dnt 0.2.4__py3-none-any.whl → 0.3.1.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dnt might be problematic. Click here for more details.

Files changed (311) hide show
  1. dnt/__init__.py +3 -2
  2. dnt/analysis/__init__.py +3 -2
  3. dnt/analysis/count.py +54 -37
  4. dnt/analysis/interaction2.py +518 -0
  5. dnt/analysis/stop.py +22 -17
  6. dnt/analysis/stop2.py +289 -0
  7. dnt/analysis/stop3.py +758 -0
  8. dnt/detect/signal/detector.py +326 -0
  9. dnt/detect/timestamp.py +105 -0
  10. dnt/detect/yolov8/detector.py +179 -36
  11. dnt/detect/yolov8/segmentor.py +60 -2
  12. dnt/engine/__init__.py +8 -0
  13. dnt/engine/bbox_interp.py +83 -0
  14. dnt/engine/bbox_iou.py +20 -0
  15. dnt/engine/cluster.py +31 -0
  16. dnt/engine/iob.py +66 -0
  17. dnt/filter/filter.py +333 -2
  18. dnt/label/labeler.py +4 -4
  19. dnt/label/labeler2.py +605 -0
  20. dnt/shared/__init__.py +2 -1
  21. dnt/shared/data/coco.names +0 -0
  22. dnt/shared/data/openimages.names +0 -0
  23. dnt/shared/data/voc.names +0 -0
  24. dnt/shared/download.py +12 -0
  25. dnt/shared/synhcro.py +150 -0
  26. dnt/shared/util.py +17 -4
  27. dnt/third_party/fast-reid/__init__.py +1 -0
  28. dnt/third_party/fast-reid/configs/Base-AGW.yml +19 -0
  29. dnt/third_party/fast-reid/configs/Base-MGN.yml +12 -0
  30. dnt/third_party/fast-reid/configs/Base-SBS.yml +63 -0
  31. dnt/third_party/fast-reid/configs/Base-bagtricks.yml +76 -0
  32. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R101-ibn.yml +12 -0
  33. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R50-ibn.yml +11 -0
  34. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R50.yml +7 -0
  35. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_S50.yml +11 -0
  36. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R101-ibn.yml +12 -0
  37. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R50-ibn.yml +11 -0
  38. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R50.yml +7 -0
  39. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_S50.yml +11 -0
  40. dnt/third_party/fast-reid/configs/DukeMTMC/mgn_R50-ibn.yml +11 -0
  41. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R101-ibn.yml +12 -0
  42. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R50-ibn.yml +11 -0
  43. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R50.yml +7 -0
  44. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_S50.yml +11 -0
  45. dnt/third_party/fast-reid/configs/MOT17/AGW_R101-ibn.yml +12 -0
  46. dnt/third_party/fast-reid/configs/MOT17/AGW_R50-ibn.yml +11 -0
  47. dnt/third_party/fast-reid/configs/MOT17/AGW_R50.yml +7 -0
  48. dnt/third_party/fast-reid/configs/MOT17/AGW_S50.yml +11 -0
  49. dnt/third_party/fast-reid/configs/MOT17/bagtricks_R101-ibn.yml +12 -0
  50. dnt/third_party/fast-reid/configs/MOT17/bagtricks_R50-ibn.yml +11 -0
  51. dnt/third_party/fast-reid/configs/MOT17/bagtricks_R50.yml +7 -0
  52. dnt/third_party/fast-reid/configs/MOT17/bagtricks_S50.yml +11 -0
  53. dnt/third_party/fast-reid/configs/MOT17/mgn_R50-ibn.yml +11 -0
  54. dnt/third_party/fast-reid/configs/MOT17/sbs_R101-ibn.yml +12 -0
  55. dnt/third_party/fast-reid/configs/MOT17/sbs_R50-ibn.yml +11 -0
  56. dnt/third_party/fast-reid/configs/MOT17/sbs_R50.yml +7 -0
  57. dnt/third_party/fast-reid/configs/MOT17/sbs_S50.yml +11 -0
  58. dnt/third_party/fast-reid/configs/MOT20/AGW_R101-ibn.yml +12 -0
  59. dnt/third_party/fast-reid/configs/MOT20/AGW_R50-ibn.yml +11 -0
  60. dnt/third_party/fast-reid/configs/MOT20/AGW_R50.yml +7 -0
  61. dnt/third_party/fast-reid/configs/MOT20/AGW_S50.yml +11 -0
  62. dnt/third_party/fast-reid/configs/MOT20/bagtricks_R101-ibn.yml +12 -0
  63. dnt/third_party/fast-reid/configs/MOT20/bagtricks_R50-ibn.yml +11 -0
  64. dnt/third_party/fast-reid/configs/MOT20/bagtricks_R50.yml +7 -0
  65. dnt/third_party/fast-reid/configs/MOT20/bagtricks_S50.yml +11 -0
  66. dnt/third_party/fast-reid/configs/MOT20/mgn_R50-ibn.yml +11 -0
  67. dnt/third_party/fast-reid/configs/MOT20/sbs_R101-ibn.yml +12 -0
  68. dnt/third_party/fast-reid/configs/MOT20/sbs_R50-ibn.yml +11 -0
  69. dnt/third_party/fast-reid/configs/MOT20/sbs_R50.yml +7 -0
  70. dnt/third_party/fast-reid/configs/MOT20/sbs_S50.yml +11 -0
  71. dnt/third_party/fast-reid/configs/MSMT17/AGW_R101-ibn.yml +12 -0
  72. dnt/third_party/fast-reid/configs/MSMT17/AGW_R50-ibn.yml +11 -0
  73. dnt/third_party/fast-reid/configs/MSMT17/AGW_R50.yml +7 -0
  74. dnt/third_party/fast-reid/configs/MSMT17/AGW_S50.yml +11 -0
