edsl 0.1.39.dev2__py3-none-any.whl → 0.1.39.dev3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (334) hide show
  1. edsl/Base.py +332 -385
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +49 -57
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +867 -1079
  7. edsl/agents/AgentList.py +413 -551
  8. edsl/agents/Invigilator.py +233 -285
  9. edsl/agents/InvigilatorBase.py +270 -254
  10. edsl/agents/PromptConstructor.py +354 -252
  11. edsl/agents/__init__.py +3 -2
  12. edsl/agents/descriptors.py +99 -99
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +279 -279
  26. edsl/config.py +157 -177
  27. edsl/conversation/Conversation.py +290 -290
  28. edsl/conversation/car_buying.py +58 -59
  29. edsl/conversation/chips.py +95 -95
  30. edsl/conversation/mug_negotiation.py +81 -81
  31. edsl/conversation/next_speaker_utilities.py +93 -93
  32. edsl/coop/PriceFetcher.py +54 -54
  33. edsl/coop/__init__.py +2 -2
  34. edsl/coop/coop.py +1028 -1090
  35. edsl/coop/utils.py +131 -131
  36. edsl/data/Cache.py +555 -562
  37. edsl/data/CacheEntry.py +233 -230
  38. edsl/data/CacheHandler.py +149 -170
  39. edsl/data/RemoteCacheSync.py +78 -78
  40. edsl/data/SQLiteDict.py +292 -292
  41. edsl/data/__init__.py +4 -5
  42. edsl/data/orm.py +10 -10
  43. edsl/data_transfer_models.py +73 -74
  44. edsl/enums.py +175 -195
  45. edsl/exceptions/BaseException.py +21 -21
  46. edsl/exceptions/__init__.py +54 -54
  47. edsl/exceptions/agents.py +42 -54
  48. edsl/exceptions/cache.py +5 -5
  49. edsl/exceptions/configuration.py +16 -16
  50. edsl/exceptions/coop.py +10 -10
  51. edsl/exceptions/data.py +14 -14
  52. edsl/exceptions/general.py +34 -34
  53. edsl/exceptions/jobs.py +33 -33
  54. edsl/exceptions/language_models.py +63 -63
  55. edsl/exceptions/prompts.py +15 -15
  56. edsl/exceptions/questions.py +91 -109
  57. edsl/exceptions/results.py +29 -29
  58. edsl/exceptions/scenarios.py +22 -29
  59. edsl/exceptions/surveys.py +37 -37
  60. edsl/inference_services/AnthropicService.py +87 -84
  61. edsl/inference_services/AwsBedrock.py +120 -118
  62. edsl/inference_services/AzureAI.py +217 -215
  63. edsl/inference_services/DeepInfraService.py +18 -18
  64. edsl/inference_services/GoogleService.py +148 -139
  65. edsl/inference_services/GroqService.py +20 -20
  66. edsl/inference_services/InferenceServiceABC.py +147 -80
  67. edsl/inference_services/InferenceServicesCollection.py +97 -122
  68. edsl/inference_services/MistralAIService.py +123 -120
  69. edsl/inference_services/OllamaService.py +18 -18
  70. edsl/inference_services/OpenAIService.py +224 -221
  71. edsl/inference_services/PerplexityService.py +163 -160
  72. edsl/inference_services/TestService.py +89 -92
  73. edsl/inference_services/TogetherAIService.py +170 -170
  74. edsl/inference_services/models_available_cache.py +118 -118
  75. edsl/inference_services/rate_limits_cache.py +25 -25
  76. edsl/inference_services/registry.py +41 -41
  77. edsl/inference_services/write_available.py +10 -10
  78. edsl/jobs/Answers.py +56 -43
  79. edsl/jobs/Jobs.py +898 -757
  80. edsl/jobs/JobsChecks.py +147 -172
  81. edsl/jobs/JobsPrompts.py +268 -270
  82. edsl/jobs/JobsRemoteInferenceHandler.py +239 -287
  83. edsl/jobs/__init__.py +1 -1
  84. edsl/jobs/buckets/BucketCollection.py +63 -104
  85. edsl/jobs/buckets/ModelBuckets.py +65 -65
  86. edsl/jobs/buckets/TokenBucket.py +251 -283
  87. edsl/jobs/interviews/Interview.py +661 -358
  88. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  89. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  90. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  91. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  92. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  93. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  94. edsl/jobs/interviews/ReportErrors.py +66 -66
  95. edsl/jobs/interviews/interview_status_enum.py +9 -9
  96. edsl/jobs/runners/JobsRunnerAsyncio.py +466 -421
  97. edsl/jobs/runners/JobsRunnerStatus.py +330 -330
  98. edsl/jobs/tasks/QuestionTaskCreator.py +242 -244
  99. edsl/jobs/tasks/TaskCreators.py +64 -64
  100. edsl/jobs/tasks/TaskHistory.py +450 -449
  101. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  102. edsl/jobs/tasks/task_status_enum.py +163 -161
  103. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  104. edsl/jobs/tokens/TokenUsage.py +34 -34
