dnt 0.2.4__py3-none-any.whl → 0.3.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dnt might be problematic. Click here for more details.
- dnt/__init__.py +3 -2
- dnt/analysis/__init__.py +3 -2
- dnt/analysis/count.py +54 -37
- dnt/analysis/interaction2.py +518 -0
- dnt/analysis/stop.py +22 -17
- dnt/analysis/stop2.py +289 -0
- dnt/analysis/stop3.py +758 -0
- dnt/detect/signal/detector.py +326 -0
- dnt/detect/timestamp.py +105 -0
- dnt/detect/yolov8/detector.py +179 -36
- dnt/detect/yolov8/segmentor.py +60 -2
- dnt/engine/__init__.py +8 -0
- dnt/engine/bbox_interp.py +83 -0
- dnt/engine/bbox_iou.py +20 -0
- dnt/engine/cluster.py +31 -0
- dnt/engine/iob.py +66 -0
- dnt/filter/filter.py +333 -2
- dnt/label/labeler.py +4 -4
- dnt/label/labeler2.py +605 -0
- dnt/shared/__init__.py +2 -1
- dnt/shared/data/coco.names +0 -0
- dnt/shared/data/openimages.names +0 -0
- dnt/shared/data/voc.names +0 -0
- dnt/shared/download.py +12 -0
- dnt/shared/synhcro.py +150 -0
- dnt/shared/util.py +17 -4
- dnt/third_party/fast-reid/__init__.py +1 -0
- dnt/third_party/fast-reid/configs/Base-AGW.yml +19 -0
- dnt/third_party/fast-reid/configs/Base-MGN.yml +12 -0
- dnt/third_party/fast-reid/configs/Base-SBS.yml +63 -0
- dnt/third_party/fast-reid/configs/Base-bagtricks.yml +76 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/AGW_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/mgn_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/sbs_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/AGW_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT17/AGW_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/AGW_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT17/AGW_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/bagtricks_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT17/bagtricks_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/bagtricks_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT17/bagtricks_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/mgn_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/sbs_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT17/sbs_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/sbs_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT17/sbs_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/AGW_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT20/AGW_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/AGW_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT20/AGW_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/bagtricks_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT20/bagtricks_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/bagtricks_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT20/bagtricks_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/mgn_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/sbs_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT20/sbs_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/sbs_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT20/sbs_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MSMT17/AGW_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MSMT17/AGW_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MSMT17/AGW_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MSMT17/AGW_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R101-ibn.yml +13 -0
- dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R50-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MSMT17/bagtricks_S50.yml +12 -0
- dnt/third_party/fast-reid/configs/MSMT17/mgn_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MSMT17/sbs_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MSMT17/sbs_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MSMT17/sbs_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MSMT17/sbs_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/AGW_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/Market1501/AGW_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/AGW_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/Market1501/AGW_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/bagtricks_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/Market1501/bagtricks_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/bagtricks_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/Market1501/bagtricks_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/bagtricks_vit.yml +88 -0
- dnt/third_party/fast-reid/configs/Market1501/mgn_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/sbs_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/Market1501/sbs_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/sbs_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/Market1501/sbs_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/VERIWild/bagtricks_R50-ibn.yml +35 -0
- dnt/third_party/fast-reid/configs/VeRi/sbs_R50-ibn.yml +35 -0
- dnt/third_party/fast-reid/configs/VehicleID/bagtricks_R50-ibn.yml +36 -0
- dnt/third_party/fast-reid/configs/__init__.py +0 -0
- dnt/third_party/fast-reid/fast_reid_interfece.py +175 -0
- dnt/third_party/fast-reid/fastreid/__init__.py +6 -0
- dnt/third_party/fast-reid/fastreid/config/__init__.py +15 -0
- dnt/third_party/fast-reid/fastreid/config/config.py +319 -0
- dnt/third_party/fast-reid/fastreid/config/defaults.py +329 -0
- dnt/third_party/fast-reid/fastreid/data/__init__.py +17 -0
- dnt/third_party/fast-reid/fastreid/data/build.py +194 -0
- dnt/third_party/fast-reid/fastreid/data/common.py +58 -0