  75. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R101-ibn.yml +13 -0
  76. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R50-ibn.yml +12 -0
  77. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R50.yml +7 -0
  78. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_S50.yml +12 -0
  79. dnt/third_party/fast-reid/configs/MSMT17/mgn_R50-ibn.yml +11 -0
  80. dnt/third_party/fast-reid/configs/MSMT17/sbs_R101-ibn.yml +12 -0
  81. dnt/third_party/fast-reid/configs/MSMT17/sbs_R50-ibn.yml +11 -0
  82. dnt/third_party/fast-reid/configs/MSMT17/sbs_R50.yml +7 -0
  83. dnt/third_party/fast-reid/configs/MSMT17/sbs_S50.yml +11 -0
  84. dnt/third_party/fast-reid/configs/Market1501/AGW_R101-ibn.yml +12 -0
  85. dnt/third_party/fast-reid/configs/Market1501/AGW_R50-ibn.yml +11 -0
  86. dnt/third_party/fast-reid/configs/Market1501/AGW_R50.yml +7 -0
  87. dnt/third_party/fast-reid/configs/Market1501/AGW_S50.yml +11 -0
  88. dnt/third_party/fast-reid/configs/Market1501/bagtricks_R101-ibn.yml +12 -0
  89. dnt/third_party/fast-reid/configs/Market1501/bagtricks_R50-ibn.yml +11 -0
  90. dnt/third_party/fast-reid/configs/Market1501/bagtricks_R50.yml +7 -0
  91. dnt/third_party/fast-reid/configs/Market1501/bagtricks_S50.yml +11 -0
  92. dnt/third_party/fast-reid/configs/Market1501/bagtricks_vit.yml +88 -0
  93. dnt/third_party/fast-reid/configs/Market1501/mgn_R50-ibn.yml +11 -0
  94. dnt/third_party/fast-reid/configs/Market1501/sbs_R101-ibn.yml +12 -0
  95. dnt/third_party/fast-reid/configs/Market1501/sbs_R50-ibn.yml +11 -0
  96. dnt/third_party/fast-reid/configs/Market1501/sbs_R50.yml +7 -0
  97. dnt/third_party/fast-reid/configs/Market1501/sbs_S50.yml +11 -0
  98. dnt/third_party/fast-reid/configs/VERIWild/bagtricks_R50-ibn.yml +35 -0
  99. dnt/third_party/fast-reid/configs/VeRi/sbs_R50-ibn.yml +35 -0
  100. dnt/third_party/fast-reid/configs/VehicleID/bagtricks_R50-ibn.yml +36 -0
  101. dnt/third_party/fast-reid/configs/__init__.py +0 -0
  102. dnt/third_party/fast-reid/fast_reid_interfece.py +175 -0
  103. dnt/third_party/fast-reid/fastreid/__init__.py +6 -0
  104. dnt/third_party/fast-reid/fastreid/config/__init__.py +15 -0
  105. dnt/third_party/fast-reid/fastreid/config/config.py +319 -0
  106. dnt/third_party/fast-reid/fastreid/config/defaults.py +329 -0
  107. dnt/third_party/fast-reid/fastreid/data/__init__.py +17 -0
  108. dnt/third_party/fast-reid/fastreid/data/build.py +194 -0
  109. dnt/third_party/fast-reid/fastreid/data/common.py +58 -0
  110. dnt/third_party/fast-reid/fastreid/data/data_utils.py +202 -0
  111. dnt/third_party/fast-reid/fastreid/data/datasets/AirportALERT.py +50 -0
  112. dnt/third_party/fast-reid/fastreid/data/datasets/__init__.py +43 -0
  113. dnt/third_party/fast-reid/fastreid/data/datasets/bases.py +183 -0
  114. dnt/third_party/fast-reid/fastreid/data/datasets/caviara.py +44 -0
  115. dnt/third_party/fast-reid/fastreid/data/datasets/cuhk03.py +274 -0
  116. dnt/third_party/fast-reid/fastreid/data/datasets/cuhk_sysu.py +58 -0
  117. dnt/third_party/fast-reid/fastreid/data/datasets/dukemtmcreid.py +70 -0
  118. dnt/third_party/fast-reid/fastreid/data/datasets/grid.py +44 -0
  119. dnt/third_party/fast-reid/fastreid/data/datasets/iLIDS.py +45 -0
  120. dnt/third_party/fast-reid/fastreid/data/datasets/lpw.py +49 -0
  121. dnt/third_party/fast-reid/fastreid/data/datasets/market1501.py +89 -0
  122. dnt/third_party/fast-reid/fastreid/data/datasets/msmt17.py +114 -0
  123. dnt/third_party/fast-reid/fastreid/data/datasets/pes3d.py +44 -0
  124. dnt/third_party/fast-reid/fastreid/data/datasets/pku.py +44 -0
  125. dnt/third_party/fast-reid/fastreid/data/datasets/prai.py +43 -0
  126. dnt/third_party/fast-reid/fastreid/data/datasets/prid.py +41 -0
  127. dnt/third_party/fast-reid/fastreid/data/datasets/saivt.py +47 -0
  128. dnt/third_party/fast-reid/fastreid/data/datasets/sensereid.py +47 -0
  129. dnt/third_party/fast-reid/fastreid/data/datasets/shinpuhkan.py +48 -0
  130. dnt/third_party/fast-reid/fastreid/data/datasets/sysu_mm.py +47 -0
  131. dnt/third_party/fast-reid/fastreid/data/datasets/thermalworld.py +43 -0
  132. dnt/third_party/fast-reid/fastreid/data/datasets/vehicleid.py +126 -0
  133. dnt/third_party/fast-reid/fastreid/data/datasets/veri.py +69 -0
  134. dnt/third_party/fast-reid/fastreid/data/datasets/veriwild.py +140 -0
  135. dnt/third_party/fast-reid/fastreid/data/datasets/viper.py +45 -0
  136. dnt/third_party/fast-reid/fastreid/data/datasets/wildtracker.py +59 -0
  137. dnt/third_party/fast-reid/fastreid/data/samplers/__init__.py +18 -0
