona.undefined_template_variables(
184
+ replacement_dict
185
+ ):
186
+ raise QuestionScenarioRenderError(
187
+ f"Agent persona still has variables that were not rendered: {undefined}"
188
+ )
189
+ else:
190
+ return self.agent_persona.render(replacement_dict)
191
+
192
+ def _check_dynamic_traits_function(self) -> None:
193
+ """Check whether dynamic trait function is valid.
194
+
195
+ This checks whether the dynamic traits function is valid.
196
+
197
+ >>> def f(question): return {"age": 10, "hair": "brown", "height": 5.5}
198
+ >>> a = Agent(dynamic_traits_function = f)
199
+ >>> a._check_dynamic_traits_function()
200
+
201
+ >>> def g(question, poo): return {"age": 10, "hair": "brown", "height": 5.5}
202
+ >>> a = Agent(dynamic_traits_function = g)
203
+ Traceback (most recent call last):
204
+ ...
205
+ edsl.exceptions.agents.AgentDynamicTraitsFunctionError: ...
206
+ """
207
+ if self.has_dynamic_traits_function:
208
+ sig = inspect.signature(self.dynamic_traits_function)
209
+ if "question" in sig.parameters:
210
+ if len(sig.parameters) > 1:
211
+ raise AgentDynamicTraitsFunctionError(
212
+ message=f"The dynamic traits function {self.dynamic_traits_function} has too many parameters. It should only have one parameter: 'question'."
213
+ )
214
+ else:
215
+ if len(sig.parameters) > 0:
216
+ raise AgentDynamicTraitsFunctionError(
217
+ f"""The dynamic traits function {self.dynamic_traits_function} has too many parameters. It should have no parameters or
218
+ just a single parameter: 'question'."""
219
+ )
220
+
221
+ @property
222
+ def traits(self) -> dict[str, str]:
223
+ """An agent's traits, which is a dictionary.
224
+
225
+ The agent could have a a dynamic traits function (`dynamic_traits_function`) that returns a dictionary of traits
226
+ when called. This function can also take a `question` as an argument.
227
+ If so, the dynamic traits function is called and the result is returned.
228
+ Otherwise, the traits are returned.
229
+
230
+ Example:
231
+
232
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
233
+ >>> a.traits
234
+ {'age': 10, 'hair': 'brown', 'height': 5.5}
235
+
236
+ """
237
+ if self.has_dynamic_traits_function:
238
+ sig = inspect.signature(self.dynamic_traits_function)
239
+ if "question" in sig.parameters:
240
+ return self.dynamic_traits_function(question=self.current_question)
241
+ else:
242
+ return self.dynamic_traits_function()
243
+ else:
244
+ return self._traits
245
+
246
+ def _repr_html_(self):
247
+ # d = self.to_dict(add_edsl_version=False)
248
+ d = self.traits
249
+ data = [[k, v] for k, v in d.items()]
250
+ from tabulate import tabulate
251
+
252
+ table = str(tabulate(data, headers=["keys", "values"], tablefmt="html"))
253
+ return f"<pre>{table}</pre>"
254
+
255
+ def rename(
256
+ self, old_name_or_dict: Union[str, dict], new_name: Optional[str] = None
257
+ ) -> Agent:
258
+ """Rename a trait.
259
+
260
+ Example usage:
261
+
262
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
263
+ >>> a.rename("age", "years") == Agent(traits = {'years': 10, 'hair': 'brown', 'height': 5.5})
264
+ True
265
+
266
+ >>> a.rename({'years': 'smage'})
267
+ Agent(traits = {'hair': 'brown', 'height': 5.5, 'smage': 10})
268
+
269
+ """
270
+ if isinstance(old_name_or_dict, dict) and new_name is None:
271
+ for old_name, new_name in old_name_or_dict.items():
272
+ self = self._rename(old_name, new_name)
273
+ return self
274
+
275
+ if isinstance(old_name_or_dict, dict) and new_name:
276
+ raise AgentErrors(
277
+ f"You passed a dict: {old_name_or_dict} and a new name: {new_name}. You should pass only a dict."
278
+ )
279
+
280
+ if isinstance(old_name_or_dict, str):
281
+ self._rename(old_name_or_dict, new_name)
282
+ return self
283
+
284
+ raise AgentErrors("Something is not right with Agent renaming")
285
+
286
+ def _rename(self, old_name: str, new_name: str) -> Agent:
287
+ """Rename a trait.