- dnt/third_party/fast-reid/fastreid/data/data_utils.py +202 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/AirportALERT.py +50 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/__init__.py +43 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/bases.py +183 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/caviara.py +44 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/cuhk03.py +274 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/cuhk_sysu.py +58 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/dukemtmcreid.py +70 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/grid.py +44 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/iLIDS.py +45 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/lpw.py +49 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/market1501.py +89 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/msmt17.py +114 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/pes3d.py +44 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/pku.py +44 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/prai.py +43 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/prid.py +41 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/saivt.py +47 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/sensereid.py +47 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/shinpuhkan.py +48 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/sysu_mm.py +47 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/thermalworld.py +43 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/vehicleid.py +126 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/veri.py +69 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/veriwild.py +140 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/viper.py +45 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/wildtracker.py +59 -0
- dnt/third_party/fast-reid/fastreid/data/samplers/__init__.py +18 -0
- dnt/third_party/fast-reid/fastreid/data/samplers/data_sampler.py +85 -0
- dnt/third_party/fast-reid/fastreid/data/samplers/imbalance_sampler.py +67 -0
- dnt/third_party/fast-reid/fastreid/data/samplers/triplet_sampler.py +260 -0
- dnt/third_party/fast-reid/fastreid/data/transforms/__init__.py +11 -0
- dnt/third_party/fast-reid/fastreid/data/transforms/autoaugment.py +806 -0
- dnt/third_party/fast-reid/fastreid/data/transforms/build.py +100 -0
- dnt/third_party/fast-reid/fastreid/data/transforms/functional.py +180 -0
- dnt/third_party/fast-reid/fastreid/data/transforms/transforms.py +161 -0
- dnt/third_party/fast-reid/fastreid/engine/__init__.py +15 -0
- dnt/third_party/fast-reid/fastreid/engine/defaults.py +490 -0
- dnt/third_party/fast-reid/fastreid/engine/hooks.py +534 -0
- dnt/third_party/fast-reid/fastreid/engine/launch.py +103 -0
- dnt/third_party/fast-reid/fastreid/engine/train_loop.py +357 -0
- dnt/third_party/fast-reid/fastreid/evaluation/__init__.py +6 -0
- dnt/third_party/fast-reid/fastreid/evaluation/clas_evaluator.py +81 -0
- dnt/third_party/fast-reid/fastreid/evaluation/evaluator.py +176 -0
- dnt/third_party/fast-reid/fastreid/evaluation/query_expansion.py +46 -0
- dnt/third_party/fast-reid/fastreid/evaluation/rank.py +200 -0
- dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/__init__.py +20 -0
- dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/setup.py +32 -0
- dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/test_cython.py +106 -0
- dnt/third_party/fast-reid/fastreid/evaluation/reid_evaluation.py +143 -0
- dnt/third_party/fast-reid/fastreid/evaluation/rerank.py +73 -0
- dnt/third_party/fast-reid/fastreid/evaluation/roc.py +90 -0
- dnt/third_party/fast-reid/fastreid/evaluation/testing.py +88 -0
- dnt/third_party/fast-reid/fastreid/layers/__init__.py +19 -0
- dnt/third_party/fast-reid/fastreid/layers/activation.py +59 -0
- dnt/third_party/fast-reid/fastreid/layers/any_softmax.py +80 -0
- dnt/third_party/fast-reid/fastreid/layers/batch_norm.py +205 -0
- dnt/third_party/fast-reid/fastreid/layers/context_block.py +113 -0
- dnt/third_party/fast-reid/fastreid/layers/drop.py +161 -0
- dnt/third_party/fast-reid/fastreid/layers/frn.py +199 -0
- dnt/third_party/fast-reid/fastreid/layers/gather_layer.py +30 -0
- dnt/third_party/fast-reid/fastreid/layers/helpers.py +31 -0
- dnt/third_party/fast-reid/fastreid/layers/non_local.py +54 -0
- dnt/third_party/fast-reid/fastreid/layers/pooling.py +124 -0
- dnt/third_party/fast-reid/fastreid/layers/se_layer.py +25 -0
- dnt/third_party/fast-reid/fastreid/layers/splat.py +109 -0
- dnt/third_party/fast-reid/fastreid/layers/weight_init.py +122 -0
- dnt/third_party/fast-reid/fastreid/modeling/__init__.py +23 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/__init__.py +18 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/build.py +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/mobilenet.py +195 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/mobilenetv3.py +283 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/osnet.py +525 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/__init__.py +4 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/config.py +396 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B0_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B1_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B2_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B3_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B4_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B5_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet.py +281 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnet.py +596 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-1.6GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-12GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-16GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-200MF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-3.2GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-32GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-4.0GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-400MF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-6.4GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-600MF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-8.0GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-800MF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-1.6GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-12GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-16GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-200MF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-3.2GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-32GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-4.0GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-400MF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-6.4GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-600MF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-8.0GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-800MF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/repvgg.py +309 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/resnest.py +365 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/resnet.py +364 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/resnext.py +335 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/shufflenet.py +203 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/vision_transformer.py +399 -0
- dnt/third_party/fast-reid/fastreid/modeling/heads/__init__.py +11 -0
- dnt/third_party/fast-reid/fastreid/modeling/heads/build.py +25 -0
- dnt/third_party/fast-reid/fastreid/modeling/heads/clas_head.py +36 -0
- dnt/third_party/fast-reid/fastreid/modeling/heads/embedding_head.py +151 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/__init__.py +12 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/circle_loss.py +71 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/cross_entroy_loss.py +54 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/focal_loss.py +92 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/triplet_loss.py +113 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/utils.py +48 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/__init__.py +14 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/baseline.py +188 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/build.py +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/distiller.py +140 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/mgn.py +394 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/moco.py +126 -0
- dnt/third_party/fast-reid/fastreid/solver/__init__.py +8 -0
- dnt/third_party/fast-reid/fastreid/solver/build.py +348 -0
- dnt/third_party/fast-reid/fastreid/solver/lr_scheduler.py +66 -0
- dnt/third_party/fast-reid/fastreid/solver/optim/__init__.py +10 -0
- dnt/third_party/fast-reid/fastreid/solver/optim/lamb.py +123 -0
- dnt/third_party/fast-reid/fastreid/solver/optim/radam.py +149 -0
- dnt/third_party/fast-reid/fastreid/solver/optim/swa.py +246 -0
- dnt/third_party/fast-reid/fastreid/utils/__init__.py +6 -0
- dnt/third_party/fast-reid/fastreid/utils/checkpoint.py +503 -0
- dnt/third_party/fast-reid/fastreid/utils/collect_env.py +158 -0
- dnt/third_party/fast-reid/fastreid/utils/comm.py +255 -0
- dnt/third_party/fast-reid/fastreid/utils/compute_dist.py +200 -0
- dnt/third_party/fast-reid/fastreid/utils/env.py +119 -0
- dnt/third_party/fast-reid/fastreid/utils/events.py +461 -0
- dnt/third_party/fast-reid/fastreid/utils/faiss_utils.py +127 -0
- dnt/third_party/fast-reid/fastreid/utils/file_io.py +520 -0
- dnt/third_party/fast-reid/fastreid/utils/history_buffer.py +71 -0
- dnt/third_party/fast-reid/fastreid/utils/logger.py +211 -0
- dnt/third_party/fast-reid/fastreid/utils/params.py +103 -0
- dnt/third_party/fast-reid/fastreid/utils/precision_bn.py +94 -0
- dnt/third_party/fast-reid/fastreid/utils/registry.py +66 -0
- dnt/third_party/fast-reid/fastreid/utils/summary.py +120 -0
- dnt/third_party/fast-reid/fastreid/utils/timer.py +68 -0
- dnt/third_party/fast-reid/fastreid/utils/visualizer.py +278 -0
- dnt/track/__init__.py +2 -0
- dnt/track/botsort/__init__.py +4 -0
- dnt/track/botsort/bot_tracker/__init__.py +3 -0
- dnt/track/botsort/bot_tracker/basetrack.py +60 -0
- dnt/track/botsort/bot_tracker/bot_sort.py +473 -0
- dnt/track/botsort/bot_tracker/gmc.py +316 -0
- dnt/track/botsort/bot_tracker/kalman_filter.py +269 -0
- dnt/track/botsort/bot_tracker/matching.py +194 -0
- dnt/track/botsort/bot_tracker/mc_bot_sort.py +505 -0
- dnt/track/{dsort/utils → botsort/bot_tracker/tracking_utils}/evaluation.py +14 -4
- dnt/track/{dsort/utils → botsort/bot_tracker/tracking_utils}/io.py +19 -36
- dnt/track/botsort/bot_tracker/tracking_utils/timer.py +37 -0
- dnt/track/botsort/inference.py +96 -0
- dnt/track/config.py +120 -0
- dnt/track/dsort/configs/bagtricks_R50.yml +7 -0
- dnt/track/dsort/configs/deep_sort.yaml +0 -0
- dnt/track/dsort/configs/fastreid.yaml +1 -1
- dnt/track/dsort/deep_sort/deep/checkpoint/ckpt.t7 +0 -0
- dnt/track/dsort/deep_sort/deep/feature_extractor.py +87 -8
- dnt/track/dsort/deep_sort/deep_sort.py +31 -20
- dnt/track/dsort/deep_sort/sort/detection.py +2 -1
- dnt/track/dsort/deep_sort/sort/iou_matching.py +0 -2
- dnt/track/dsort/deep_sort/sort/linear_assignment.py +0 -3
- dnt/track/dsort/deep_sort/sort/nn_matching.py +5 -5
- dnt/track/dsort/deep_sort/sort/preprocessing.py +1 -2
- dnt/track/dsort/deep_sort/sort/track.py +2 -1
- dnt/track/dsort/deep_sort/sort/tracker.py +1 -1
- dnt/track/dsort/dsort.py +43 -33
- dnt/track/re_class.py +117 -0
- dnt/track/sort/sort.py +9 -6
- dnt/track/tracker.py +213 -32
- {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info}/METADATA +41 -13
- dnt-0.3.1.7.dist-info/RECORD +315 -0
- {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info}/WHEEL +1 -1
- dnt/analysis/yield.py +0 -9
- dnt/track/dsort/deep_sort/deep/evaluate.py +0 -15
- dnt/track/dsort/deep_sort/deep/original_model.py +0 -106
- dnt/track/dsort/deep_sort/deep/test.py +0 -77
- dnt/track/dsort/deep_sort/deep/train.py +0 -189
- dnt/track/dsort/utils/asserts.py +0 -13
- dnt/track/dsort/utils/draw.py +0 -36
- dnt/track/dsort/utils/json_logger.py +0 -383
- dnt/track/dsort/utils/log.py +0 -17
- dnt/track/dsort/utils/parser.py +0 -35
- dnt/track/dsort/utils/tools.py +0 -39
- dnt-0.2.4.dist-info/RECORD +0 -64
- /dnt/{track/dsort/utils → third_party/fast-reid/checkpoint}/__init__.py +0 -0