  138. dnt/third_party/fast-reid/fastreid/data/samplers/data_sampler.py +85 -0
  139. dnt/third_party/fast-reid/fastreid/data/samplers/imbalance_sampler.py +67 -0
  140. dnt/third_party/fast-reid/fastreid/data/samplers/triplet_sampler.py +260 -0
  141. dnt/third_party/fast-reid/fastreid/data/transforms/__init__.py +11 -0
  142. dnt/third_party/fast-reid/fastreid/data/transforms/autoaugment.py +806 -0
  143. dnt/third_party/fast-reid/fastreid/data/transforms/build.py +100 -0
  144. dnt/third_party/fast-reid/fastreid/data/transforms/functional.py +180 -0
  145. dnt/third_party/fast-reid/fastreid/data/transforms/transforms.py +161 -0
  146. dnt/third_party/fast-reid/fastreid/engine/__init__.py +15 -0
  147. dnt/third_party/fast-reid/fastreid/engine/defaults.py +490 -0
  148. dnt/third_party/fast-reid/fastreid/engine/hooks.py +534 -0
  149. dnt/third_party/fast-reid/fastreid/engine/launch.py +103 -0
  150. dnt/third_party/fast-reid/fastreid/engine/train_loop.py +357 -0
  151. dnt/third_party/fast-reid/fastreid/evaluation/__init__.py +6 -0
  152. dnt/third_party/fast-reid/fastreid/evaluation/clas_evaluator.py +81 -0
  153. dnt/third_party/fast-reid/fastreid/evaluation/evaluator.py +176 -0
  154. dnt/third_party/fast-reid/fastreid/evaluation/query_expansion.py +46 -0
  155. dnt/third_party/fast-reid/fastreid/evaluation/rank.py +200 -0
  156. dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/__init__.py +20 -0
  157. dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/setup.py +32 -0
  158. dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/test_cython.py +106 -0
  159. dnt/third_party/fast-reid/fastreid/evaluation/reid_evaluation.py +143 -0
  160. dnt/third_party/fast-reid/fastreid/evaluation/rerank.py +73 -0
  161. dnt/third_party/fast-reid/fastreid/evaluation/roc.py +90 -0
  162. dnt/third_party/fast-reid/fastreid/evaluation/testing.py +88 -0
  163. dnt/third_party/fast-reid/fastreid/layers/__init__.py +19 -0
  164. dnt/third_party/fast-reid/fastreid/layers/activation.py +59 -0
  165. dnt/third_party/fast-reid/fastreid/layers/any_softmax.py +80 -0
  166. dnt/third_party/fast-reid/fastreid/layers/batch_norm.py +205 -0
  167. dnt/third_party/fast-reid/fastreid/layers/context_block.py +113 -0
  168. dnt/third_party/fast-reid/fastreid/layers/drop.py +161 -0
  169. dnt/third_party/fast-reid/fastreid/layers/frn.py +199 -0
  170. dnt/third_party/fast-reid/fastreid/layers/gather_layer.py +30 -0
  171. dnt/third_party/fast-reid/fastreid/layers/helpers.py +31 -0
  172. dnt/third_party/fast-reid/fastreid/layers/non_local.py +54 -0
  173. dnt/third_party/fast-reid/fastreid/layers/pooling.py +124 -0
  174. dnt/third_party/fast-reid/fastreid/layers/se_layer.py +25 -0
  175. dnt/third_party/fast-reid/fastreid/layers/splat.py +109 -0
  176. dnt/third_party/fast-reid/fastreid/layers/weight_init.py +122 -0
  177. dnt/third_party/fast-reid/fastreid/modeling/__init__.py +23 -0
  178. dnt/third_party/fast-reid/fastreid/modeling/backbones/__init__.py +18 -0
  179. dnt/third_party/fast-reid/fastreid/modeling/backbones/build.py +27 -0
  180. dnt/third_party/fast-reid/fastreid/modeling/backbones/mobilenet.py +195 -0
  181. dnt/third_party/fast-reid/fastreid/modeling/backbones/mobilenetv3.py +283 -0
  182. dnt/third_party/fast-reid/fastreid/modeling/backbones/osnet.py +525 -0
  183. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/__init__.py +4 -0
  184. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/config.py +396 -0
  185. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B0_dds_8gpu.yaml +27 -0
  186. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B1_dds_8gpu.yaml +27 -0
  187. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B2_dds_8gpu.yaml +27 -0
  188. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B3_dds_8gpu.yaml +27 -0
  189. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B4_dds_8gpu.yaml +27 -0
  190. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B5_dds_8gpu.yaml +27 -0
  191. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet.py +281 -0
  192. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnet.py +596 -0
  193. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-1.6GF_dds_8gpu.yaml +26 -0
  194. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-12GF_dds_8gpu.yaml +26 -0
  195. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-16GF_dds_8gpu.yaml +26 -0
  196. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-200MF_dds_8gpu.yaml +26 -0
