edsl 0.1.39.dev1__py3-none-any.whl → 0.1.39.dev3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (256) hide show
  1. edsl/Base.py +332 -332
  2. edsl/BaseDiff.py +260 -260
  3. edsl/TemplateLoader.py +24 -24
  4. edsl/__init__.py +49 -49
  5. edsl/__version__.py +1 -1
  6. edsl/agents/Agent.py +867 -867
  7. edsl/agents/AgentList.py +413 -413
  8. edsl/agents/Invigilator.py +233 -233
  9. edsl/agents/InvigilatorBase.py +270 -265
  10. edsl/agents/PromptConstructor.py +354 -354
  11. edsl/agents/__init__.py +3 -3
  12. edsl/agents/descriptors.py +99 -99
  13. edsl/agents/prompt_helpers.py +129 -129
  14. edsl/auto/AutoStudy.py +117 -117
  15. edsl/auto/StageBase.py +230 -230
  16. edsl/auto/StageGenerateSurvey.py +178 -178
  17. edsl/auto/StageLabelQuestions.py +125 -125
  18. edsl/auto/StagePersona.py +61 -61
  19. edsl/auto/StagePersonaDimensionValueRanges.py +88 -88
  20. edsl/auto/StagePersonaDimensionValues.py +74 -74
  21. edsl/auto/StagePersonaDimensions.py +69 -69
  22. edsl/auto/StageQuestions.py +73 -73
  23. edsl/auto/SurveyCreatorPipeline.py +21 -21
  24. edsl/auto/utilities.py +224 -224
  25. edsl/base/Base.py +279 -279
  26. edsl/config.py +157 -157
  27. edsl/conversation/Conversation.py +290 -290
  28. edsl/conversation/car_buying.py +58 -58
  29. edsl/conversation/chips.py +95 -95
  30. edsl/conversation/mug_negotiation.py +81 -81
  31. edsl/conversation/next_speaker_utilities.py +93 -93
  32. edsl/coop/PriceFetcher.py +54 -54
  33. edsl/coop/__init__.py +2 -2
  34. edsl/coop/coop.py +1028 -1028
  35. edsl/coop/utils.py +131 -131
  36. edsl/data/Cache.py +555 -555
  37. edsl/data/CacheEntry.py +233 -233
  38. edsl/data/CacheHandler.py +149 -149
  39. edsl/data/RemoteCacheSync.py +78 -78
  40. edsl/data/SQLiteDict.py +292 -292
  41. edsl/data/__init__.py +4 -4
  42. edsl/data/orm.py +10 -10
  43. edsl/data_transfer_models.py +73 -73
  44. edsl/enums.py +175 -175
  45. edsl/exceptions/BaseException.py +21 -21
  46. edsl/exceptions/__init__.py +54 -54
  47. edsl/exceptions/agents.py +42 -42
  48. edsl/exceptions/cache.py +5 -5
  49. edsl/exceptions/configuration.py +16 -16
  50. edsl/exceptions/coop.py +10 -10
  51. edsl/exceptions/data.py +14 -14
  52. edsl/exceptions/general.py +34 -34
  53. edsl/exceptions/jobs.py +33 -33
  54. edsl/exceptions/language_models.py +63 -63
  55. edsl/exceptions/prompts.py +15 -15
  56. edsl/exceptions/questions.py +91 -91
  57. edsl/exceptions/results.py +29 -29
  58. edsl/exceptions/scenarios.py +22 -22
  59. edsl/exceptions/surveys.py +37 -37
  60. edsl/inference_services/AnthropicService.py +87 -87
  61. edsl/inference_services/AwsBedrock.py +120 -120
  62. edsl/inference_services/AzureAI.py +217 -217
  63. edsl/inference_services/DeepInfraService.py +18 -18
  64. edsl/inference_services/GoogleService.py +148 -148
  65. edsl/inference_services/GroqService.py +20 -20
  66. edsl/inference_services/InferenceServiceABC.py +147 -147
  67. edsl/inference_services/InferenceServicesCollection.py +97 -97
  68. edsl/inference_services/MistralAIService.py +123 -123
  69. edsl/inference_services/OllamaService.py +18 -18
  70. edsl/inference_services/OpenAIService.py +224 -224
  71. edsl/inference_services/PerplexityService.py +163 -163
  72. edsl/inference_services/TestService.py +89 -89
  73. edsl/inference_services/TogetherAIService.py +170 -170
  74. edsl/inference_services/models_available_cache.py +118 -118
  75. edsl/inference_services/rate_limits_cache.py +25 -25
  76. edsl/inference_services/registry.py +41 -41
  77. edsl/inference_services/write_available.py +10 -10