- {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info/licenses}/LICENSE +0 -0
- {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,316 @@
|
|
|
1
|
+
import cv2
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
import numpy as np
|
|
4
|
+
import copy
|
|
5
|
+
import time
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class GMC:
|
|
9
|
+
def __init__(self, method='sparseOptFlow', downscale=2, verbose=None):
|
|
10
|
+
super(GMC, self).__init__()
|
|
11
|
+
|
|
12
|
+
self.method = method
|
|
13
|
+
self.downscale = max(1, int(downscale))
|
|
14
|
+
|
|
15
|
+
if self.method == 'orb':
|
|
16
|
+
self.detector = cv2.FastFeatureDetector_create(20)
|
|
17
|
+
self.extractor = cv2.ORB_create()
|
|
18
|
+
self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)
|
|
19
|
+
|
|
20
|
+
elif self.method == 'sift':
|
|
21
|
+
self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
|
|
22
|
+
self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
|
|
23
|
+
self.matcher = cv2.BFMatcher(cv2.NORM_L2)
|
|
24
|
+
|
|
25
|
+
elif self.method == 'ecc':
|
|
26
|
+
number_of_iterations = 5000
|
|
27
|
+
termination_eps = 1e-6
|
|
28
|
+
self.warp_mode = cv2.MOTION_EUCLIDEAN
|
|
29
|
+
self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)
|
|
30
|
+
|
|
31
|
+
elif self.method == 'sparseOptFlow':
|
|
32
|
+
self.feature_params = dict(maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3,
|
|
33
|
+
useHarrisDetector=False, k=0.04)
|
|
34
|
+
# self.gmc_file = open('GMC_results.txt', 'w')
|
|
35
|
+
|
|
36
|
+
elif self.method == 'file' or self.method == 'files':
|
|
37
|
+
seqName = verbose[0]
|
|
38
|
+
ablation = verbose[1]
|
|
39
|
+
if ablation:
|
|
40
|
+
filePath = r'bot_tracker/GMC_files/MOT17_ablation'
|
|
41
|
+
else:
|
|
42
|
+
filePath = r'bot_tracker/GMC_files/MOTChallenge'
|
|
43
|
+
|
|
44
|
+
if '-FRCNN' in seqName:
|
|
45
|
+
seqName = seqName[:-6]
|
|
46
|
+
elif '-DPM' in seqName:
|
|
47
|
+
seqName = seqName[:-4]
|
|
48
|
+
elif '-SDP' in seqName:
|
|
49
|
+
seqName = seqName[:-4]
|
|
50
|
+
|
|
51
|
+
self.gmcFile = open(filePath + "/GMC-" + seqName + ".txt", 'r')
|
|
52
|
+
|
|
53
|
+
if self.gmcFile is None:
|
|
54
|
+
raise ValueError("Error: Unable to open GMC file in directory:" + filePath)
|
|
55
|
+
elif self.method == 'none' or self.method == 'None':
|
|
56
|
+
self.method = 'none'
|
|
57
|
+
else:
|
|
58
|
+
raise ValueError("Error: Unknown CMC method:" + method)
|
|
59
|
+
|
|
60
|
+
self.prevFrame = None
|
|
61
|
+
self.prevKeyPoints = None
|
|
62
|
+
self.prevDescriptors = None
|
|
63
|
+
|
|
64
|
+
self.initializedFirstFrame = False
|
|
65
|
+
|
|
66
|
+
def apply(self, raw_frame, detections=None):
|
|
67
|
+
if self.method == 'orb' or self.method == 'sift':
|
|
68
|
+
return self.applyFeaures(raw_frame, detections)
|
|
69
|
+
elif self.method == 'ecc':
|
|
70
|
+
return self.applyEcc(raw_frame, detections)
|
|
71
|
+
elif self.method == 'sparseOptFlow':
|
|
72
|
+
return self.applySparseOptFlow(raw_frame, detections)
|
|
73
|
+
elif self.method == 'file':
|
|
74
|
+
return self.applyFile(raw_frame, detections)
|
|
75
|
+
elif self.method == 'none':
|
|
76
|
+
return np.eye(2, 3)
|
|
77
|
+
else:
|
|
78
|
+
return np.eye(2, 3)
|
|
79
|
+
|
|
80
|
+
def applyEcc(self, raw_frame, detections=None):
|
|
81
|
+
|
|
82
|
+
# Initialize
|
|
83
|
+
height, width, _ = raw_frame.shape
|
|
84
|
+
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
|
|
85
|
+
H = np.eye(2, 3, dtype=np.float32)
|
|
86
|
+
|
|
87
|
+
# Downscale image (TODO: consider using pyramids)
|
|
88
|
+
if self.downscale > 1.0:
|
|
89
|
+
frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
|
|
90
|
+
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
|
91
|
+
width = width // self.downscale
|
|
92
|
+
height = height // self.downscale
|
|
93
|
+
|
|
94
|
+
# Handle first frame
|
|
95
|
+
if not self.initializedFirstFrame:
|
|
96
|
+
# Initialize data
|
|
97
|
+
self.prevFrame = frame.copy()
|
|
98
|
+
|
|
99
|
+
# Initialization done
|
|
100
|
+
self.initializedFirstFrame = True
|
|
101
|
+
|
|
102
|
+
return H
|
|
103
|
+
|
|
104
|
+
# Run the ECC algorithm. The results are stored in warp_matrix.
|
|
105
|
+
# (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
|
|
106
|
+
try:
|
|
107
|
+
(cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
|
|
108
|
+
except:
|
|
109
|
+
print('Warning: find transform failed. Set warp as identity')
|
|
110
|
+
|
|
111
|
+
return H
|
|
112
|
+
|
|
113
|
+
def applyFeaures(self, raw_frame, detections=None):
|
|
114
|
+
|
|
115
|
+
# Initialize
|
|
116
|
+
height, width, _ = raw_frame.shape
|
|
117
|
+
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
|
|
118
|
+
H = np.eye(2, 3)
|
|
119
|
+
|
|
120
|
+
# Downscale image (TODO: consider using pyramids)
|
|
121
|
+
if self.downscale > 1.0:
|
|
122
|
+
# frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
|
|
123
|
+
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
|
124
|
+
width = width // self.downscale
|
|
125
|
+
height = height // self.downscale
|
|
126
|
+
|
|
127
|
+
# find the keypoints
|
|
128
|
+
mask = np.zeros_like(frame)
|
|
129
|
+
# mask[int(0.05 * height): int(0.95 * height), int(0.05 * width): int(0.95 * width)] = 255
|
|
130
|
+
mask[int(0.02 * height): int(0.98 * height), int(0.02 * width): int(0.98 * width)] = 255
|
|
131
|
+
if detections is not None:
|
|
132
|
+
for det in detections:
|
|
133
|
+
tlbr = (det[:4] / self.downscale).astype(np.int_)
|
|
134
|
+
mask[tlbr[1]:tlbr[3], tlbr[0]:tlbr[2]] = 0
|
|
135
|
+
|
|
136
|
+
keypoints = self.detector.detect(frame, mask)
|
|
137
|
+
|
|
138
|
+
# compute the descriptors
|
|
139
|
+
keypoints, descriptors = self.extractor.compute(frame, keypoints)
|
|
140
|
+
|
|
141
|
+
# Handle first frame
|
|
142
|
+
if not self.initializedFirstFrame:
|
|
143
|
+
# Initialize data
|
|
144
|
+
self.prevFrame = frame.copy()
|
|
145
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
|
146
|
+
self.prevDescriptors = copy.copy(descriptors)