  197. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-3.2GF_dds_8gpu.yaml +26 -0
  198. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-32GF_dds_8gpu.yaml +26 -0
  199. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-4.0GF_dds_8gpu.yaml +26 -0
  200. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-400MF_dds_8gpu.yaml +26 -0
  201. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-6.4GF_dds_8gpu.yaml +26 -0
  202. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-600MF_dds_8gpu.yaml +26 -0
  203. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-8.0GF_dds_8gpu.yaml +26 -0
  204. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-800MF_dds_8gpu.yaml +26 -0
  205. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-1.6GF_dds_8gpu.yaml +27 -0
  206. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-12GF_dds_8gpu.yaml +27 -0
  207. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-16GF_dds_8gpu.yaml +27 -0
  208. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-200MF_dds_8gpu.yaml +26 -0
  209. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-3.2GF_dds_8gpu.yaml +27 -0
  210. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-32GF_dds_8gpu.yaml +27 -0
  211. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-4.0GF_dds_8gpu.yaml +27 -0
  212. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-400MF_dds_8gpu.yaml +27 -0
  213. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-6.4GF_dds_8gpu.yaml +27 -0
  214. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-600MF_dds_8gpu.yaml +27 -0
  215. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-8.0GF_dds_8gpu.yaml +27 -0
  216. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-800MF_dds_8gpu.yaml +27 -0
  217. dnt/third_party/fast-reid/fastreid/modeling/backbones/repvgg.py +309 -0
  218. dnt/third_party/fast-reid/fastreid/modeling/backbones/resnest.py +365 -0
  219. dnt/third_party/fast-reid/fastreid/modeling/backbones/resnet.py +364 -0
  220. dnt/third_party/fast-reid/fastreid/modeling/backbones/resnext.py +335 -0
  221. dnt/third_party/fast-reid/fastreid/modeling/backbones/shufflenet.py +203 -0
  222. dnt/third_party/fast-reid/fastreid/modeling/backbones/vision_transformer.py +399 -0
  223. dnt/third_party/fast-reid/fastreid/modeling/heads/__init__.py +11 -0
  224. dnt/third_party/fast-reid/fastreid/modeling/heads/build.py +25 -0
  225. dnt/third_party/fast-reid/fastreid/modeling/heads/clas_head.py +36 -0
  226. dnt/third_party/fast-reid/fastreid/modeling/heads/embedding_head.py +151 -0
  227. dnt/third_party/fast-reid/fastreid/modeling/losses/__init__.py +12 -0
  228. dnt/third_party/fast-reid/fastreid/modeling/losses/circle_loss.py +71 -0
  229. dnt/third_party/fast-reid/fastreid/modeling/losses/cross_entroy_loss.py +54 -0
  230. dnt/third_party/fast-reid/fastreid/modeling/losses/focal_loss.py +92 -0
  231. dnt/third_party/fast-reid/fastreid/modeling/losses/triplet_loss.py +113 -0
  232. dnt/third_party/fast-reid/fastreid/modeling/losses/utils.py +48 -0
  233. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/__init__.py +14 -0
  234. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/baseline.py +188 -0
  235. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/build.py +26 -0
  236. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/distiller.py +140 -0
  237. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/mgn.py +394 -0
  238. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/moco.py +126 -0
  239. dnt/third_party/fast-reid/fastreid/solver/__init__.py +8 -0
  240. dnt/third_party/fast-reid/fastreid/solver/build.py +348 -0
  241. dnt/third_party/fast-reid/fastreid/solver/lr_scheduler.py +66 -0
  242. dnt/third_party/fast-reid/fastreid/solver/optim/__init__.py +10 -0
  243. dnt/third_party/fast-reid/fastreid/solver/optim/lamb.py +123 -0
  244. dnt/third_party/fast-reid/fastreid/solver/optim/radam.py +149 -0
  245. dnt/third_party/fast-reid/fastreid/solver/optim/swa.py +246 -0
  246. dnt/third_party/fast-reid/fastreid/utils/__init__.py +6 -0
  247. dnt/third_party/fast-reid/fastreid/utils/checkpoint.py +503 -0
  248. dnt/third_party/fast-reid/fastreid/utils/collect_env.py +158 -0
  249. dnt/third_party/fast-reid/fastreid/utils/comm.py +255 -0
  250. dnt/third_party/fast-reid/fastreid/utils/compute_dist.py +200 -0
  251. dnt/third_party/fast-reid/fastreid/utils/env.py +119 -0
  252. dnt/third_party/fast-reid/fastreid/utils/events.py +461 -0
  253. dnt/third_party/fast-reid/fastreid/utils/faiss_utils.py +127 -0