288
+
289
+ Example usage:
290
+
291
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
292
+ >>> a.rename("age", "years") == Agent(traits = {'years': 10, 'hair': 'brown', 'height': 5.5})
293
+ True
294
+ """
295
+ self.traits[new_name] = self.traits.pop(old_name)
296
+ return self
297
+
298
+ def __getitem__(self, key):
299
+ """Allow for accessing traits using the bracket notation.
300
+
301
+ Example:
302
+
303
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
304
+ >>> a['traits']['age']
305
+ 10
306
+
307
+ """
308
+ return getattr(self, key)
309
+
310
+ def remove_direct_question_answering_method(self) -> None:
311
+ """Remove the direct question answering method.
312
+
313
+ Example usage:
314
+
315
+ >>> a = Agent()
316
+ >>> def f(self, question, scenario): return "I am a direct answer."
317
+ >>> a.add_direct_question_answering_method(f)
318
+ >>> a.remove_direct_question_answering_method()
319
+ >>> hasattr(a, "answer_question_directly")
320
+ False
321
+ """
322
+ if hasattr(self, "answer_question_directly"):
323
+ delattr(self, "answer_question_directly")
324
+
325
+ def add_direct_question_answering_method(
326
+ self,
327
+ method: Callable,
328
+ validate_response: bool = False,
329
+ translate_response: bool = False,
330
+ ) -> None:
331
+ """Add a method to the agent that can answer a particular question type.
332
+ https://docs.expectedparrot.com/en/latest/agents.html#agent-direct-answering-methods
333
+
334
+ :param method: A method that can answer a question directly.
335
+ :param validate_response: Whether to validate the response.
336
+ :param translate_response: Whether to translate the response.
337
+
338
+ Example usage:
339
+
340
+ >>> a = Agent()
341
+ >>> def f(self, question, scenario): return "I am a direct answer."
342
+ >>> a.add_direct_question_answering_method(f)
343
+ >>> a.answer_question_directly(question = None, scenario = None)
344
+ 'I am a direct answer.'
345
+ """
346
+ if hasattr(self, "answer_question_directly"):
347
+ import warnings
348
+
349
+ warnings.warn(
350
+ "Warning: overwriting existing answer_question_directly method"
351
+ )
352
+
353
+ self.validate_response = validate_response
354
+ self.translate_response = translate_response
355
+
356
+ signature = inspect.signature(method)
357
+ for argument in ["question", "scenario", "self"]:
358
+ if argument not in signature.parameters:
359
+ raise AgentDirectAnswerFunctionError(
360
+ f"The method {method} does not have a '{argument}' parameter."
361
+ )
362
+ bound_method = types.MethodType(method, self)
363
+ setattr(self, "answer_question_directly", bound_method)
364
+ self.answer_question_directly_function_name = bound_method.__name__
365
+
366
+ def create_invigilator(
367
+ self,
368
+ *,
369
+ question: "QuestionBase",
370
+ cache: "Cache",
371
+ survey: Optional["Survey"] = None,
372
+ scenario: Optional["Scenario"] = None,
373
+ model: Optional["LanguageModel"] = None,
374
+ debug: bool = False,
375
+ memory_plan: Optional["MemoryPlan"] = None,
376
+ current_answers: Optional[dict] = None,
377
+ iteration: int = 1,
378
+ sidecar_model=None,
379
+ raise_validation_errors: bool = True,
380
+ ) -> "InvigilatorBase":
381
+ """Create an Invigilator.
382
+
383
+ An invigilator is an object that is responsible for administering a question to an agent.
384
+ There are several different types of invigilators, depending on the type of question and the agent.
385
+ For example, there are invigilators for functional questions (i.e., question is of type :class:`edsl.questions.QuestionFunctional`:), for direct questions, and for LLM questions.
386
+
387
+ >>> a = Agent(traits = {})
388
+ >>> a.create_invigilator(question = None, cache = False)
389
+ InvigilatorAI(...)
390
+
391
+ An invigator is an object that is responsible for administering a question to an agent and
392
+ recording the responses.