  78. edsl/jobs/Answers.py +56 -56
  79. edsl/jobs/Jobs.py +898 -898
  80. edsl/jobs/JobsChecks.py +147 -147
  81. edsl/jobs/JobsPrompts.py +268 -268
  82. edsl/jobs/JobsRemoteInferenceHandler.py +239 -239
  83. edsl/jobs/__init__.py +1 -1
  84. edsl/jobs/buckets/BucketCollection.py +63 -63
  85. edsl/jobs/buckets/ModelBuckets.py +65 -65
  86. edsl/jobs/buckets/TokenBucket.py +251 -251
  87. edsl/jobs/interviews/Interview.py +661 -661
  88. edsl/jobs/interviews/InterviewExceptionCollection.py +99 -99
  89. edsl/jobs/interviews/InterviewExceptionEntry.py +186 -186
  90. edsl/jobs/interviews/InterviewStatistic.py +63 -63
  91. edsl/jobs/interviews/InterviewStatisticsCollection.py +25 -25
  92. edsl/jobs/interviews/InterviewStatusDictionary.py +78 -78
  93. edsl/jobs/interviews/InterviewStatusLog.py +92 -92
  94. edsl/jobs/interviews/ReportErrors.py +66 -66
  95. edsl/jobs/interviews/interview_status_enum.py +9 -9
  96. edsl/jobs/runners/JobsRunnerAsyncio.py +466 -466
  97. edsl/jobs/runners/JobsRunnerStatus.py +330 -330
  98. edsl/jobs/tasks/QuestionTaskCreator.py +242 -242
  99. edsl/jobs/tasks/TaskCreators.py +64 -64
  100. edsl/jobs/tasks/TaskHistory.py +450 -450
  101. edsl/jobs/tasks/TaskStatusLog.py +23 -23
  102. edsl/jobs/tasks/task_status_enum.py +163 -163
  103. edsl/jobs/tokens/InterviewTokenUsage.py +27 -27
  104. edsl/jobs/tokens/TokenUsage.py +34 -34
  105. edsl/language_models/KeyLookup.py +30 -30
  106. edsl/language_models/LanguageModel.py +668 -668
  107. edsl/language_models/ModelList.py +155 -155
  108. edsl/language_models/RegisterLanguageModelsMeta.py +184 -184
  109. edsl/language_models/__init__.py +3 -3
  110. edsl/language_models/fake_openai_call.py +15 -15
  111. edsl/language_models/fake_openai_service.py +61 -61
  112. edsl/language_models/registry.py +190 -190
  113. edsl/language_models/repair.py +156 -156
  114. edsl/language_models/unused/ReplicateBase.py +83 -83
  115. edsl/language_models/utilities.py +64 -64
  116. edsl/notebooks/Notebook.py +258 -258
  117. edsl/notebooks/__init__.py +1 -1
  118. edsl/prompts/Prompt.py +362 -362
  119. edsl/prompts/__init__.py +2 -2
  120. edsl/questions/AnswerValidatorMixin.py +289 -289
  121. edsl/questions/QuestionBase.py +664 -664
  122. edsl/questions/QuestionBaseGenMixin.py +161 -161
  123. edsl/questions/QuestionBasePromptsMixin.py +217 -217
  124. edsl/questions/QuestionBudget.py +227 -227
  125. edsl/questions/QuestionCheckBox.py +359 -359
  126. edsl/questions/QuestionExtract.py +182 -182
  127. edsl/questions/QuestionFreeText.py +114 -114
  128. edsl/questions/QuestionFunctional.py +166 -166
  129. edsl/questions/QuestionList.py +231 -231
  130. edsl/questions/QuestionMultipleChoice.py +286 -286
  131. edsl/questions/QuestionNumerical.py +153 -153
  132. edsl/questions/QuestionRank.py +324 -324
  133. edsl/questions/Quick.py +41 -41
  134. edsl/questions/RegisterQuestionsMeta.py +71 -71
  135. edsl/questions/ResponseValidatorABC.py +174 -174
  136. edsl/questions/SimpleAskMixin.py +73 -73
  137. edsl/questions/__init__.py +26 -26
  138. edsl/questions/compose_questions.py +98 -98
  139. edsl/questions/decorators.py +21 -21
  140. edsl/questions/derived/QuestionLikertFive.py +76 -76
  141. edsl/questions/derived/QuestionLinearScale.py +87 -87
  142. edsl/questions/derived/QuestionTopK.py +93 -93
  143. edsl/questions/derived/QuestionYesNo.py +82 -82
  144. edsl/questions/descriptors.py +413 -413
  145. edsl/questions/prompt_templates/question_budget.jinja +13 -13
  146. edsl/questions/prompt_templates/question_checkbox.jinja +32 -32