  254. dnt/third_party/fast-reid/fastreid/utils/file_io.py +520 -0
  255. dnt/third_party/fast-reid/fastreid/utils/history_buffer.py +71 -0
  256. dnt/third_party/fast-reid/fastreid/utils/logger.py +211 -0
  257. dnt/third_party/fast-reid/fastreid/utils/params.py +103 -0
  258. dnt/third_party/fast-reid/fastreid/utils/precision_bn.py +94 -0
  259. dnt/third_party/fast-reid/fastreid/utils/registry.py +66 -0
  260. dnt/third_party/fast-reid/fastreid/utils/summary.py +120 -0
  261. dnt/third_party/fast-reid/fastreid/utils/timer.py +68 -0
  262. dnt/third_party/fast-reid/fastreid/utils/visualizer.py +278 -0
  263. dnt/track/__init__.py +2 -0
  264. dnt/track/botsort/__init__.py +4 -0
  265. dnt/track/botsort/bot_tracker/__init__.py +3 -0
  266. dnt/track/botsort/bot_tracker/basetrack.py +60 -0
  267. dnt/track/botsort/bot_tracker/bot_sort.py +473 -0
  268. dnt/track/botsort/bot_tracker/gmc.py +316 -0
  269. dnt/track/botsort/bot_tracker/kalman_filter.py +269 -0
  270. dnt/track/botsort/bot_tracker/matching.py +194 -0
  271. dnt/track/botsort/bot_tracker/mc_bot_sort.py +505 -0
  272. dnt/track/{dsort/utils → botsort/bot_tracker/tracking_utils}/evaluation.py +14 -4
  273. dnt/track/{dsort/utils → botsort/bot_tracker/tracking_utils}/io.py +19 -36
  274. dnt/track/botsort/bot_tracker/tracking_utils/timer.py +37 -0
  275. dnt/track/botsort/inference.py +96 -0
  276. dnt/track/config.py +120 -0
  277. dnt/track/dsort/configs/bagtricks_R50.yml +7 -0
  278. dnt/track/dsort/configs/deep_sort.yaml +0 -0
  279. dnt/track/dsort/configs/fastreid.yaml +1 -1
  280. dnt/track/dsort/deep_sort/deep/checkpoint/ckpt.t7 +0 -0
  281. dnt/track/dsort/deep_sort/deep/feature_extractor.py +87 -8
  282. dnt/track/dsort/deep_sort/deep_sort.py +31 -20
  283. dnt/track/dsort/deep_sort/sort/detection.py +2 -1
  284. dnt/track/dsort/deep_sort/sort/iou_matching.py +0 -2
  285. dnt/track/dsort/deep_sort/sort/linear_assignment.py +0 -3
  286. dnt/track/dsort/deep_sort/sort/nn_matching.py +5 -5
  287. dnt/track/dsort/deep_sort/sort/preprocessing.py +1 -2
  288. dnt/track/dsort/deep_sort/sort/track.py +2 -1
  289. dnt/track/dsort/deep_sort/sort/tracker.py +1 -1
  290. dnt/track/dsort/dsort.py +43 -33
  291. dnt/track/re_class.py +117 -0
  292. dnt/track/sort/sort.py +9 -6
  293. dnt/track/tracker.py +213 -32
  294. {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info}/METADATA +41 -13
  295. dnt-0.3.1.7.dist-info/RECORD +315 -0
  296. {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info}/WHEEL +1 -1
  297. dnt/analysis/yield.py +0 -9
  298. dnt/track/dsort/deep_sort/deep/evaluate.py +0 -15
  299. dnt/track/dsort/deep_sort/deep/original_model.py +0 -106
  300. dnt/track/dsort/deep_sort/deep/test.py +0 -77
  301. dnt/track/dsort/deep_sort/deep/train.py +0 -189
  302. dnt/track/dsort/utils/asserts.py +0 -13
  303. dnt/track/dsort/utils/draw.py +0 -36
  304. dnt/track/dsort/utils/json_logger.py +0 -383
  305. dnt/track/dsort/utils/log.py +0 -17
  306. dnt/track/dsort/utils/parser.py +0 -35
  307. dnt/track/dsort/utils/tools.py +0 -39
  308. dnt-0.2.4.dist-info/RECORD +0 -64
  309. /dnt/{track/dsort/utils → third_party/fast-reid/checkpoint}/__init__.py +0 -0
  310. {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info/licenses}/LICENSE +0 -0
  311. {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,534 @@
1
+ # -*- coding: utf-8 -*-
2
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
3
+
4
+ import datetime
5
+ import itertools
6
+ import logging
7
+ import os
8
+ import tempfile
9
+ import time
10
+ from collections import Counter
11
+
12
+ import torch
13
+ from torch import nn
14
+ from torch.nn.parallel import DistributedDataParallel
15
+
16
+ from fastreid.evaluation.testing import flatten_results_dict
17
+ from fastreid.solver import optim
18
+ from fastreid.utils import comm
19
+ from fastreid.utils.checkpoint import PeriodicCheckpointer as _PeriodicCheckpointer
20
+ from fastreid.utils.events import EventStorage, EventWriter, get_event_storage
21
+ from fastreid.utils.file_io import PathManager
22
+ from fastreid.utils.precision_bn import update_bn_stats, get_bn_modules
23
+ from fastreid.utils.timer import Timer
24
+ from .train_loop import HookBase
25
+
26
+ __all__ = [
27
+ "CallbackHook",
28
+ "IterationTimer",
29
+ "PeriodicWriter",
30
+ "PeriodicCheckpointer",
31
+ "LRScheduler",
32
+ "AutogradProfiler",
33
+ "EvalHook",
34
+ "PreciseBN",
35
+ "LayerFreeze",
36
+ ]
37
+
38
+ """
39
+ Implement some common hooks.