393
+ """
394
+ from edsl import Model, Scenario
395
+
396
+ cache = cache
397
+ self.current_question = question
398
+ model = model or Model()
399
+ scenario = scenario or Scenario()
400
+ invigilator = self._create_invigilator(
401
+ question=question,
402
+ scenario=scenario,
403
+ survey=survey,
404
+ model=model,
405
+ debug=debug,
406
+ memory_plan=memory_plan,
407
+ current_answers=current_answers,
408
+ iteration=iteration,
409
+ cache=cache,
410
+ sidecar_model=sidecar_model,
411
+ raise_validation_errors=raise_validation_errors,
412
+ )
413
+ if hasattr(self, "validate_response"):
414
+ invigilator.validate_response = self.validate_response
415
+ if hasattr(self, "translate_response"):
416
+ invigilator.translate_response = self.translate_response
417
+ return invigilator
418
+
419
+ async def async_answer_question(
420
+ self,
421
+ *,
422
+ question: QuestionBase,
423
+ cache: Cache,
424
+ scenario: Optional[Scenario] = None,
425
+ survey: Optional[Survey] = None,
426
+ model: Optional[LanguageModel] = None,
427
+ debug: bool = False,
428
+ memory_plan: Optional[MemoryPlan] = None,
429
+ current_answers: Optional[dict] = None,
430
+ iteration: int = 0,
431
+ ) -> AgentResponseDict:
432
+ """
433
+ Answer a posed question.
434
+
435
+ :param question: The question to answer.
436
+ :param scenario: The scenario in which the question is asked.
437
+ :param model: The language model to use.
438
+ :param debug: Whether to run in debug mode.
439
+ :param memory_plan: The memory plan to use.
440
+ :param current_answers: The current answers.
441
+ :param iteration: The iteration number.
442
+
443
+ >>> a = Agent(traits = {})
444
+ >>> a.add_direct_question_answering_method(lambda self, question, scenario: "I am a direct answer.")
445
+ >>> from edsl import QuestionFreeText
446
+ >>> q = QuestionFreeText.example()
447
+ >>> a.answer_question(question = q, cache = False).answer
448
+ 'I am a direct answer.'
449
+
450
+ This is a function where an agent returns an answer to a particular question.
451
+ However, there are several different ways an agent can answer a question, so the
452
+ actual functionality is delegated to an :class:`edsl.agents.InvigilatorBase`: object.
453
+ """
454
+ invigilator = self.create_invigilator(
455
+ question=question,
456
+ cache=cache,
457
+ scenario=scenario,
458
+ survey=survey,
459
+ model=model,
460
+ debug=debug,
461
+ memory_plan=memory_plan,
462
+ current_answers=current_answers,
463
+ iteration=iteration,
464
+ )
465
+ response: AgentResponseDict = await invigilator.async_answer_question()
466
+ return response
467
+
468
+ answer_question = sync_wrapper(async_answer_question)
469
+
470
+ def _create_invigilator(
471
+ self,
472
+ question: QuestionBase,
473
+ cache: Optional[Cache] = None,
474
+ scenario: Optional[Scenario] = None,
475
+ model: Optional[LanguageModel] = None,
476
+ survey: Optional[Survey] = None,
477
+ debug: bool = False,
478
+ memory_plan: Optional[MemoryPlan] = None,
479
+ current_answers: Optional[dict] = None,
480
+ iteration: int = 0,
481
+ sidecar_model=None,
482
+ raise_validation_errors: bool = True,
483
+ ) -> "InvigilatorBase":
484
+ """Create an Invigilator."""
485
+ from edsl import Model
486
+ from edsl import Scenario
487
+
488
+ model = model or Model()
489
+ scenario = scenario or Scenario()
490
+
491
+ from edsl.agents.Invigilator import (
492
+ InvigilatorHuman,
493
+ InvigilatorFunctional,
494
+ InvigilatorAI,
495
+ InvigilatorBase,
496
+ )
497
+
498
+ if cache is None:
499
+ from edsl.data.Cache import Cache
500
+
501
+ cache = Cache()
502
+
503
+ if debug:
504
+ raise NotImplementedError("Debug mode is not yet implemented.")
505
+ # use the question's _simulate_answer method
506
+ # invigilator_class = InvigilatorDebug
507
+ elif hasattr(question, "answer_question_directly"):
508
+ # It's a functional question and the answer only depends on the agent's traits & the scenario
509
+ invigilator_class = InvigilatorFunctional
510
+ elif hasattr(self, "answer_question_directly"):
511
+ # this of the case where the agent has a method that can answer the question directly
512
+ # this occurrs when 'answer_question_directly' has been given to the
513
+ # which happens when the agent is created from an existing survey
514
+ invigilator_class = InvigilatorHuman
515
+ else:
516
+ # this means an LLM agent will be used. This is the standard case.