  147. edsl/questions/prompt_templates/question_extract.jinja +11 -11
  148. edsl/questions/prompt_templates/question_free_text.jinja +3 -3
  149. edsl/questions/prompt_templates/question_linear_scale.jinja +11 -11
  150. edsl/questions/prompt_templates/question_list.jinja +17 -17
  151. edsl/questions/prompt_templates/question_multiple_choice.jinja +33 -33
  152. edsl/questions/prompt_templates/question_numerical.jinja +36 -36
  153. edsl/questions/question_registry.py +177 -177
  154. edsl/questions/settings.py +12 -12
  155. edsl/questions/templates/budget/answering_instructions.jinja +7 -7
  156. edsl/questions/templates/budget/question_presentation.jinja +7 -7
  157. edsl/questions/templates/checkbox/answering_instructions.jinja +10 -10
  158. edsl/questions/templates/checkbox/question_presentation.jinja +22 -22
  159. edsl/questions/templates/extract/answering_instructions.jinja +7 -7
  160. edsl/questions/templates/likert_five/answering_instructions.jinja +10 -10
  161. edsl/questions/templates/likert_five/question_presentation.jinja +11 -11
  162. edsl/questions/templates/linear_scale/answering_instructions.jinja +5 -5
  163. edsl/questions/templates/linear_scale/question_presentation.jinja +5 -5
  164. edsl/questions/templates/list/answering_instructions.jinja +3 -3
  165. edsl/questions/templates/list/question_presentation.jinja +5 -5
  166. edsl/questions/templates/multiple_choice/answering_instructions.jinja +9 -9
  167. edsl/questions/templates/multiple_choice/question_presentation.jinja +11 -11
  168. edsl/questions/templates/numerical/answering_instructions.jinja +6 -6
  169. edsl/questions/templates/numerical/question_presentation.jinja +6 -6
  170. edsl/questions/templates/rank/answering_instructions.jinja +11 -11
  171. edsl/questions/templates/rank/question_presentation.jinja +15 -15
  172. edsl/questions/templates/top_k/answering_instructions.jinja +8 -8
  173. edsl/questions/templates/top_k/question_presentation.jinja +22 -22
  174. edsl/questions/templates/yes_no/answering_instructions.jinja +6 -6
  175. edsl/questions/templates/yes_no/question_presentation.jinja +11 -11
  176. edsl/results/CSSParameterizer.py +108 -108
  177. edsl/results/Dataset.py +424 -424
  178. edsl/results/DatasetExportMixin.py +731 -731
  179. edsl/results/DatasetTree.py +275 -275
  180. edsl/results/Result.py +465 -465
  181. edsl/results/Results.py +1165 -1165
  182. edsl/results/ResultsDBMixin.py +238 -238
  183. edsl/results/ResultsExportMixin.py +43 -43
  184. edsl/results/ResultsFetchMixin.py +33 -33
  185. edsl/results/ResultsGGMixin.py +121 -121
  186. edsl/results/ResultsToolsMixin.py +98 -98
  187. edsl/results/Selector.py +135 -135
  188. edsl/results/TableDisplay.py +198 -198
  189. edsl/results/__init__.py +2 -2
  190. edsl/results/table_display.css +77 -77
  191. edsl/results/tree_explore.py +115 -115
  192. edsl/scenarios/FileStore.py +632 -632
  193. edsl/scenarios/Scenario.py +601 -601
  194. edsl/scenarios/ScenarioHtmlMixin.py +64 -64
  195. edsl/scenarios/ScenarioJoin.py +127 -127
  196. edsl/scenarios/ScenarioList.py +1287 -1287
  197. edsl/scenarios/ScenarioListExportMixin.py +52 -52
  198. edsl/scenarios/ScenarioListPdfMixin.py +261 -261
  199. edsl/scenarios/__init__.py +4 -4
  200. edsl/shared.py +1 -1
  201. edsl/study/ObjectEntry.py +173 -173
  202. edsl/study/ProofOfWork.py +113 -113
  203. edsl/study/SnapShot.py +80 -80
  204. edsl/study/Study.py +528 -528
  205. edsl/study/__init__.py +4 -4
  206. edsl/surveys/DAG.py +148 -148
  207. edsl/surveys/Memory.py +31 -31
  208. edsl/surveys/MemoryPlan.py +244 -244