|
|
147
|
+
|
|
148
|
+
# Initialization done
|
|
149
|
+
self.initializedFirstFrame = True
|
|
150
|
+
|
|
151
|
+
return H
|
|
152
|
+
|
|
153
|
+
# Match descriptors.
|
|
154
|
+
knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)
|
|
155
|
+
|
|
156
|
+
# Filtered matches based on smallest spatial distance
|
|
157
|
+
matches = []
|
|
158
|
+
spatialDistances = []
|
|
159
|
+
|
|
160
|
+
maxSpatialDistance = 0.25 * np.array([width, height])
|
|
161
|
+
|
|
162
|
+
# Handle empty matches case
|
|
163
|
+
if len(knnMatches) == 0:
|
|
164
|
+
# Store to next iteration
|
|
165
|
+
self.prevFrame = frame.copy()
|
|
166
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
|
167
|
+
self.prevDescriptors = copy.copy(descriptors)
|
|
168
|
+
|
|
169
|
+
return H
|
|
170
|
+
|
|
171
|
+
for m, n in knnMatches:
|
|
172
|
+
if m.distance < 0.9 * n.distance:
|
|
173
|
+
prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
|
|
174
|
+
currKeyPointLocation = keypoints[m.trainIdx].pt
|
|
175
|
+
|
|
176
|
+
spatialDistance = (prevKeyPointLocation[0] - currKeyPointLocation[0],
|
|
177
|
+
prevKeyPointLocation[1] - currKeyPointLocation[1])
|
|
178
|
+
|
|
179
|
+
if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and \
|
|
180
|
+
(np.abs(spatialDistance[1]) < maxSpatialDistance[1]):
|
|
181
|
+
spatialDistances.append(spatialDistance)
|
|
182
|
+
matches.append(m)
|
|
183
|
+
|
|
184
|
+
meanSpatialDistances = np.mean(spatialDistances, 0)
|
|
185
|
+
stdSpatialDistances = np.std(spatialDistances, 0)
|
|
186
|
+
|
|
187
|
+
inliesrs = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances
|
|
188
|
+
|
|
189
|
+
goodMatches = []
|
|
190
|
+
prevPoints = []
|
|
191
|
+
currPoints = []
|
|
192
|
+
for i in range(len(matches)):
|
|
193
|
+
if inliesrs[i, 0] and inliesrs[i, 1]:
|
|
194
|
+
goodMatches.append(matches[i])
|
|
195
|
+
prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
|
|
196
|
+
currPoints.append(keypoints[matches[i].trainIdx].pt)
|
|
197
|
+
|
|
198
|
+
prevPoints = np.array(prevPoints)
|
|
199
|
+
currPoints = np.array(currPoints)
|
|
200
|
+
|
|
201
|
+
# Draw the keypoint matches on the output image
|
|
202
|
+
if 0:
|
|
203
|
+
matches_img = np.hstack((self.prevFrame, frame))
|
|
204
|
+
matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
|
|
205
|
+
W = np.size(self.prevFrame, 1)
|
|
206
|
+
for m in goodMatches:
|
|
207
|
+
prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
|
|
208
|
+
curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
|
|
209
|
+
curr_pt[0] += W
|
|
210
|
+
color = np.random.randint(0, 255, (3,))
|
|
211
|
+
color = (int(color[0]), int(color[1]), int(color[2]))
|
|
212
|
+
|
|
213
|
+
matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA)
|
|
214
|
+
matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1)
|
|
215
|
+
matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1)
|
|
216
|
+
|
|
217
|
+
plt.figure()
|
|
218
|
+
plt.imshow(matches_img)
|
|
219
|
+
plt.show()
|
|
220
|
+
|
|
221
|
+
# Find rigid matrix
|
|
222
|
+
if (np.size(prevPoints, 0) > 4) and (np.size(prevPoints, 0) == np.size(prevPoints, 0)):
|
|
223
|
+
H, inliesrs = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
|
224
|
+
|
|
225
|
+
# Handle downscale
|
|
226
|
+
if self.downscale > 1.0:
|
|
227
|
+
H[0, 2] *= self.downscale
|
|
228
|
+
H[1, 2] *= self.downscale
|
|
229
|
+
else:
|
|
230
|
+
print('Warning: not enough matching points')
|
|
231
|
+
|
|
232
|
+
# Store to next iteration
|
|
233
|
+
self.prevFrame = frame.copy()
|
|
234
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
|
235
|
+
self.prevDescriptors = copy.copy(descriptors)
|
|
236
|
+
|
|
237
|
+
return H
|
|
238
|
+
|
|
239
|
+
def applySparseOptFlow(self, raw_frame, detections=None):
|
|
240
|
+
|
|
241
|
+
t0 = time.time()
|
|
242
|
+
|
|
243
|
+
# Initialize
|
|
244
|
+
height, width, _ = raw_frame.shape
|
|
245
|
+
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
|
|
246
|
+
H = np.eye(2, 3)
|
|
247
|
+
|
|
248
|
+
# Downscale image
|
|
249
|
+
if self.downscale > 1.0:
|
|
250
|
+
# frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
|
|
251
|
+
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
|
252
|
+
|
|
253
|
+
# find the keypoints
|
|
254
|
+
keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)
|
|
255
|
+
|
|
256
|
+
# Handle first frame
|
|
257
|
+
if not self.initializedFirstFrame:
|
|
258
|