517
+ invigilator_class = InvigilatorAI
518
+
519
+ if sidecar_model is not None:
520
+ # this is the case when a 'simple' model is being used
521
+ from edsl.agents.Invigilator import InvigilatorSidecar
522
+
523
+ invigilator_class = InvigilatorSidecar
524
+
525
+ invigilator = invigilator_class(
526
+ self,
527
+ question=question,
528
+ scenario=scenario,
529
+ survey=survey,
530
+ model=model,
531
+ memory_plan=memory_plan,
532
+ current_answers=current_answers,
533
+ iteration=iteration,
534
+ cache=cache,
535
+ sidecar_model=sidecar_model,
536
+ raise_validation_errors=raise_validation_errors,
537
+ )
538
+ return invigilator
539
+
540
+ def select(self, *traits: str) -> Agent:
541
+ """Selects agents with only the references traits
542
+
543
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
544
+
545
+
546
+ >>> a.select("age", "height")
547
+ Agent(traits = {'age': 10, 'height': 5.5})
548
+
549
+ >>> a.select("age")
550
+ Agent(traits = {'age': 10})
551
+
552
+ """
553
+
554
+ if len(traits) == 1:
555
+ traits_to_select = [list(traits)[0]]
556
+ else:
557
+ traits_to_select = list(traits)
558
+
559
+ return Agent(traits={trait: self.traits[trait] for trait in traits_to_select})
560
+
561
+ def __add__(self, other_agent: Optional[Agent] = None) -> Agent:
562
+ """
563
+ Combine two agents by joining their traits.
564
+
565
+ The agents must not have overlapping traits.
566
+
567
+ Example usage:
568
+
569
+ >>> a1 = Agent(traits = {"age": 10})
570
+ >>> a2 = Agent(traits = {"height": 5.5})
571
+ >>> a1 + a2
572
+ Agent(traits = {'age': 10, 'height': 5.5})
573
+ >>> a1 + a1
574
+ Traceback (most recent call last):
575
+ ...
576
+ edsl.exceptions.agents.AgentCombinationError: The agents have overlapping traits: {'age'}.
577
+ ...
578
+ """
579
+ if other_agent is None:
580
+ return self
581
+ elif common_traits := set(self.traits.keys()) & set(other_agent.traits.keys()):
582
+ raise AgentCombinationError(
583
+ f"The agents have overlapping traits: {common_traits}."
584
+ )
585
+ else:
586
+ new_agent = Agent(traits=copy.deepcopy(self.traits))
587
+ new_agent.traits.update(other_agent.traits)
588
+ return new_agent
589
+
590
+ def __eq__(self, other: Agent) -> bool:
591
+ """Check if two agents are equal.
592
+
593
+ This only checks the traits.
594
+ >>> a1 = Agent(traits = {"age": 10})
595
+ >>> a2 = Agent(traits = {"age": 10})
596
+ >>> a1 == a2
597
+ True
598
+ >>> a3 = Agent(traits = {"age": 11})
599
+ >>> a1 == a3
600
+ False
601
+ """
602
+ return self.data == other.data
603
+
604
+ def __getattr__(self, name):
605
+ # This will be called only if 'name' is not found in the usual places
606
+ if name == "has_dynamic_traits_function":
607
+ return self.has_dynamic_traits_function
608
+
609
+ if name in self._traits:
610
+ return self._traits[name]
611
+
612
+ raise AttributeError(
613
+ f"'{type(self).__name__}' object has no attribute '{name}'"
614
+ )
615
+
616
+ def __getstate__(self):
617
+ state = self.__dict__.copy()
618
+ # Include any additional state that needs to be serialized
619
+ return state
620
+
621
+ def __setstate__(self, state):
622
+ self.__dict__.update(state)
623
+ # Ensure _traits is initialized if it's missing
624
+ if "_traits" not in self.__dict__:
625
+ self._traits = {}
626
+
627
+ def print(self) -> None:
628
+ from rich import print_json
629
+ import json
630
+
631
+ print_json(json.dumps(self.to_dict()))
632
+
633
+ def __repr__(self) -> str:
634
+ """Return representation of Agent."""