  105. edsl/language_models/KeyLookup.py +30 -0
  106. edsl/language_models/LanguageModel.py +668 -571
  107. edsl/language_models/ModelList.py +155 -153
  108. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  109. edsl/language_models/__init__.py +3 -2
  110. edsl/language_models/fake_openai_call.py +15 -15
  111. edsl/language_models/fake_openai_service.py +61 -61
  112. edsl/language_models/registry.py +190 -180
  113. edsl/language_models/repair.py +156 -156
  114. edsl/language_models/unused/ReplicateBase.py +83 -0
  115. edsl/language_models/utilities.py +64 -65
  116. edsl/notebooks/Notebook.py +258 -263
  117. edsl/notebooks/__init__.py +1 -1
  118. edsl/prompts/Prompt.py +362 -352
  119. edsl/prompts/__init__.py +2 -2
  120. edsl/questions/AnswerValidatorMixin.py +289 -334
  121. edsl/questions/QuestionBase.py +664 -509
  122. edsl/questions/QuestionBaseGenMixin.py +161 -165
  123. edsl/questions/QuestionBasePromptsMixin.py +217 -221
  124. edsl/questions/QuestionBudget.py +227 -227
  125. edsl/questions/QuestionCheckBox.py +359 -359
  126. edsl/questions/QuestionExtract.py +182 -182
  127. edsl/questions/QuestionFreeText.py +114 -113
  128. edsl/questions/QuestionFunctional.py +166 -166
  129. edsl/questions/QuestionList.py +231 -229
  130. edsl/questions/QuestionMultipleChoice.py +286 -330
  131. edsl/questions/QuestionNumerical.py +153 -151
  132. edsl/questions/QuestionRank.py +324 -314
  133. edsl/questions/Quick.py +41 -41
  134. edsl/questions/RegisterQuestionsMeta.py +71 -71
  135. edsl/questions/ResponseValidatorABC.py +174 -200
  136. edsl/questions/SimpleAskMixin.py +73 -74
  137. edsl/questions/__init__.py +26 -27
  138. edsl/questions/compose_questions.py +98 -98
  139. edsl/questions/decorators.py +21 -21
  140. edsl/questions/derived/QuestionLikertFive.py +76 -76
  141. edsl/questions/derived/QuestionLinearScale.py +87 -90
  142. edsl/questions/derived/QuestionTopK.py +93 -93
  143. edsl/questions/derived/QuestionYesNo.py +82 -82
  144. edsl/questions/descriptors.py +413 -427
  145. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  146. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  147. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  148. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  149. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  150. edsl/questions/prompt_templates/question_list.jinja +17 -17
  151. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  152. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  153. edsl/questions/question_registry.py +177 -177
  154. edsl/questions/settings.py +12 -12
  155. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  156. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  157. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  158. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  159. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  160. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  161. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  162. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  163. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  164. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  165. edsl/questions/templates/list/question_presentation.jinja +5 -5
  166. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  167. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  168. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  169. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  170. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  171. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  172. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  173. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  174. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  175. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  176. edsl/results/CSSParameterizer.py +108 -108
  177. edsl/results/Dataset.py +424 -587
  178. edsl/results/DatasetExportMixin.py +731 -653
  179. edsl/results/DatasetTree.py +275 -295
  180. edsl/results/Result.py +465 -451
  181. edsl/results/Results.py +1165 -1172
  182. edsl/results/ResultsDBMixin.py +238 -0
  183. edsl/results/ResultsExportMixin.py +43 -45
  184. edsl/results/ResultsFetchMixin.py +33 -33