40
+ """
41
+
42
+
43
+ class CallbackHook(HookBase):
44
+ """
45
+ Create a hook using callback functions provided by the user.
46
+ """
47
+
48
+ def __init__(self, *, before_train=None, after_train=None, before_epoch=None, after_epoch=None,
49
+ before_step=None, after_step=None):
50
+ """
51
+ Each argument is a function that takes one argument: the trainer.
52
+ """
53
+ self._before_train = before_train
54
+ self._before_epoch = before_epoch
55
+ self._before_step = before_step
56
+ self._after_step = after_step
57
+ self._after_epoch = after_epoch
58
+ self._after_train = after_train
59
+
60
+ def before_train(self):
61
+ if self._before_train:
62
+ self._before_train(self.trainer)
63
+
64
+ def after_train(self):
65
+ if self._after_train:
66
+ self._after_train(self.trainer)
67
+ # The functions may be closures that hold reference to the trainer
68
+ # Therefore, delete them to avoid circular reference.
69
+ del self._before_train, self._after_train
70
+ del self._before_step, self._after_step
71
+
72
+ def before_epoch(self):
73
+ if self._before_epoch:
74
+ self._before_epoch(self.trainer)
75
+
76
+ def after_epoch(self):
77
+ if self._after_epoch:
78
+ self._after_epoch(self.trainer)
79
+
80
+ def before_step(self):
81
+ if self._before_step:
82
+ self._before_step(self.trainer)
83
+
84
+ def after_step(self):
85
+ if self._after_step:
86
+ self._after_step(self.trainer)
87
+
88
+
89
+ class IterationTimer(HookBase):
90
+ """
91
+ Track the time spent for each iteration (each run_step call in the trainer).
92
+ Print a summary in the end of training.
93
+ This hook uses the time between the call to its :meth:`before_step`
94
+ and :meth:`after_step` methods.
95
+ Under the convention that :meth:`before_step` of all hooks should only
96
+ take negligible amount of time, the :class:`IterationTimer` hook should be
97
+ placed at the beginning of the list of hooks to obtain accurate timing.
98
+ """
99
+
100
+ def __init__(self, warmup_iter=3):
101
+ """
102
+ Args:
103
+ warmup_iter (int): the number of iterations at the beginning to exclude
104
+ from timing.
105
+ """
106
+ self._warmup_iter = warmup_iter
107
+ self._step_timer = Timer()
108
+
109
+ def before_train(self):
110
+ self._start_time = time.perf_counter()
111
+ self._total_timer = Timer()
112
+ self._total_timer.pause()
113
+
114
+ def after_train(self):
115
+ logger = logging.getLogger(__name__)
116
+ total_time = time.perf_counter() - self._start_time
117
+ total_time_minus_hooks = self._total_timer.seconds()
118
+ hook_time = total_time - total_time_minus_hooks
119
+
120
+ num_iter = self.trainer.iter + 1 - self.trainer.start_iter - self._warmup_iter
121
+
122
+ if num_iter > 0 and total_time_minus_hooks > 0:
123
+ # Speed is meaningful only after warmup
124
+ # NOTE this format is parsed by grep in some scripts
125
+ logger.info(
126
+ "Overall training speed: {} iterations in {} ({:.4f} s / it)".format(
127
+ num_iter,
128
+ str(datetime.timedelta(seconds=int(total_time_minus_hooks))),
129
+ total_time_minus_hooks / num_iter,
130
+ )
131
+ )
132
+
133
+ logger.info(
134
+ "Total training time: {} ({} on hooks)".format(
135
+ str(datetime.timedelta(seconds=int(total_time))),
136
+ str(datetime.timedelta(seconds=int(hook_time))),
137
+ )
138
+ )
139
+
140
+ def before_step(self):
141
+ self._step_timer.reset()
142
+ self._total_timer.resume()
143
+
144
+ def after_step(self):
145
+ # +1 because we're in after_step
146
+ iter_done = self.trainer.iter - self.trainer.start_iter + 1
147
+ if iter_done >= self._warmup_iter:
148
+ sec = self._step_timer.seconds()
149
+ self.trainer.storage.put_scalars(time=sec)
150
+ else:
151
+ self._start_time = time.perf_counter()
152
+ self._total_timer.reset()
153
+
154
+ self._total_timer.pause()
155
+
156
+
157
+ class PeriodicWriter(HookBase):
158
+ """
159
+ Write events to EventStorage periodically.
160
+ It is executed every ``period`` iterations and after the last iteration.
161
+ """
162
+
163
+ def __init__(self, writers, period=20):
164
+ """
165
+ Args:
166
+ writers (list[EventWriter]): a list of EventWriter objects
167
+ period (int):
168
+ """
169
+ self._writers = writers
170
+ for w in writers:
171
+ assert isinstance(w, EventWriter), w
172
+ self._period = period
173
+
174
+ def after_step(self):
175
+ if (self.trainer.iter + 1) % self._period == 0 or (
176
+ self.trainer.iter == self.trainer.max_iter - 1
177
+ ):
178
+ for writer in self._writers:
179
+ writer.write()
180
+
181
+ def after_epoch(self):
182
+ for writer in self._writers:
183
+ writer.write()
184
+
185
+ def after_train(self):
186
+ for writer in self._writers:
187
+ writer.close()
188
+
189
+
190
+ class PeriodicCheckpointer(_PeriodicCheckpointer, HookBase):
191
+ """
192
+ Same as :class:`fastreid.utils.checkpoint.PeriodicCheckpointer`, but as a hook.