635
+ class_name = self.__class__.__name__
636
+ items = [
637
+ f'{k} = """{v}"""' if isinstance(v, str) else f"{k} = {v}"
638
+ for k, v in self.data.items()
639
+ if k != "question_type"
640
+ ]
641
+ return f"{class_name}({', '.join(items)})"
642
+
643
+ # def _repr_html_(self):
644
+ # from edsl.utilities.utilities import data_to_html
645
+
646
+ # return data_to_html(self.to_dict())
647
+
648
+ #######################
649
+ # SERIALIZATION METHODS
650
+ #######################
651
+ @property
652
+ def data(self) -> dict:
653
+ """Format the data for serialization.
654
+
655
+ TODO: Warn if has dynamic traits function or direct answer function that cannot be serialized.
656
+ TODO: Add ability to have coop-hosted functions that are serializable.
657
+ """
658
+
659
+ raw_data = {
660
+ k.replace("_", "", 1): v
661
+ for k, v in self.__dict__.items()
662
+ if k.startswith("_")
663
+ }
664
+
665
+ if hasattr(self, "set_instructions"):
666
+ if not self.set_instructions:
667
+ raw_data.pop("instruction")
668
+ if self.codebook == {}:
669
+ raw_data.pop("codebook")
670
+ if self.name == None:
671
+ raw_data.pop("name")
672
+
673
+ if hasattr(self, "dynamic_traits_function"):
674
+ raw_data.pop(
675
+ "dynamic_traits_function", None
676
+ ) # in case dynamic_traits_function will appear with _ in self.__dict__
677
+ dynamic_traits_func = self.dynamic_traits_function
678
+ if dynamic_traits_func:
679
+ func = inspect.getsource(dynamic_traits_func)
680
+ raw_data["dynamic_traits_function_source_code"] = func
681
+ raw_data[
682
+ "dynamic_traits_function_name"
683
+ ] = self.dynamic_traits_function_name
684
+ if hasattr(self, "answer_question_directly"):
685
+ raw_data.pop(
686
+ "answer_question_directly", None
687
+ ) # in case answer_question_directly will appear with _ in self.__dict__
688
+ answer_question_directly_func = self.answer_question_directly
689
+
690
+ if (
691
+ answer_question_directly_func
692
+ and raw_data.get("answer_question_directly_source_code", None) != None
693
+ ):
694
+ raw_data["answer_question_directly_source_code"] = inspect.getsource(
695
+ answer_question_directly_func
696
+ )
697
+ raw_data[
698
+ "answer_question_directly_function_name"
699
+ ] = self.answer_question_directly_function_name
700
+
701
+ return raw_data
702
+
703
+ def __hash__(self) -> int:
704
+ from edsl.utilities.utilities import dict_hash
705
+
706
+ return dict_hash(self.to_dict(add_edsl_version=False))
707
+
708
+ # @add_edsl_version
709
+ def to_dict(self, add_edsl_version=True) -> dict[str, Union[dict, bool]]:
710
+ """Serialize to a dictionary with EDSL info.
711
+
712
+ Example usage:
713
+
714
+ >>> a = Agent(name = "Steve", traits = {"age": 10, "hair": "brown", "height": 5.5})
715
+ >>> a.to_dict()
716
+ {'name': 'Steve', 'traits': {'age': 10, 'hair': 'brown', 'height': 5.5}, 'edsl_version': '...', 'edsl_class_name': 'Agent'}
717
+ """
718
+ d = copy.deepcopy(self.data)
719
+ if add_edsl_version:
720
+ from edsl import __version__
721
+
722
+ d["edsl_version"] = __version__
723
+ d["edsl_class_name"] = self.__class__.__name__
724
+
725
+ return d
726
+
727
+ @classmethod
728
+ @remove_edsl_version
729
+ def from_dict(cls, agent_dict: dict[str, Union[dict, bool]]) -> Agent:
730
+ """Deserialize from a dictionary.
731
+
732
+ Example usage:
733
+
734
+ >>> Agent.from_dict({'name': "Steve", 'traits': {'age': 10, 'hair': 'brown', 'height': 5.5}})
735
+ Agent(name = \"""Steve\""", traits = {'age': 10, 'hair': 'brown', 'height': 5.5})
736
+
737
+ """
738
+ return cls(**agent_dict)
739
+
740
+ def _table(self) -> tuple[dict, list]:
741
+ """Prepare generic table data."""