  185. edsl/results/ResultsGGMixin.py +121 -121
  186. edsl/results/ResultsToolsMixin.py +98 -98
  187. edsl/results/Selector.py +135 -145
  188. edsl/results/TableDisplay.py +198 -125
  189. edsl/results/__init__.py +2 -2
  190. edsl/results/table_display.css +77 -77
  191. edsl/results/tree_explore.py +115 -115
  192. edsl/scenarios/FileStore.py +632 -511
  193. edsl/scenarios/Scenario.py +601 -498
  194. edsl/scenarios/ScenarioHtmlMixin.py +64 -65
  195. edsl/scenarios/ScenarioJoin.py +127 -131
  196. edsl/scenarios/ScenarioList.py +1287 -1430
  197. edsl/scenarios/ScenarioListExportMixin.py +52 -45
  198. edsl/scenarios/ScenarioListPdfMixin.py +261 -239
  199. edsl/scenarios/__init__.py +4 -3
  200. edsl/shared.py +1 -1
  201. edsl/study/ObjectEntry.py +173 -173
  202. edsl/study/ProofOfWork.py +113 -113
  203. edsl/study/SnapShot.py +80 -80
  204. edsl/study/Study.py +528 -521
  205. edsl/study/__init__.py +4 -4
  206. edsl/surveys/DAG.py +148 -148
  207. edsl/surveys/Memory.py +31 -31
  208. edsl/surveys/MemoryPlan.py +244 -244
  209. edsl/surveys/Rule.py +326 -327
  210. edsl/surveys/RuleCollection.py +387 -385
  211. edsl/surveys/Survey.py +1801 -1229
  212. edsl/surveys/SurveyCSS.py +261 -273
  213. edsl/surveys/SurveyExportMixin.py +259 -259
  214. edsl/surveys/{SurveyFlowVisualization.py → SurveyFlowVisualizationMixin.py} +179 -181
  215. edsl/surveys/SurveyQualtricsImport.py +284 -284
  216. edsl/surveys/__init__.py +3 -5
  217. edsl/surveys/base.py +53 -53
  218. edsl/surveys/descriptors.py +56 -60
  219. edsl/surveys/instructions/ChangeInstruction.py +49 -48
  220. edsl/surveys/instructions/Instruction.py +65 -56
  221. edsl/surveys/instructions/InstructionCollection.py +77 -82
  222. edsl/templates/error_reporting/base.html +23 -23
  223. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  224. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  225. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  226. edsl/templates/error_reporting/interview_details.html +115 -115
  227. edsl/templates/error_reporting/interviews.html +19 -19
  228. edsl/templates/error_reporting/overview.html +4 -4
  229. edsl/templates/error_reporting/performance_plot.html +1 -1
  230. edsl/templates/error_reporting/report.css +73 -73
  231. edsl/templates/error_reporting/report.html +117 -117
  232. edsl/templates/error_reporting/report.js +25 -25
  233. edsl/tools/__init__.py +1 -1
  234. edsl/tools/clusters.py +192 -192
  235. edsl/tools/embeddings.py +27 -27
  236. edsl/tools/embeddings_plotting.py +118 -118
  237. edsl/tools/plotting.py +112 -112
  238. edsl/tools/summarize.py +18 -18
  239. edsl/utilities/SystemInfo.py +28 -28
  240. edsl/utilities/__init__.py +22 -22
  241. edsl/utilities/ast_utilities.py +25 -25
  242. edsl/utilities/data/Registry.py +6 -6
  243. edsl/utilities/data/__init__.py +1 -1
  244. edsl/utilities/data/scooter_results.json +1 -1
  245. edsl/utilities/decorators.py +77 -77
  246. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  247. edsl/utilities/interface.py +627 -627
  248. edsl/utilities/naming_utilities.py +263 -263
  249. edsl/utilities/repair_functions.py +28 -28
  250. edsl/utilities/restricted_python.py +70 -70
  251. edsl/utilities/utilities.py +424 -436
  252. {edsl-0.1.39.dev2.dist-info → edsl-0.1.39.dev3.dist-info}/LICENSE +21 -21
  253. {edsl-0.1.39.dev2.dist-info → edsl-0.1.39.dev3.dist-info}/METADATA +10 -12
  254. edsl-0.1.39.dev3.dist-info/RECORD +277 -0
  255. edsl/agents/QuestionInstructionPromptBuilder.py +0 -128
  256. edsl/agents/QuestionOptionProcessor.py +0 -172
  257. edsl/agents/QuestionTemplateReplacementsBuilder.py +0 -137
  258. edsl/coop/CoopFunctionsMixin.py +0 -15
  259. edsl/coop/ExpectedParrotKeyHandler.py +0 -125
  260. edsl/exceptions/inference_services.py +0 -5
  261. edsl/inference_services/AvailableModelCacheHandler.py +0 -184
  262. edsl/inference_services/AvailableModelFetcher.py +0 -209
  263. edsl/inference_services/ServiceAvailability.py +0 -135
  264. edsl/inference_services/data_structures.py +0 -62
  265. edsl/jobs/AnswerQuestionFunctionConstructor.py +0 -188
  266. edsl/jobs/FetchInvigilator.py +0 -40
  267. edsl/jobs/InterviewTaskManager.py +0 -98
  268. edsl/jobs/InterviewsConstructor.py +0 -48
  269. edsl/jobs/JobsComponentConstructor.py +0 -189
  270. edsl/jobs/JobsRemoteInferenceLogger.py +0 -239