+
# Initialize data
|
|
259
|
+
self.prevFrame = frame.copy()
|
|
260
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
|
261
|
+
|
|
262
|
+
# Initialization done
|
|
263
|
+
self.initializedFirstFrame = True
|
|
264
|
+
|
|
265
|
+
return H
|
|
266
|
+
|
|
267
|
+
# find correspondences
|
|
268
|
+
matchedKeypoints, status, err = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)
|
|
269
|
+
|
|
270
|
+
# leave good correspondences only
|
|
271
|
+
prevPoints = []
|
|
272
|
+
currPoints = []
|
|
273
|
+
|
|
274
|
+
for i in range(len(status)):
|
|
275
|
+
if status[i]:
|
|
276
|
+
prevPoints.append(self.prevKeyPoints[i])
|
|
277
|
+
currPoints.append(matchedKeypoints[i])
|
|
278
|
+
|
|
279
|
+
prevPoints = np.array(prevPoints)
|
|
280
|
+
currPoints = np.array(currPoints)
|
|
281
|
+
|
|
282
|
+
# Find rigid matrix
|
|
283
|
+
if (np.size(prevPoints, 0) > 4) and (np.size(prevPoints, 0) == np.size(prevPoints, 0)):
|
|
284
|
+
H, inliesrs = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
|
285
|
+
|
|
286
|
+
# Handle downscale
|
|
287
|
+
if self.downscale > 1.0:
|
|
288
|
+
H[0, 2] *= self.downscale
|
|
289
|
+
H[1, 2] *= self.downscale
|
|
290
|
+
else:
|
|
291
|
+
print('Warning: not enough matching points')
|
|
292
|
+
|
|
293
|
+
# Store to next iteration
|
|
294
|
+
self.prevFrame = frame.copy()
|
|
295
|
+
self.prevKeyPoints = copy.copy(keypoints)
|
|
296
|
+
|
|
297
|
+
t1 = time.time()
|
|
298
|
+
|
|
299
|
+
# gmc_line = str(1000 * (t1 - t0)) + "\t" + str(H[0, 0]) + "\t" + str(H[0, 1]) + "\t" + str(
|
|
300
|
+
# H[0, 2]) + "\t" + str(H[1, 0]) + "\t" + str(H[1, 1]) + "\t" + str(H[1, 2]) + "\n"
|
|
301
|
+
# self.gmc_file.write(gmc_line)
|
|
302
|
+
|
|
303
|
+
return H
|
|
304
|
+
|
|
305
|
+
def applyFile(self, raw_frame, detections=None):
|
|
306
|
+
line = self.gmcFile.readline()
|
|
307
|
+
tokens = line.split("\t")
|
|
308
|
+
H = np.eye(2, 3, dtype=np.float_)
|
|
309
|
+
H[0, 0] = float(tokens[1])
|
|
310
|
+
H[0, 1] = float(tokens[2])
|
|
311
|
+
H[0, 2] = float(tokens[3])
|
|
312
|
+
H[1, 0] = float(tokens[4])
|
|
313
|
+
H[1, 1] = float(tokens[5])
|
|
314
|
+
H[1, 2] = float(tokens[6])
|
|
315
|
+
|
|
316
|
+
return H
|
|
@@ -0,0 +1,269 @@
|
|
|
1
|
+
# vim: expandtab:ts=4:sw=4
|
|
2
|
+
import numpy as np
|
|
3
|
+
import scipy.linalg
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
"""
|
|
7
|
+
Table for the 0.95 quantile of the chi-square distribution with N degrees of
|
|
8
|
+
freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
|
|
9
|
+
function and used as Mahalanobis gating threshold.
|
|
10
|
+
"""
|
|
11
|
+
chi2inv95 = {
|
|
12
|
+
1: 3.8415,
|
|
13
|
+
2: 5.9915,
|
|
14
|
+
3: 7.8147,
|
|
15
|
+
4: 9.4877,
|
|
16
|
+
5: 11.070,
|
|
17
|
+
6: 12.592,
|
|
18
|
+
7: 14.067,
|
|
19
|
+
8: 15.507,
|
|
20
|
+
9: 16.919}
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class KalmanFilter(object):
|
|
24
|
+
"""
|
|
25
|
+
A simple Kalman filter for tracking bounding boxes in image space.
|
|
26
|
+
|
|
27
|
+
The 8-dimensional state space
|
|
28
|
+
|
|
29
|
+
x, y, w, h, vx, vy, vw, vh
|
|
30
|
+
|
|
31
|
+
contains the bounding box center position (x, y), width w, height h,
|
|
32
|
+
and their respective velocities.
|
|
33
|
+
|
|
34
|
+
Object motion follows a constant velocity model. The bounding box location
|
|
35
|
+
(x, y, w, h) is taken as direct observation of the state space (linear
|
|
36
|
+
observation model).
|
|
37
|
+
|
|
38
|
+
"""
|
|
39
|
+
|
|
40
|
+
def __init__(self):
|
|
41
|
+
ndim, dt = 4, 1.
|
|
42
|
+
|
|
43
|
+
# Create Kalman filter model matrices.
|
|
44
|
+
self._motion_mat = np.eye(2 * ndim, 2 * ndim)
|
|
45
|
+
for i in range(ndim):
|
|
46
|
+
self._motion_mat[i, ndim + i] = dt
|
|
47
|
+
self._update_mat = np.eye(ndim, 2 * ndim)
|
|
48
|
+
|
|
49
|
+
# Motion and observation uncertainty are chosen relative to the current
|
|
50
|
+
# state estimate. These weights control the amount of uncertainty in
|
|
51
|
+
# the model. This is a bit hacky.
|
|
52
|
+
self._std_weight_position = 1. / 20
|
|
53
|
+
self._std_weight_velocity = 1. / 160
|
|
54
|
+
|
|
55
|
+
def initiate(self, measurement):
|
|
56
|
+
"""Create track from unassociated measurement.
|
|
57
|
+
|
|
58
|
+
Parameters
|
|
59
|
+
----------
|
|
60
|
+
measurement : ndarray
|
|
61
|
+
Bounding box coordinates (x, y, w, h) with center position (x, y),
|
|
62
|
+
width w, and height h.