  209. edsl/surveys/Rule.py +326 -326
  210. edsl/surveys/RuleCollection.py +387 -387
  211. edsl/surveys/Survey.py +1801 -1801
  212. edsl/surveys/SurveyCSS.py +261 -261
  213. edsl/surveys/SurveyExportMixin.py +259 -259
  214. edsl/surveys/SurveyFlowVisualizationMixin.py +179 -179
  215. edsl/surveys/SurveyQualtricsImport.py +284 -284
  216. edsl/surveys/__init__.py +3 -3
  217. edsl/surveys/base.py +53 -53
  218. edsl/surveys/descriptors.py +56 -56
  219. edsl/surveys/instructions/ChangeInstruction.py +49 -49
  220. edsl/surveys/instructions/Instruction.py +65 -65
  221. edsl/surveys/instructions/InstructionCollection.py +77 -77
  222. edsl/templates/error_reporting/base.html +23 -23
  223. edsl/templates/error_reporting/exceptions_by_model.html +34 -34
  224. edsl/templates/error_reporting/exceptions_by_question_name.html +16 -16
  225. edsl/templates/error_reporting/exceptions_by_type.html +16 -16
  226. edsl/templates/error_reporting/interview_details.html +115 -115
  227. edsl/templates/error_reporting/interviews.html +19 -19
  228. edsl/templates/error_reporting/overview.html +4 -4
  229. edsl/templates/error_reporting/performance_plot.html +1 -1
  230. edsl/templates/error_reporting/report.css +73 -73
  231. edsl/templates/error_reporting/report.html +117 -117
  232. edsl/templates/error_reporting/report.js +25 -25
  233. edsl/tools/__init__.py +1 -1
  234. edsl/tools/clusters.py +192 -192
  235. edsl/tools/embeddings.py +27 -27
  236. edsl/tools/embeddings_plotting.py +118 -118
  237. edsl/tools/plotting.py +112 -112
  238. edsl/tools/summarize.py +18 -18
  239. edsl/utilities/SystemInfo.py +28 -28
  240. edsl/utilities/__init__.py +22 -22
  241. edsl/utilities/ast_utilities.py +25 -25
  242. edsl/utilities/data/Registry.py +6 -6
  243. edsl/utilities/data/__init__.py +1 -1
  244. edsl/utilities/data/scooter_results.json +1 -1
  245. edsl/utilities/decorators.py +77 -77
  246. edsl/utilities/gcp_bucket/cloud_storage.py +96 -96
  247. edsl/utilities/interface.py +627 -627
  248. edsl/utilities/naming_utilities.py +263 -263
  249. edsl/utilities/repair_functions.py +28 -28
  250. edsl/utilities/restricted_python.py +70 -70
  251. edsl/utilities/utilities.py +424 -424
  252. {edsl-0.1.39.dev1.dist-info → edsl-0.1.39.dev3.dist-info}/LICENSE +21 -21
  253. {edsl-0.1.39.dev1.dist-info → edsl-0.1.39.dev3.dist-info}/METADATA +1 -1
  254. edsl-0.1.39.dev3.dist-info/RECORD +277 -0
  255. edsl-0.1.39.dev1.dist-info/RECORD +0 -277
  256. {edsl-0.1.39.dev1.dist-info → edsl-0.1.39.dev3.dist-info}/WHEEL +0 -0
edsl/jobs/JobsPrompts.py CHANGED
@@ -1,268 +1,268 @@
1
- from typing import List, TYPE_CHECKING
2
-
3
- from edsl.results.Dataset import Dataset
4
-
5
- if TYPE_CHECKING:
6
- from edsl.jobs import Jobs
7
-
8
- # from edsl.jobs.interviews.Interview import Interview
9
- # from edsl.results.Dataset import Dataset
10
- # from edsl.agents.AgentList import AgentList
11
- # from edsl.scenarios.ScenarioList import ScenarioList
12
- # from edsl.surveys.Survey import Survey
13
-
14
-
15
- class JobsPrompts:
16
- def __init__(self, jobs: "Jobs"):
17
- self.interviews = jobs.interviews()
18
- self.agents = jobs.agents
19
- self.scenarios = jobs.scenarios
20
- self.survey = jobs.survey
21
- self._price_lookup = None
22
-
23
- @property
24
- def price_lookup(self):
25
- if self._price_lookup is None:
26
- from edsl import Coop
27
-
28
- c = Coop()
29
- self._price_lookup = c.fetch_prices()
30
- return self._price_lookup
31
-
32
- def prompts(self) -> "Dataset":
33
- """Return a Dataset of prompts that will be used.