  271. edsl/jobs/RequestTokenEstimator.py +0 -30
  272. edsl/jobs/buckets/TokenBucketAPI.py +0 -211
  273. edsl/jobs/buckets/TokenBucketClient.py +0 -191
  274. edsl/jobs/decorators.py +0 -35
  275. edsl/jobs/jobs_status_enums.py +0 -9
  276. edsl/jobs/loggers/HTMLTableJobLogger.py +0 -304
  277. edsl/language_models/ComputeCost.py +0 -63
  278. edsl/language_models/PriceManager.py +0 -127
  279. edsl/language_models/RawResponseHandler.py +0 -106
  280. edsl/language_models/ServiceDataSources.py +0 -0
  281. edsl/language_models/key_management/KeyLookup.py +0 -63
  282. edsl/language_models/key_management/KeyLookupBuilder.py +0 -273
  283. edsl/language_models/key_management/KeyLookupCollection.py +0 -38
  284. edsl/language_models/key_management/__init__.py +0 -0
  285. edsl/language_models/key_management/models.py +0 -131
  286. edsl/notebooks/NotebookToLaTeX.py +0 -142
  287. edsl/questions/ExceptionExplainer.py +0 -77
  288. edsl/questions/HTMLQuestion.py +0 -103
  289. edsl/questions/LoopProcessor.py +0 -149
  290. edsl/questions/QuestionMatrix.py +0 -265
  291. edsl/questions/ResponseValidatorFactory.py +0 -28
  292. edsl/questions/templates/matrix/__init__.py +0 -1
  293. edsl/questions/templates/matrix/answering_instructions.jinja +0 -5
  294. edsl/questions/templates/matrix/question_presentation.jinja +0 -20
  295. edsl/results/MarkdownToDocx.py +0 -122
  296. edsl/results/MarkdownToPDF.py +0 -111
  297. edsl/results/TextEditor.py +0 -50
  298. edsl/results/smart_objects.py +0 -96
  299. edsl/results/table_data_class.py +0 -12
  300. edsl/results/table_renderers.py +0 -118
  301. edsl/scenarios/ConstructDownloadLink.py +0 -109
  302. edsl/scenarios/DirectoryScanner.py +0 -96
  303. edsl/scenarios/DocumentChunker.py +0 -102
  304. edsl/scenarios/DocxScenario.py +0 -16
  305. edsl/scenarios/PdfExtractor.py +0 -40
  306. edsl/scenarios/ScenarioSelector.py +0 -156
  307. edsl/scenarios/file_methods.py +0 -85
  308. edsl/scenarios/handlers/__init__.py +0 -13
  309. edsl/scenarios/handlers/csv.py +0 -38
  310. edsl/scenarios/handlers/docx.py +0 -76
  311. edsl/scenarios/handlers/html.py +0 -37
  312. edsl/scenarios/handlers/json.py +0 -111
  313. edsl/scenarios/handlers/latex.py +0 -5
  314. edsl/scenarios/handlers/md.py +0 -51
  315. edsl/scenarios/handlers/pdf.py +0 -68
  316. edsl/scenarios/handlers/png.py +0 -39
  317. edsl/scenarios/handlers/pptx.py +0 -105
  318. edsl/scenarios/handlers/py.py +0 -294
  319. edsl/scenarios/handlers/sql.py +0 -313
  320. edsl/scenarios/handlers/sqlite.py +0 -149
  321. edsl/scenarios/handlers/txt.py +0 -33
  322. edsl/surveys/ConstructDAG.py +0 -92
  323. edsl/surveys/EditSurvey.py +0 -221
  324. edsl/surveys/InstructionHandler.py +0 -100
  325. edsl/surveys/MemoryManagement.py +0 -72
  326. edsl/surveys/RuleManager.py +0 -172
  327. edsl/surveys/Simulator.py +0 -75
  328. edsl/surveys/SurveyToApp.py +0 -141
  329. edsl/utilities/PrettyList.py +0 -56
  330. edsl/utilities/is_notebook.py +0 -18
  331. edsl/utilities/is_valid_variable_name.py +0 -11
  332. edsl/utilities/remove_edsl_version.py +0 -24
  333. edsl-0.1.39.dev2.dist-info/RECORD +0 -352
  334. {edsl-0.1.39.dev2.dist-info → edsl-0.1.39.dev3.dist-info}/WHEEL +0 -0
edsl/jobs/JobsPrompts.py CHANGED
@@ -1,270 +1,268 @@
1
- from typing import List, TYPE_CHECKING
2
-
3
- from edsl.results.Dataset import Dataset
4
-
5
- if TYPE_CHECKING:
6
- from edsl.jobs import Jobs
7
-
8
- # from edsl.jobs.interviews.Interview import Interview
9
- # from edsl.results.Dataset import Dataset
10
- # from edsl.agents.AgentList import AgentList
11
- # from edsl.scenarios.ScenarioList import ScenarioList
12
- # from edsl.surveys.Survey import Survey
13
-
14
- from edsl.jobs.FetchInvigilator import FetchInvigilator
15
-
16
-
17
- class JobsPrompts:
18
- def __init__(self, jobs: "Jobs"):
19
- self.interviews = jobs.interviews()
20
- self.agents = jobs.agents
21
- self.scenarios = jobs.scenarios
22
- self.survey = jobs.survey
23
- self._price_lookup = None
24
-
25
- @property
26
- def price_lookup(self):
27
- if self._price_lookup is None:
28
- from edsl.coop.coop import Coop
29
-
30
- c = Coop()
31
- self._price_lookup = c.fetch_prices()
32
- return self._price_lookup
33
-
34
- def prompts(self) -> "Dataset":
35
- """Return a Dataset of prompts that will be used.