193
+ Note that when used as a hook,
194
+ it is unable to save additional data other than what's defined
195
+ by the given `checkpointer`.
196
+ It is executed every ``period`` iterations and after the last iteration.
197
+ """
198
+
199
+ def before_train(self):
200
+ self.max_epoch = self.trainer.max_epoch
201
+ if len(self.trainer.cfg.DATASETS.TESTS) == 1:
202
+ self.metric_name = "metric"
203
+ else:
204
+ self.metric_name = self.trainer.cfg.DATASETS.TESTS[0] + "/metric"
205
+
206
+ def after_epoch(self):
207
+ # No way to use **kwargs
208
+ storage = get_event_storage()
209
+ metric_dict = dict(
210
+ metric=storage.latest()[self.metric_name][0] if self.metric_name in storage.latest() else -1
211
+ )
212
+ self.step(self.trainer.epoch, **metric_dict)
213
+
214
+
215
+ class LRScheduler(HookBase):
216
+ """
217
+ A hook which executes a torch builtin LR scheduler and summarizes the LR.
218
+ It is executed after every iteration.
219
+ """
220
+
221
+ def __init__(self, optimizer, scheduler):
222
+ """
223
+ Args:
224
+ optimizer (torch.optim.Optimizer):
225
+ scheduler (torch.optim._LRScheduler)
226
+ """
227
+ self._optimizer = optimizer
228
+ self._scheduler = scheduler
229
+ self._scale = 0
230
+
231
+ # NOTE: some heuristics on what LR to summarize
232
+ # summarize the param group with most parameters
233
+ largest_group = max(len(g["params"]) for g in optimizer.param_groups)
234
+
235
+ if largest_group == 1:
236
+ # If all groups have one parameter,
237
+ # then find the most common initial LR, and use it for summary
238
+ lr_count = Counter([g["lr"] for g in optimizer.param_groups])
239
+ lr = lr_count.most_common()[0][0]
240
+ for i, g in enumerate(optimizer.param_groups):
241
+ if g["lr"] == lr:
242
+ self._best_param_group_id = i
243
+ break
244
+ else:
245
+ for i, g in enumerate(optimizer.param_groups):
246
+ if len(g["params"]) == largest_group:
247
+ self._best_param_group_id = i
248
+ break
249
+
250
+ def before_step(self):
251
+ if self.trainer.grad_scaler is not None:
252
+ self._scale = self.trainer.grad_scaler.get_scale()
253
+
254
+ def after_step(self):
255
+ lr = self._optimizer.param_groups[self._best_param_group_id]["lr"]
256
+ self.trainer.storage.put_scalar("lr", lr, smoothing_hint=False)
257
+
258
+ next_iter = self.trainer.iter + 1
259
+ if next_iter <= self.trainer.warmup_iters:
260
+ if self.trainer.grad_scaler is None or self._scale == self.trainer.grad_scaler.get_scale():
261
+ self._scheduler["warmup_sched"].step()
262
+
263
+ def after_epoch(self):
264
+ next_iter = self.trainer.iter + 1
265
+ next_epoch = self.trainer.epoch + 1
266
+ if next_iter > self.trainer.warmup_iters and next_epoch > self.trainer.delay_epochs:
267
+ self._scheduler["lr_sched"].step()
268
+
269
+
270
+ class AutogradProfiler(HookBase):
271
+ """
272
+ A hook which runs `torch.autograd.profiler.profile`.
273
+ Examples:
274
+ .. code-block:: python
275
+ hooks.AutogradProfiler(
276
+ lambda trainer: trainer.iter > 10 and trainer.iter < 20, self.cfg.OUTPUT_DIR
277
+ )
278
+ The above example will run the profiler for iteration 10~20 and dump
279
+ results to ``OUTPUT_DIR``. We did not profile the first few iterations
280
+ because they are typically slower than the rest.
281
+ The result files can be loaded in the ``chrome://tracing`` page in chrome browser.
282
+ Note:
283
+ When used together with NCCL on older version of GPUs,
284
+ autograd profiler may cause deadlock because it unnecessarily allocates
285
+ memory on every device it sees. The memory management calls, if
286
+ interleaved with NCCL calls, lead to deadlock on GPUs that do not
287
+ support `cudaLaunchCooperativeKernelMultiDevice`.
288
+ """
289
+
290
+ def __init__(self, enable_predicate, output_dir, *, use_cuda=True):
291
+ """
292
+ Args:
293
+ enable_predicate (callable[trainer -> bool]): a function which takes a trainer,
294
+ and returns whether to enable the profiler.
295
+ It will be called once every step, and can be used to select which steps to profile.
296
+ output_dir (str): the output directory to dump tracing files.
297
+ use_cuda (bool): same as in `torch.autograd.profiler.profile`.