34
-
35
- >>> from edsl.jobs import Jobs
36
- >>> Jobs.example().prompts()
37
- Dataset(...)
38
- """
39
- interviews = self.interviews
40
- interview_indices = []
41
- question_names = []
42
- user_prompts = []
43
- system_prompts = []
44
- scenario_indices = []
45
- agent_indices = []
46
- models = []
47
- costs = []
48
-
49
- for interview_index, interview in enumerate(interviews):
50
- invigilators = [
51
- interview._get_invigilator(question)
52
- for question in self.survey.questions
53
- ]
54
- for _, invigilator in enumerate(invigilators):
55
- prompts = invigilator.get_prompts()
56
- user_prompt = prompts["user_prompt"]
57
- system_prompt = prompts["system_prompt"]
58
- user_prompts.append(user_prompt)
59
- system_prompts.append(system_prompt)
60
- agent_index = self.agents.index(invigilator.agent)
61
- agent_indices.append(agent_index)
62
- interview_indices.append(interview_index)
63
- scenario_index = self.scenarios.index(invigilator.scenario)
64
- scenario_indices.append(scenario_index)
65
- models.append(invigilator.model.model)
66
- question_names.append(invigilator.question.question_name)
67
-
68
- prompt_cost = self.estimate_prompt_cost(
69
- system_prompt=system_prompt,
70
- user_prompt=user_prompt,
71
- price_lookup=self.price_lookup,
72
- inference_service=invigilator.model._inference_service_,
73
- model=invigilator.model.model,
74
- )
75
- costs.append(prompt_cost["cost_usd"])
76
-
77
- d = Dataset(
78
- [
79
- {"user_prompt": user_prompts},
80
- {"system_prompt": system_prompts},
81
- {"interview_index": interview_indices},
82
- {"question_name": question_names},
83
- {"scenario_index": scenario_indices},
84
- {"agent_index": agent_indices},
85
- {"model": models},
86
- {"estimated_cost": costs},
87
- ]
88
- )
89
- return d
90
-
91
- @staticmethod
92
- def estimate_prompt_cost(
93
- system_prompt: str,
94
- user_prompt: str,
95
- price_lookup: dict,
96
- inference_service: str,
97
- model: str,
98
- ) -> dict:
99
- """Estimates the cost of a prompt. Takes piping into account."""
100
- import math
101
-
102
- def get_piping_multiplier(prompt: str):
103
- """Returns 2 if a prompt includes Jinja braces, and 1 otherwise."""
104
-
105
- if "{{" in prompt and "}}" in prompt:
106
- return 2
107
- return 1
108
-
109
- # Look up prices per token
110
- key = (inference_service, model)
111
-
112
- try:
113
- relevant_prices = price_lookup[key]
114
-
115
- service_input_token_price = float(
116
- relevant_prices["input"]["service_stated_token_price"]
117
- )
118
- service_input_token_qty = float(
119
- relevant_prices["input"]["service_stated_token_qty"]
120
- )
121
- input_price_per_token = service_input_token_price / service_input_token_qty
122
-
123
- service_output_token_price = float(
124
- relevant_prices["output"]["service_stated_token_price"]
125
- )
126
- service_output_token_qty = float(
127
- relevant_prices["output"]["service_stated_token_qty"]
128
- )
129
- output_price_per_token = (
130
- service_output_token_price / service_output_token_qty
131
- )
132
-
133
- except KeyError:
134
- # A KeyError is likely to occur if we cannot retrieve prices (the price_lookup dict is empty)
135
- # Use a sensible default
136
-
137
- import warnings
138
-
139
- warnings.warn(
140
- "Price data could not be retrieved. Using default estimates for input and output token prices. Input: $0.15 / 1M tokens; Output: $0.60 / 1M tokens"
141
- )
142
- input_price_per_token = 0.00000015 # $0.15 / 1M tokens
143
- output_price_per_token = 0.00000060 # $0.60 / 1M tokens
144
-
145
- # Compute the number of characters (double if the question involves piping)
146
- user_prompt_chars = len(str(user_prompt)) * get_piping_multiplier(
147
- str(user_prompt)
148
- )
149
- system_prompt_chars = len(str(system_prompt)) * get_piping_multiplier(
150
- str(system_prompt)
151
- )
152
-
153
- # Convert into tokens (1 token approx. equals 4 characters)
154
- input_tokens = (user_prompt_chars + system_prompt_chars) // 4
155
-
156
- output_tokens = math.ceil(0.75 * input_tokens)
157
-
158
- cost = (
159
- input_tokens * input_price_per_token
160
- + output_tokens * output_price_per_token
161
- )
162
-
163
- return {
164
- "input_tokens": input_tokens,
165
- "output_tokens": output_tokens,
166
- "cost_usd": cost,
167
- }
168
-
169
- def estimate_job_cost_from_external_prices(
170
- self, price_lookup: dict, iterations: int = 1
171
- ) -> dict:
172
- """
173
- Estimates the cost of a job according to the following assumptions:
174
-
175
- - 1 token = 4 characters.