36
-
37
- >>> from edsl.jobs import Jobs
38
- >>> Jobs.example().prompts()
39
- Dataset(...)
40
- """
41
- interviews = self.interviews
42
- interview_indices = []
43
- question_names = []
44
- user_prompts = []
45
- system_prompts = []
46
- scenario_indices = []
47
- agent_indices = []
48
- models = []
49
- costs = []
50
-
51
- for interview_index, interview in enumerate(interviews):
52
- invigilators = [
53
- FetchInvigilator(interview)(question)
54
- for question in self.survey.questions
55
- ]
56
- for _, invigilator in enumerate(invigilators):
57
- prompts = invigilator.get_prompts()
58
- user_prompt = prompts["user_prompt"]
59
- system_prompt = prompts["system_prompt"]
60
- user_prompts.append(user_prompt)
61
- system_prompts.append(system_prompt)
62
- agent_index = self.agents.index(invigilator.agent)
63
- agent_indices.append(agent_index)
64
- interview_indices.append(interview_index)
65
- scenario_index = self.scenarios.index(invigilator.scenario)
66
- scenario_indices.append(scenario_index)
67
- models.append(invigilator.model.model)
68
- question_names.append(invigilator.question.question_name)
69
-
70
- prompt_cost = self.estimate_prompt_cost(
71
- system_prompt=system_prompt,
72
- user_prompt=user_prompt,
73
- price_lookup=self.price_lookup,
74
- inference_service=invigilator.model._inference_service_,
75
- model=invigilator.model.model,
76
- )
77
- costs.append(prompt_cost["cost_usd"])
78
-
79
- d = Dataset(
80
- [
81
- {"user_prompt": user_prompts},
82
- {"system_prompt": system_prompts},
83
- {"interview_index": interview_indices},
84
- {"question_name": question_names},
85
- {"scenario_index": scenario_indices},
86
- {"agent_index": agent_indices},
87
- {"model": models},
88
- {"estimated_cost": costs},
89
- ]
90
- )
91
- return d
92
-
93
- @staticmethod
94
- def estimate_prompt_cost(
95
- system_prompt: str,
96
- user_prompt: str,
97
- price_lookup: dict,
98
- inference_service: str,
99
- model: str,
100
- ) -> dict:
101
- """Estimates the cost of a prompt. Takes piping into account."""
102
- import math
103
-
104
- def get_piping_multiplier(prompt: str):
105
- """Returns 2 if a prompt includes Jinja braces, and 1 otherwise."""
106
-
107
- if "{{" in prompt and "}}" in prompt:
108
- return 2
109
- return 1
110
-
111
- # Look up prices per token
112
- key = (inference_service, model)
113
-
114
- try:
115
- relevant_prices = price_lookup[key]
116
-
117
- service_input_token_price = float(
118
- relevant_prices["input"]["service_stated_token_price"]
119
- )
120
- service_input_token_qty = float(
121
- relevant_prices["input"]["service_stated_token_qty"]
122
- )
123
- input_price_per_token = service_input_token_price / service_input_token_qty
124
-
125
- service_output_token_price = float(
126
- relevant_prices["output"]["service_stated_token_price"]
127
- )
128
- service_output_token_qty = float(
129
- relevant_prices["output"]["service_stated_token_qty"]
130
- )
131
- output_price_per_token = (
132
- service_output_token_price / service_output_token_qty
133
- )
134
-
135
- except KeyError:
136
- # A KeyError is likely to occur if we cannot retrieve prices (the price_lookup dict is empty)
137
- # Use a sensible default
138
-
139
- import warnings
140
-
141
- warnings.warn(
142
- "Price data could not be retrieved. Using default estimates for input and output token prices. Input: $0.15 / 1M tokens; Output: $0.60 / 1M tokens"
143
- )
144
- input_price_per_token = 0.00000015 # $0.15 / 1M tokens
145
- output_price_per_token = 0.00000060 # $0.60 / 1M tokens
146
-
147
- # Compute the number of characters (double if the question involves piping)
148
- user_prompt_chars = len(str(user_prompt)) * get_piping_multiplier(
149
- str(user_prompt)
150
- )
151
- system_prompt_chars = len(str(system_prompt)) * get_piping_multiplier(
152
- str(system_prompt)
153
- )
154
-
155
- # Convert into tokens (1 token approx. equals 4 characters)
156
- input_tokens = (user_prompt_chars + system_prompt_chars) // 4
157
-
158
- output_tokens = math.ceil(0.75 * input_tokens)
159
-
160
- cost = (
161
- input_tokens * input_price_per_token
162
- + output_tokens * output_price_per_token
163
- )
164
-
165
- return {
166
- "input_tokens": input_tokens,
167
- "output_tokens": output_tokens,
168
- "cost_usd": cost,
169
- }
170
-
171
- def estimate_job_cost_from_external_prices(
172
- self, price_lookup: dict, iterations: int = 1
173
- ) -> dict:
174
- """
175
- Estimates the cost of a job according to the following assumptions:
176
-
177
- - 1 token = 4 characters.