742
+ table_data = []
743
+ for attr_name, attr_value in self.__dict__.items():
744
+ table_data.append({"Attribute": attr_name, "Value": repr(attr_value)})
745
+ column_names = ["Attribute", "Value"]
746
+ return table_data, column_names
747
+
748
+ def add_trait(self, trait_name_or_dict: str, value: Optional[Any] = None) -> Agent:
749
+ """Adds a trait to an agent and returns that agent"""
750
+ if isinstance(trait_name_or_dict, dict) and value is None:
751
+ self.traits.update(trait_name_or_dict)
752
+ return self
753
+
754
+ if isinstance(trait_name_or_dict, dict) and value:
755
+ raise AgentErrors(
756
+ f"You passed a dict: {trait_name_or_dict} and a value: {value}. You should pass only a dict."
757
+ )
758
+
759
+ if isinstance(trait_name_or_dict, str):
760
+ trait = trait_name_or_dict
761
+ self.traits[trait] = value
762
+ return self
763
+
764
+ raise AgentErrors("Something is not right with adding a trait to an Agent")
765
+
766
+ def remove_trait(self, trait: str) -> Agent:
767
+ """Remove a trait from the agent.
768
+
769
+ Example usage:
770
+
771
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
772
+ >>> a.remove_trait("age")
773
+ Agent(traits = {'hair': 'brown', 'height': 5.5})
774
+ """
775
+ _ = self.traits.pop(trait)
776
+ return self
777
+
778
+ def translate_traits(self, values_codebook: dict) -> Agent:
779
+ """Translate traits to a new codebook.
780
+
781
+ >>> a = Agent(traits = {"age": 10, "hair": 1, "height": 5.5})
782
+ >>> a.translate_traits({"hair": {1:"brown"}})
783
+ Agent(traits = {'age': 10, 'hair': 'brown', 'height': 5.5})
784
+
785
+ :param values_codebook: The new codebook.
786
+ """
787
+ for key, value in self.traits.items():
788
+ if key in values_codebook:
789
+ self.traits[key] = values_codebook[key][value]
790
+ return self
791
+
792
+ def rich_print(self):
793
+ """Display an object as a rich table.
794
+
795
+ Example usage:
796
+
797
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
798
+ >>> a.rich_print()
799
+ <rich.table.Table object at ...>
800
+ """
801
+ from rich.table import Table
802
+
803
+ table_data, column_names = self._table()
804
+ table = Table(title=f"{self.__class__.__name__} Attributes")
805
+ for column in column_names:
806
+ table.add_column(column, style="bold")
807
+
808
+ for row in table_data:
809
+ row_data = [row[column] for column in column_names]
810
+ table.add_row(*row_data)
811
+
812
+ return table
813
+
814
+ @classmethod
815
+ def example(cls, randomize: bool = False) -> Agent:
816
+ """
817
+ Returns an example Agent instance.
818
+
819
+ :param randomize: If True, adds a random string to the value of an example key.
820
+ """
821
+ addition = "" if not randomize else str(uuid4())
822
+ return cls(traits={"age": 22, "hair": f"brown{addition}", "height": 5.5})
823
+
824
+ def code(self) -> str:
825
+ """Return the code for the agent.
826
+
827
+ Example usage:
828
+
829
+ >>> a = Agent(traits = {"age": 10, "hair": "brown", "height": 5.5})
830
+ >>> print(a.code())
831
+ from edsl import Agent
832
+ agent = Agent(traits={'age': 10, 'hair': 'brown', 'height': 5.5})
833
+ """
834
+ return f"from edsl import Agent\nagent = Agent(traits={self.traits})"
835
+
836
+
837
+ def main():
838
+ """
839
+ Give an example of usage.
840
+
841
+ WARNING: Consume API credits
842
+ """
843
+ from edsl.agents import Agent
844
+ from edsl.questions import QuestionMultipleChoice
845
+
846
+ # a simple agent
847
+ agent = Agent(traits={"age": 10, "hair": "brown", "height": 5.5})
848
+ agent.traits
849
+ agent.print()
850
+ # combining two agents
851
+ agent = Agent(traits={"age": 10}) + Agent(traits={"height": 5.5})
852
+ agent.traits
853
+ # Agent -> Job using the to() method
854
+ agent = Agent(traits={"allergies": "peanut"})
855
+ question = QuestionMultipleChoice(
856
+ question_text="Would you enjoy a PB&J?",
857
+ question_options=["Yes", "No"],
858
+ question_name="food_preference",
859
+ )
860
+ job = question.by(agent)
861
+ results = job.run()
862
+
863
+
864
+ if __name__ == "__main__":
865
+ import doctest
866
+
867
+ doctest.testmod(optionflags=doctest.ELLIPSIS)