176
- - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
177
-
178
- price_lookup is an external pricing dictionary.
179
- """
180
-
181
- import pandas as pd
182
-
183
- interviews = self.interviews
184
- data = []
185
- for interview in interviews:
186
- invigilators = [
187
- interview._get_invigilator(question)
188
- for question in self.survey.questions
189
- ]
190
- for invigilator in invigilators:
191
- prompts = invigilator.get_prompts()
192
-
193
- # By this point, agent and scenario data has already been added to the prompts
194
- user_prompt = prompts["user_prompt"]
195
- system_prompt = prompts["system_prompt"]
196
- inference_service = invigilator.model._inference_service_
197
- model = invigilator.model.model
198
-
199
- prompt_cost = self.estimate_prompt_cost(
200
- system_prompt=system_prompt,
201
- user_prompt=user_prompt,
202
- price_lookup=price_lookup,
203
- inference_service=inference_service,
204
- model=model,
205
- )
206
-
207
- data.append(
208
- {
209
- "user_prompt": user_prompt,
210
- "system_prompt": system_prompt,
211
- "estimated_input_tokens": prompt_cost["input_tokens"],
212
- "estimated_output_tokens": prompt_cost["output_tokens"],
213
- "estimated_cost_usd": prompt_cost["cost_usd"],
214
- "inference_service": inference_service,
215
- "model": model,
216
- }
217
- )
218
-
219
- df = pd.DataFrame.from_records(data)
220
-
221
- df = (
222
- df.groupby(["inference_service", "model"])
223
- .agg(
224
- {
225
- "estimated_cost_usd": "sum",
226
- "estimated_input_tokens": "sum",
227
- "estimated_output_tokens": "sum",
228
- }
229
- )
230
- .reset_index()
231
- )
232
- df["estimated_cost_usd"] = df["estimated_cost_usd"] * iterations
233
- df["estimated_input_tokens"] = df["estimated_input_tokens"] * iterations
234
- df["estimated_output_tokens"] = df["estimated_output_tokens"] * iterations
235
-
236
- estimated_costs_by_model = df.to_dict("records")
237
-
238
- estimated_total_cost = sum(
239
- model["estimated_cost_usd"] for model in estimated_costs_by_model
240
- )
241
- estimated_total_input_tokens = sum(
242
- model["estimated_input_tokens"] for model in estimated_costs_by_model
243
- )
244
- estimated_total_output_tokens = sum(
245
- model["estimated_output_tokens"] for model in estimated_costs_by_model
246
- )
247
-
248
- output = {
249
- "estimated_total_cost_usd": estimated_total_cost,
250
- "estimated_total_input_tokens": estimated_total_input_tokens,
251
- "estimated_total_output_tokens": estimated_total_output_tokens,
252
- "model_costs": estimated_costs_by_model,
253
- }
254
-
255
- return output
256
-
257
- def estimate_job_cost(self, iterations: int = 1) -> dict:
258
- """
259
- Estimates the cost of a job according to the following assumptions:
260
-
261
- - 1 token = 4 characters.
262
- - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
263
-
264
- Fetches prices from Coop.
265
- """
266
- return self.estimate_job_cost_from_external_prices(
267
- price_lookup=self.price_lookup, iterations=iterations
268
- )
1
+ from typing import List, TYPE_CHECKING
2
+
3
+ from edsl.results.Dataset import Dataset
4
+
5
+ if TYPE_CHECKING:
6
+ from edsl.jobs import Jobs
7
+
8
+ # from edsl.jobs.interviews.Interview import Interview
9
+ # from edsl.results.Dataset import Dataset
10
+ # from edsl.agents.AgentList import AgentList
11
+ # from edsl.scenarios.ScenarioList import ScenarioList
12
+ # from edsl.surveys.Survey import Survey
13
+
14
+
15
+ class JobsPrompts:
16
+ def __init__(self, jobs: "Jobs"):
17
+ self.interviews = jobs.interviews()
18
+ self.agents = jobs.agents
19
+ self.scenarios = jobs.scenarios
20
+ self.survey = jobs.survey
21
+ self._price_lookup = None
22
+
23
+ @property
24
+ def price_lookup(self):
25
+ if self._price_lookup is None:
26
+ from edsl import Coop
27
+
28
+ c = Coop()
29
+ self._price_lookup = c.fetch_prices()
30
+ return self._price_lookup
31
+
32
+ def prompts(self) -> "Dataset":
33
+ """Return a Dataset of prompts that will be used.