178
- - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
179
-
180
- price_lookup is an external pricing dictionary.
181
- """
182
-
183
- import pandas as pd
184
-
185
- interviews = self.interviews
186
- data = []
187
- for interview in interviews:
188
- invigilators = [
189
- FetchInvigilator(interview)(question)
190
- for question in self.survey.questions
191
- ]
192
- for invigilator in invigilators:
193
- prompts = invigilator.get_prompts()
194
-
195
- # By this point, agent and scenario data has already been added to the prompts
196
- user_prompt = prompts["user_prompt"]
197
- system_prompt = prompts["system_prompt"]
198
- inference_service = invigilator.model._inference_service_
199
- model = invigilator.model.model
200
-
201
- prompt_cost = self.estimate_prompt_cost(
202
- system_prompt=system_prompt,
203
- user_prompt=user_prompt,
204
- price_lookup=price_lookup,
205
- inference_service=inference_service,
206
- model=model,
207
- )
208
-
209
- data.append(
210
- {
211
- "user_prompt": user_prompt,
212
- "system_prompt": system_prompt,
213
- "estimated_input_tokens": prompt_cost["input_tokens"],
214
- "estimated_output_tokens": prompt_cost["output_tokens"],
215
- "estimated_cost_usd": prompt_cost["cost_usd"],
216
- "inference_service": inference_service,
217
- "model": model,
218
- }
219
- )
220
-
221
- df = pd.DataFrame.from_records(data)
222
-
223
- df = (
224
- df.groupby(["inference_service", "model"])
225
- .agg(
226
- {
227
- "estimated_cost_usd": "sum",
228
- "estimated_input_tokens": "sum",
229
- "estimated_output_tokens": "sum",
230
- }
231
- )
232
- .reset_index()
233
- )
234
- df["estimated_cost_usd"] = df["estimated_cost_usd"] * iterations
235
- df["estimated_input_tokens"] = df["estimated_input_tokens"] * iterations
236
- df["estimated_output_tokens"] = df["estimated_output_tokens"] * iterations
237
-
238
- estimated_costs_by_model = df.to_dict("records")
239
-
240
- estimated_total_cost = sum(
241
- model["estimated_cost_usd"] for model in estimated_costs_by_model
242
- )
243
- estimated_total_input_tokens = sum(
244
- model["estimated_input_tokens"] for model in estimated_costs_by_model
245
- )
246
- estimated_total_output_tokens = sum(
247
- model["estimated_output_tokens"] for model in estimated_costs_by_model
248
- )
249
-
250
- output = {
251
- "estimated_total_cost_usd": estimated_total_cost,
252
- "estimated_total_input_tokens": estimated_total_input_tokens,
253
- "estimated_total_output_tokens": estimated_total_output_tokens,
254
- "model_costs": estimated_costs_by_model,
255
- }
256
-
257
- return output
258
-
259
- def estimate_job_cost(self, iterations: int = 1) -> dict:
260
- """
261
- Estimates the cost of a job according to the following assumptions:
262
-
263
- - 1 token = 4 characters.
264
- - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
265
-
266
- Fetches prices from Coop.