|
|
63
|
+
|
|
64
|
+
Returns
|
|
65
|
+
-------
|
|
66
|
+
(ndarray, ndarray)
|
|
67
|
+
Returns the mean vector (8 dimensional) and covariance matrix (8x8
|
|
68
|
+
dimensional) of the new track. Unobserved velocities are initialized
|
|
69
|
+
to 0 mean.
|
|
70
|
+
|
|
71
|
+
"""
|
|
72
|
+
mean_pos = measurement
|
|
73
|
+
mean_vel = np.zeros_like(mean_pos)
|
|
74
|
+
mean = np.r_[mean_pos, mean_vel]
|
|
75
|
+
|
|
76
|
+
std = [
|
|
77
|
+
2 * self._std_weight_position * measurement[2],
|
|
78
|
+
2 * self._std_weight_position * measurement[3],
|
|
79
|
+
2 * self._std_weight_position * measurement[2],
|
|
80
|
+
2 * self._std_weight_position * measurement[3],
|
|
81
|
+
10 * self._std_weight_velocity * measurement[2],
|
|
82
|
+
10 * self._std_weight_velocity * measurement[3],
|
|
83
|
+
10 * self._std_weight_velocity * measurement[2],
|
|
84
|
+
10 * self._std_weight_velocity * measurement[3]]
|
|
85
|
+
covariance = np.diag(np.square(std))
|
|
86
|
+
return mean, covariance
|
|
87
|
+
|
|
88
|
+
def predict(self, mean, covariance):
|
|
89
|
+
"""Run Kalman filter prediction step.
|
|
90
|
+
|
|
91
|
+
Parameters
|
|
92
|
+
----------
|
|
93
|
+
mean : ndarray
|
|
94
|
+
The 8 dimensional mean vector of the object state at the previous
|
|
95
|
+
time step.
|
|
96
|
+
covariance : ndarray
|
|
97
|
+
The 8x8 dimensional covariance matrix of the object state at the
|
|
98
|
+
previous time step.
|
|
99
|
+
|
|
100
|
+
Returns
|
|
101
|
+
-------
|
|
102
|
+
(ndarray, ndarray)
|
|
103
|
+
Returns the mean vector and covariance matrix of the predicted
|
|
104
|
+
state. Unobserved velocities are initialized to 0 mean.
|
|
105
|
+
|
|
106
|
+
"""
|
|
107
|
+
std_pos = [
|
|
108
|
+
self._std_weight_position * mean[2],
|
|
109
|
+
self._std_weight_position * mean[3],
|
|
110
|
+
self._std_weight_position * mean[2],
|
|
111
|
+
self._std_weight_position * mean[3]]
|
|
112
|
+
std_vel = [
|
|
113
|
+
self._std_weight_velocity * mean[2],
|
|
114
|
+
self._std_weight_velocity * mean[3],
|
|
115
|
+
self._std_weight_velocity * mean[2],
|
|
116
|
+
self._std_weight_velocity * mean[3]]
|
|
117
|
+
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
|
|
118
|
+
|
|
119
|
+
mean = np.dot(mean, self._motion_mat.T)
|
|
120
|
+
covariance = np.linalg.multi_dot((
|
|
121
|
+
self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
|
|
122
|
+
|
|
123
|
+
return mean, covariance
|
|
124
|
+
|
|
125
|
+
def project(self, mean, covariance):
|
|
126
|
+
"""Project state distribution to measurement space.
|
|
127
|
+
|
|
128
|
+
Parameters
|
|
129
|
+
----------
|
|
130
|
+
mean : ndarray
|
|
131
|
+
The state's mean vector (8 dimensional array).
|
|
132
|
+
covariance : ndarray
|
|
133
|
+
The state's covariance matrix (8x8 dimensional).
|
|
134
|
+
|
|
135
|
+
Returns
|
|
136
|
+
-------
|
|
137
|
+
(ndarray, ndarray)
|
|
138
|
+
Returns the projected mean and covariance matrix of the given state
|
|
139
|
+
estimate.
|
|
140
|
+
|
|
141
|
+
"""
|
|
142
|
+
std = [
|
|
143
|
+
self._std_weight_position * mean[2],
|
|
144
|
+
self._std_weight_position * mean[3],
|
|
145
|
+
self._std_weight_position * mean[2],
|
|
146
|
+
self._std_weight_position * mean[3]]
|
|
147
|
+
innovation_cov = np.diag(np.square(std))
|
|
148
|
+
|
|
149
|
+
mean = np.dot(self._update_mat, mean)
|
|
150
|
+
covariance = np.linalg.multi_dot((
|
|
151
|
+
self._update_mat, covariance, self._update_mat.T))
|
|
152
|
+
return mean, covariance + innovation_cov
|
|
153
|
+
|
|
154
|
+
def multi_predict(self, mean, covariance):
|
|
155
|
+
"""Run Kalman filter prediction step (Vectorized version).
|
|
156
|
+
Parameters
|
|
157
|
+
----------
|
|
158
|
+
mean : ndarray
|
|
159
|
+
The Nx8 dimensional mean matrix of the object states at the previous
|
|
160
|
+
time step.
|
|
161
|
+
covariance : ndarray
|
|
162
|
+
The Nx8x8 dimensional covariance matrics of the object states at the
|
|
163
|
+
previous time step.
|
|
164
|
+
Returns
|
|
165
|
+
-------
|
|
166
|
+
(ndarray, ndarray)
|
|
167
|
+
Returns the mean vector and covariance matrix of the predicted
|
|
168
|
+
state. Unobserved velocities are initialized to 0 mean.