34
+
35
+ >>> from edsl.jobs import Jobs
36
+ >>> Jobs.example().prompts()
37
+ Dataset(...)
38
+ """
39
+ interviews = self.interviews
40
+ interview_indices = []
41
+ question_names = []
42
+ user_prompts = []
43
+ system_prompts = []
44
+ scenario_indices = []
45
+ agent_indices = []
46
+ models = []
47
+ costs = []
48
+
49
+ for interview_index, interview in enumerate(interviews):
50
+ invigilators = [
51
+ interview._get_invigilator(question)
52
+ for question in self.survey.questions
53
+ ]
54
+ for _, invigilator in enumerate(invigilators):
55
+ prompts = invigilator.get_prompts()
56
+ user_prompt = prompts["user_prompt"]
57
+ system_prompt = prompts["system_prompt"]
58
+ user_prompts.append(user_prompt)
59
+ system_prompts.append(system_prompt)
60
+ agent_index = self.agents.index(invigilator.agent)
61
+ agent_indices.append(agent_index)
62
+ interview_indices.append(interview_index)
63
+ scenario_index = self.scenarios.index(invigilator.scenario)
64
+ scenario_indices.append(scenario_index)
65
+ models.append(invigilator.model.model)
66
+ question_names.append(invigilator.question.question_name)
67
+
68
+ prompt_cost = self.estimate_prompt_cost(
69
+ system_prompt=system_prompt,
70
+ user_prompt=user_prompt,
71
+ price_lookup=self.price_lookup,
72
+ inference_service=invigilator.model._inference_service_,
73
+ model=invigilator.model.model,
74
+ )
75
+ costs.append(prompt_cost["cost_usd"])
76
+
77
+ d = Dataset(
78
+ [
79
+ {"user_prompt": user_prompts},
80
+ {"system_prompt": system_prompts},
81
+ {"interview_index": interview_indices},
82
+ {"question_name": question_names},
83
+ {"scenario_index": scenario_indices},
84
+ {"agent_index": agent_indices},
85
+ {"model": models},
86
+ {"estimated_cost": costs},
87
+ ]
88
+ )
89
+ return d
90
+
91
+ @staticmethod
92
+ def estimate_prompt_cost(
93
+ system_prompt: str,
94
+ user_prompt: str,
95
+ price_lookup: dict,
96
+ inference_service: str,
97
+ model: str,
98
+ ) -> dict:
99
+ """Estimates the cost of a prompt. Takes piping into account."""
100
+ import math
101
+
102
+ def get_piping_multiplier(prompt: str):
103
+ """Returns 2 if a prompt includes Jinja braces, and 1 otherwise."""
104
+
105
+ if "{{" in prompt and "}}" in prompt:
106
+ return 2
107
+ return 1
108
+
109
+ # Look up prices per token
110
+ key = (inference_service, model)
111
+
112
+ try:
113
+ relevant_prices = price_lookup[key]
114
+
115
+ service_input_token_price = float(
116
+ relevant_prices["input"]["service_stated_token_price"]
117
+ )
118
+ service_input_token_qty = float(
119
+ relevant_prices["input"]["service_stated_token_qty"]
120
+ )
121
+ input_price_per_token = service_input_token_price / service_input_token_qty
122
+
123
+ service_output_token_price = float(
124
+ relevant_prices["output"]["service_stated_token_price"]
125
+ )
126
+ service_output_token_qty = float(
127
+ relevant_prices["output"]["service_stated_token_qty"]
128
+ )
129
+ output_price_per_token = (
130
+ service_output_token_price / service_output_token_qty
131
+ )
132
+
133
+ except KeyError:
134
+ # A KeyError is likely to occur if we cannot retrieve prices (the price_lookup dict is empty)
135
+ # Use a sensible default
136
+
137
+ import warnings
138
+
139
+ warnings.warn(
140
+ "Price data could not be retrieved. Using default estimates for input and output token prices. Input: $0.15 / 1M tokens; Output: $0.60 / 1M tokens"
141
+ )
142
+ input_price_per_token = 0.00000015 # $0.15 / 1M tokens
143
+ output_price_per_token = 0.00000060 # $0.60 / 1M tokens
144
+
145
+ # Compute the number of characters (double if the question involves piping)
146
+ user_prompt_chars = len(str(user_prompt)) * get_piping_multiplier(
147
+ str(user_prompt)
148
+ )
149
+ system_prompt_chars = len(str(system_prompt)) * get_piping_multiplier(
150
+ str(system_prompt)
151
+ )
152
+
153
+ # Convert into tokens (1 token approx. equals 4 characters)
154
+ input_tokens = (user_prompt_chars + system_prompt_chars) // 4
155
+
156
+ output_tokens = math.ceil(0.75 * input_tokens)
157
+
158
+ cost = (
159
+ input_tokens * input_price_per_token
160
+ + output_tokens * output_price_per_token
161
+ )
162
+
163
+ return {
164
+ "input_tokens": input_tokens,
165
+ "output_tokens": output_tokens,
166
+ "cost_usd": cost,
167
+ }
168
+
169
+ def estimate_job_cost_from_external_prices(
170
+ self, price_lookup: dict, iterations: int = 1
171
+ ) -> dict:
172
+ """
173
+ Estimates the cost of a job according to the following assumptions:
174
+
175
+ - 1 token = 4 characters.