267
- """
268
- return self.estimate_job_cost_from_external_prices(
269
- price_lookup=self.price_lookup, iterations=iterations
270
- )
1
+ from typing import List, TYPE_CHECKING
2
+
3
+ from edsl.results.Dataset import Dataset
4
+
5
+ if TYPE_CHECKING:
6
+ from edsl.jobs import Jobs
7
+
8
+ # from edsl.jobs.interviews.Interview import Interview
9
+ # from edsl.results.Dataset import Dataset
10
+ # from edsl.agents.AgentList import AgentList
11
+ # from edsl.scenarios.ScenarioList import ScenarioList
12
+ # from edsl.surveys.Survey import Survey
13
+
14
+
15
+ class JobsPrompts:
16
+ def __init__(self, jobs: "Jobs"):
17
+ self.interviews = jobs.interviews()
18
+ self.agents = jobs.agents
19
+ self.scenarios = jobs.scenarios
20
+ self.survey = jobs.survey
21
+ self._price_lookup = None
22
+
23
+ @property
24
+ def price_lookup(self):
25
+ if self._price_lookup is None:
26
+ from edsl import Coop
27
+
28
+ c = Coop()
29
+ self._price_lookup = c.fetch_prices()
30
+ return self._price_lookup
31
+
32
+ def prompts(self) -> "Dataset":
33
+ """Return a Dataset of prompts that will be used.
34
+
35
+ >>> from edsl.jobs import Jobs
36
+ >>> Jobs.example().prompts()
37
+ Dataset(...)
38
+ """
39
+ interviews = self.interviews
40
+ interview_indices = []
41
+ question_names = []
42
+ user_prompts = []
43
+ system_prompts = []
44
+ scenario_indices = []
45
+ agent_indices = []
46
+ models = []
47
+ costs = []
48
+
49
+ for interview_index, interview in enumerate(interviews):
50
+ invigilators = [
51
+ interview._get_invigilator(question)
52
+ for question in self.survey.questions
53
+ ]
54
+ for _, invigilator in enumerate(invigilators):
55
+ prompts = invigilator.get_prompts()
56
+ user_prompt = prompts["user_prompt"]
57
+ system_prompt = prompts["system_prompt"]
58
+ user_prompts.append(user_prompt)
59
+ system_prompts.append(system_prompt)
60
+ agent_index = self.agents.index(invigilator.agent)
61
+ agent_indices.append(agent_index)
62
+ interview_indices.append(interview_index)
63
+ scenario_index = self.scenarios.index(invigilator.scenario)
64
+ scenario_indices.append(scenario_index)
65
+ models.append(invigilator.model.model)
66
+ question_names.append(invigilator.question.question_name)
67
+
68
+ prompt_cost = self.estimate_prompt_cost(
69
+ system_prompt=system_prompt,
70
+ user_prompt=user_prompt,
71
+ price_lookup=self.price_lookup,
72
+ inference_service=invigilator.model._inference_service_,
73
+ model=invigilator.model.model,
74
+ )
75
+ costs.append(prompt_cost["cost_usd"])
76
+
77
+ d = Dataset(
78
+ [
79
+ {"user_prompt": user_prompts},
80
+ {"system_prompt": system_prompts},
81
+ {"interview_index": interview_indices},
82
+ {"question_name": question_names},
83
+ {"scenario_index": scenario_indices},
84
+ {"agent_index": agent_indices},
85
+ {"model": models},
86
+ {"estimated_cost": costs},
87
+ ]
88
+ )
89
+ return d
90
+
91
+ @staticmethod
92
+ def estimate_prompt_cost(
93
+ system_prompt: str,
94
+ user_prompt: str,
95
+ price_lookup: dict,
96
+ inference_service: str,
97
+ model: str,
98
+ ) -> dict:
99
+ """Estimates the cost of a prompt. Takes piping into account."""
100
+ import math
101
+
102
+ def get_piping_multiplier(prompt: str):
103
+ """Returns 2 if a prompt includes Jinja braces, and 1 otherwise."""
104
+
105
+ if "{{" in prompt and "}}" in prompt:
106
+ return 2
107
+ return 1
108
+
109
+ # Look up prices per token
110
+ key = (inference_service, model)
111
+
112
+ try:
113
+ relevant_prices = price_lookup[key]
114
+
115
+ service_input_token_price = float(
116
+ relevant_prices["input"]["service_stated_token_price"]
117
+ )
118
+ service_input_token_qty = float(
119
+ relevant_prices["input"]["service_stated_token_qty"]
120
+ )
121
+ input_price_per_token = service_input_token_price / service_input_token_qty
122
+
123
+ service_output_token_price = float(
124
+ relevant_prices["output"]["service_stated_token_price"]
125
+ )
126
+ service_output_token_qty = float(
127
+ relevant_prices["output"]["service_stated_token_qty"]
128
+ )
129
+ output_price_per_token = (
130
+ service_output_token_price / service_output_token_qty
131
+ )
132
+
133
+ except KeyError:
134
+ # A KeyError is likely to occur if we cannot retrieve prices (the price_lookup dict is empty)
135
+ # Use a sensible default
136
+
137
+ import warnings
138
+
139
+ warnings.warn(
140
+ "Price data could not be retrieved. Using default estimates for input and output token prices. Input: $0.15 / 1M tokens; Output: $0.60 / 1M tokens"
141
+ )
142
+ input_price_per_token = 0.00000015 # $0.15 / 1M tokens
143
+ output_price_per_token = 0.00000060 # $0.60 / 1M tokens
144
+
145
+ # Compute the number of characters (double if the question involves piping)
146
+ user_prompt_chars = len(str(user_prompt)) * get_piping_multiplier(
147
+ str(user_prompt)
148
+ )
149
+ system_prompt_chars = len(str(system_prompt)) * get_piping_multiplier(
150
+ str(system_prompt)
151
+ )
152
+
153
+ # Convert into tokens (1 token approx. equals 4 characters)
154
+ input_tokens = (user_prompt_chars + system_prompt_chars) // 4
155
+
156
+ output_tokens = math.ceil(0.75 * input_tokens)
157
+
158
+ cost = (
159
+ input_tokens * input_price_per_token
160
+ + output_tokens * output_price_per_token
161
+ )
162
+
163
+ return {
164
+ "input_tokens": input_tokens,
165
+ "output_tokens": output_tokens,
166
+ "cost_usd": cost,
167
+ }
168
+
169
+ def estimate_job_cost_from_external_prices(
170
+ self, price_lookup: dict, iterations: int = 1
171
+ ) -> dict:
172
+ """
173
+ Estimates the cost of a job according to the following assumptions:
174
+
175
+ - 1 token = 4 characters.