|
|
169
|
+
"""
|
|
170
|
+
std_pos = [
|
|
171
|
+
self._std_weight_position * mean[:, 2],
|
|
172
|
+
self._std_weight_position * mean[:, 3],
|
|
173
|
+
self._std_weight_position * mean[:, 2],
|
|
174
|
+
self._std_weight_position * mean[:, 3]]
|
|
175
|
+
std_vel = [
|
|
176
|
+
self._std_weight_velocity * mean[:, 2],
|
|
177
|
+
self._std_weight_velocity * mean[:, 3],
|
|
178
|
+
self._std_weight_velocity * mean[:, 2],
|
|
179
|
+
self._std_weight_velocity * mean[:, 3]]
|
|
180
|
+
sqr = np.square(np.r_[std_pos, std_vel]).T
|
|
181
|
+
|
|
182
|
+
motion_cov = []
|
|
183
|
+
for i in range(len(mean)):
|
|
184
|
+
motion_cov.append(np.diag(sqr[i]))
|
|
185
|
+
motion_cov = np.asarray(motion_cov)
|
|
186
|
+
|
|
187
|
+
mean = np.dot(mean, self._motion_mat.T)
|
|
188
|
+
left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2))
|
|
189
|
+
covariance = np.dot(left, self._motion_mat.T) + motion_cov
|
|
190
|
+
|
|
191
|
+
return mean, covariance
|
|
192
|
+
|
|
193
|
+
def update(self, mean, covariance, measurement):
|
|
194
|
+
"""Run Kalman filter correction step.
|
|
195
|
+
|
|
196
|
+
Parameters
|
|
197
|
+
----------
|
|
198
|
+
mean : ndarray
|
|
199
|
+
The predicted state's mean vector (8 dimensional).
|
|
200
|
+
covariance : ndarray
|
|
201
|
+
The state's covariance matrix (8x8 dimensional).
|
|
202
|
+
measurement : ndarray
|
|
203
|
+
The 4 dimensional measurement vector (x, y, w, h), where (x, y)
|
|
204
|
+
is the center position, w the width, and h the height of the
|
|
205
|
+
bounding box.
|
|
206
|
+
|
|
207
|
+
Returns
|
|
208
|
+
-------
|
|
209
|
+
(ndarray, ndarray)
|
|
210
|
+
Returns the measurement-corrected state distribution.
|
|
211
|
+
|
|
212
|
+
"""
|
|
213
|
+
projected_mean, projected_cov = self.project(mean, covariance)
|
|
214
|
+
|
|
215
|
+
chol_factor, lower = scipy.linalg.cho_factor(
|
|
216
|
+
projected_cov, lower=True, check_finite=False)
|
|
217
|
+
kalman_gain = scipy.linalg.cho_solve(
|
|
218
|
+
(chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
|
|
219
|
+
check_finite=False).T
|
|
220
|
+
innovation = measurement - projected_mean
|
|
221
|
+
|
|
222
|
+
new_mean = mean + np.dot(innovation, kalman_gain.T)
|
|
223
|
+
new_covariance = covariance - np.linalg.multi_dot((
|
|
224
|
+
kalman_gain, projected_cov, kalman_gain.T))
|
|
225
|
+
return new_mean, new_covariance
|
|
226
|
+
|
|
227
|
+
def gating_distance(self, mean, covariance, measurements,
|
|
228
|
+
only_position=False, metric='maha'):
|
|
229
|
+
"""Compute gating distance between state distribution and measurements.
|
|
230
|
+
A suitable distance threshold can be obtained from `chi2inv95`. If
|
|
231
|
+
`only_position` is False, the chi-square distribution has 4 degrees of
|
|
232
|
+
freedom, otherwise 2.
|
|
233
|
+
Parameters
|
|
234
|
+
----------
|
|
235
|
+
mean : ndarray
|
|
236
|
+
Mean vector over the state distribution (8 dimensional).
|
|
237
|
+
covariance : ndarray
|
|
238
|
+
Covariance of the state distribution (8x8 dimensional).
|
|
239
|
+
measurements : ndarray
|
|
240
|
+
An Nx4 dimensional matrix of N measurements, each in
|
|
241
|
+
format (x, y, a, h) where (x, y) is the bounding box center
|
|
242
|
+
position, a the aspect ratio, and h the height.
|
|
243
|
+
only_position : Optional[bool]
|
|
244
|
+
If True, distance computation is done with respect to the bounding
|
|
245
|
+
box center position only.
|
|
246
|
+
Returns
|
|
247
|
+
-------
|
|
248
|
+
ndarray
|
|
249
|
+
Returns an array of length N, where the i-th element contains the
|
|
250
|
+
squared Mahalanobis distance between (mean, covariance) and
|
|
251
|
+
`measurements[i]`.
|
|
252
|
+
"""
|
|
253
|
+
mean, covariance = self.project(mean, covariance)
|
|
254
|
+
if only_position:
|
|
255
|
+
mean, covariance = mean[:2], covariance[:2, :2]
|
|
256
|
+
measurements = measurements[:, :2]
|
|
257
|
+
|
|
258
|
+
d = measurements - mean
|
|
259
|
+
if metric == 'gaussian':
|
|
260
|
+
return np.sum(d * d, axis=1)
|
|
261
|
+
elif metric == 'maha':
|
|
262
|
+
cholesky_factor = np.linalg.cholesky(covariance)
|
|
263
|
+
z = scipy.linalg.solve_triangular(
|
|
264
|
+
cholesky_factor, d.T, lower=True, check_finite=False,
|
|
265
|
+
overwrite_b=True)
|
|
266
|
+
squared_maha = np.sum(z * z, axis=0)
|
|
267
|
+
return squared_maha
|
|
268
|
+
else:
|
|
269
|
+
raise ValueError('invalid distance metric')
|