176
+ - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
177
+
178
+ price_lookup is an external pricing dictionary.
179
+ """
180
+
181
+ import pandas as pd
182
+
183
+ interviews = self.interviews
184
+ data = []
185
+ for interview in interviews:
186
+ invigilators = [
187
+ interview._get_invigilator(question)
188
+ for question in self.survey.questions
189
+ ]
190
+ for invigilator in invigilators:
191
+ prompts = invigilator.get_prompts()
192
+
193
+ # By this point, agent and scenario data has already been added to the prompts
194
+ user_prompt = prompts["user_prompt"]
195
+ system_prompt = prompts["system_prompt"]
196
+ inference_service = invigilator.model._inference_service_
197
+ model = invigilator.model.model
198
+
199
+ prompt_cost = self.estimate_prompt_cost(
200
+ system_prompt=system_prompt,
201
+ user_prompt=user_prompt,
202
+ price_lookup=price_lookup,
203
+ inference_service=inference_service,
204
+ model=model,
205
+ )
206
+
207
+ data.append(
208
+ {
209
+ "user_prompt": user_prompt,
210
+ "system_prompt": system_prompt,
211
+ "estimated_input_tokens": prompt_cost["input_tokens"],
212
+ "estimated_output_tokens": prompt_cost["output_tokens"],
213
+ "estimated_cost_usd": prompt_cost["cost_usd"],
214
+ "inference_service": inference_service,
215
+ "model": model,
216
+ }
217
+ )
218
+
219
+ df = pd.DataFrame.from_records(data)
220
+
221
+ df = (
222
+ df.groupby(["inference_service", "model"])
223
+ .agg(
224
+ {
225
+ "estimated_cost_usd": "sum",
226
+ "estimated_input_tokens": "sum",
227
+ "estimated_output_tokens": "sum",
228
+ }
229
+ )
230
+ .reset_index()
231
+ )
232
+ df["estimated_cost_usd"] = df["estimated_cost_usd"] * iterations
233
+ df["estimated_input_tokens"] = df["estimated_input_tokens"] * iterations
234
+ df["estimated_output_tokens"] = df["estimated_output_tokens"] * iterations
235
+
236
+ estimated_costs_by_model = df.to_dict("records")
237
+
238
+ estimated_total_cost = sum(
239
+ model["estimated_cost_usd"] for model in estimated_costs_by_model
240
+ )
241
+ estimated_total_input_tokens = sum(
242
+ model["estimated_input_tokens"] for model in estimated_costs_by_model
243
+ )
244
+ estimated_total_output_tokens = sum(
245
+ model["estimated_output_tokens"] for model in estimated_costs_by_model
246
+ )
247
+
248
+ output = {
249
+ "estimated_total_cost_usd": estimated_total_cost,
250
+ "estimated_total_input_tokens": estimated_total_input_tokens,
251
+ "estimated_total_output_tokens": estimated_total_output_tokens,
252
+ "model_costs": estimated_costs_by_model,
253
+ }
254
+
255
+ return output
256
+
257
+ def estimate_job_cost(self, iterations: int = 1) -> dict:
258
+ """
259
+ Estimates the cost of a job according to the following assumptions:
260
+
261
+ - 1 token = 4 characters.
262
+ - For each prompt, output tokens = input tokens * 0.75, rounded up to the nearest integer.
263
+
264
+ Fetches prices from Coop.
265
+ """
266
+ return self.estimate_job_cost_from_external_prices(
267
+ price_lookup=self.price_lookup, iterations=iterations
268
+ )