176
+ - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
177
+
178
+ price_lookup is an external pricing dictionary.
179
+ """
180
+
181
+ import pandas as pd
182
+
183
+ interviews = self.interviews
184
+ data = []
185
+ for interview in interviews:
186
+ invigilators = [
187
+ interview._get_invigilator(question)
188
+ for question in self.survey.questions
189
+ ]
190
+ for invigilator in invigilators:
191
+ prompts = invigilator.get_prompts()
192
+
193
+ # By this point, agent and scenario data has already been added to the prompts
194
+ user_prompt = prompts["user_prompt"]
195
+ system_prompt = prompts["system_prompt"]
196
+ inference_service = invigilator.model._inference_service_
197
+ model = invigilator.model.model
198
+
199
+ prompt_cost = self.estimate_prompt_cost(
200
+ system_prompt=system_prompt,
201
+ user_prompt=user_prompt,
202
+ price_lookup=price_lookup,
203
+ inference_service=inference_service,
204
+ model=model,
205
+ )
206
+
207
+ data.append(
208
+ {
209
+ "user_prompt": user_prompt,
210
+ "system_prompt": system_prompt,
211
+ "estimated_input_tokens": prompt_cost["input_tokens"],
212
+ "estimated_output_tokens": prompt_cost["output_tokens"],
213
+ "estimated_cost_usd": prompt_cost["cost_usd"],
214
+ "inference_service": inference_service,
215
+ "model": model,
216
+ }
217
+ )
218
+
219
+ df = pd.DataFrame.from_records(data)
220
+
221
+ df = (
222
+ df.groupby(["inference_service", "model"])
223
+ .agg(
224
+ {
225
+ "estimated_cost_usd": "sum",
226
+ "estimated_input_tokens": "sum",
227
+ "estimated_output_tokens": "sum",
228
+ }
229
+ )
230
+ .reset_index()
231
+ )
232
+ df["estimated_cost_usd"] = df["estimated_cost_usd"] * iterations
233
+ df["estimated_input_tokens"] = df["estimated_input_tokens"] * iterations
234
+ df["estimated_output_tokens"] = df["estimated_output_tokens"] * iterations
235
+
236
+ estimated_costs_by_model = df.to_dict("records")
237
+
238
+ estimated_total_cost = sum(
239
+ model["estimated_cost_usd"] for model in estimated_costs_by_model
240
+ )
241
+ estimated_total_input_tokens = sum(
242
+ model["estimated_input_tokens"] for model in estimated_costs_by_model
243
+ )
244
+ estimated_total_output_tokens = sum(
245
+ model["estimated_output_tokens"] for model in estimated_costs_by_model
246
+ )
247
+
248
+ output = {
249
+ "estimated_total_cost_usd": estimated_total_cost,
250
+ "estimated_total_input_tokens": estimated_total_input_tokens,
251
+ "estimated_total_output_tokens": estimated_total_output_tokens,
252
+ "model_costs": estimated_costs_by_model,
253
+ }
254
+
255
+ return output
256
+
257
+ def estimate_job_cost(self, iterations: int = 1) -> dict:
258
+ """
259
+ Estimates the cost of a job according to the following assumptions:
260
+
261
+ - 1 token = 4 characters.
262
+ - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
263
+
264
+ Fetches prices from Coop.
265
+ """
266
+ return self.estimate_job_cost_from_external_prices(
267
+ price_lookup=self.price_lookup, iterations=iterations
268
+ )