298
+ """
299
+ self._enable_predicate = enable_predicate
300
+ self._use_cuda = use_cuda
301
+ self._output_dir = output_dir
302
+
303
+ def before_step(self):
304
+ if self._enable_predicate(self.trainer):
305
+ self._profiler = torch.autograd.profiler.profile(use_cuda=self._use_cuda)
306
+ self._profiler.__enter__()
307
+ else:
308
+ self._profiler = None
309
+
310
+ def after_step(self):
311
+ if self._profiler is None:
312
+ return
313
+ self._profiler.__exit__(None, None, None)
314
+ out_file = os.path.join(
315
+ self._output_dir, "profiler-trace-iter{}.json".format(self.trainer.iter)
316
+ )
317
+ if "://" not in out_file:
318
+ self._profiler.export_chrome_trace(out_file)
319
+ else:
320
+ # Support non-posix filesystems
321
+ with tempfile.TemporaryDirectory(prefix="fastreid_profiler") as d:
322
+ tmp_file = os.path.join(d, "tmp.json")
323
+ self._profiler.export_chrome_trace(tmp_file)
324
+ with open(tmp_file) as f:
325
+ content = f.read()
326
+ with PathManager.open(out_file, "w") as f:
327
+ f.write(content)
328
+
329
+
330
+ class EvalHook(HookBase):
331
+ """
332
+ Run an evaluation function periodically, and at the end of training.
333
+ It is executed every ``eval_period`` iterations and after the last iteration.
334
+ """
335
+
336
+ def __init__(self, eval_period, eval_function):
337
+ """
338
+ Args:
339
+ eval_period (int): the period to run `eval_function`.
340
+ eval_function (callable): a function which takes no arguments, and
341
+ returns a nested dict of evaluation metrics.
342
+ Note:
343
+ This hook must be enabled in all or none workers.
344
+ If you would like only certain workers to perform evaluation,
345
+ give other workers a no-op function (`eval_function=lambda: None`).
346
+ """
347
+ self._period = eval_period
348
+ self._func = eval_function
349
+
350
+ def _do_eval(self):
351
+ results = self._func()
352
+
353
+ if results:
354
+ assert isinstance(
355
+ results, dict
356
+ ), "Eval function must return a dict. Got {} instead.".format(results)
357
+
358
+ flattened_results = flatten_results_dict(results)
359
+ for k, v in flattened_results.items():
360
+ try:
361
+ v = float(v)
362
+ except Exception:
363
+ raise ValueError(
364
+ "[EvalHook] eval_function should return a nested dict of float. "
365
+ "Got '{}: {}' instead.".format(k, v)
366
+ )
367
+ self.trainer.storage.put_scalars(**flattened_results, smoothing_hint=False)
368
+
369
+ torch.cuda.empty_cache()
370
+ # Evaluation may take different time among workers.
371
+ # A barrier make them start the next iteration together.
372
+ comm.synchronize()
373
+
374
+ def after_epoch(self):
375
+ next_epoch = self.trainer.epoch + 1
376
+ if self._period > 0 and next_epoch % self._period == 0:
377
+ self._do_eval()
378
+
379
+ def after_train(self):
380
+ next_epoch = self.trainer.epoch + 1
381
+ # This condition is to prevent the eval from running after a failed training
382
+ if next_epoch % self._period != 0 and next_epoch >= self.trainer.max_epoch:
383
+ self._do_eval()
384
+ # func is likely a closure that holds reference to the trainer
385
+ # therefore we clean it to avoid circular reference in the end
386
+ del self._func
387
+
388
+
389
+ class PreciseBN(HookBase):
390
+ """
391
+ The standard implementation of BatchNorm uses EMA in inference, which is
392
+ sometimes suboptimal.
393
+ This class computes the true average of statistics rather than the moving average,
394
+ and put true averages to every BN layer in the given model.
395
+ It is executed after the last iteration.
396
+ """
397
+
398
+ def __init__(self, model, data_loader, num_iter):
399
+ """
400
+ Args:
401
+ model (nn.Module): a module whose all BN layers in training mode will be
402
+ updated by precise BN.
403
+ Note that user is responsible for ensuring the BN layers to be
404
+ updated are in training mode when this hook is triggered.
405
+ data_loader (iterable): it will produce data to be run by `model(data)`.
406
+ num_iter (int): number of iterations used to compute the precise
407
+ statistics.
408
+ """
409
+ self._logger = logging.getLogger(__name__)
410
+ if len(get_bn_modules(model)) == 0:
411
+ self._logger.info(
412
+ "PreciseBN is disabled because model does not contain BN layers in training mode."
413
+ )
414
+ self._disabled = True
415
+ return
416
+
417
+ self._model = model
418
+ self._data_loader = data_loader
419
+ self._num_iter = num_iter
420
+ self._disabled = False
421
+
422
+ self._data_iter = None
423
+
424
+ def after_epoch(self):
425
+ next_epoch = self.trainer.epoch + 1
426
+ is_final = next_epoch == self.trainer.max_epoch
427
+ if is_final:
428
+ self.update_stats()
429
+
430
+ def update_stats(self):
431
+ """
432
+ Update the model with precise statistics. Users can manually call this method.
433
+ """
434
+ if self._disabled:
435
+ return
436
+
437
+ if self._data_iter is None:
438
+ self._data_iter = iter(self._data_loader)
439
+
440
+ def data_loader():
441
+ for num_iter in itertools.count(1):
442
+ if num_iter % 100 == 0:
443
+ self._logger.info(
444
+ "Running precise-BN ... {}/{} iterations.".format(num_iter, self._num_iter)
445
+ )
446
+ # This way we can reuse the same iterator
447
+ yield next(self._data_iter)
448
+
449
+ with EventStorage(): # capture events in a new storage to discard them
450
+ self._logger.info(
451
+ "Running precise-BN for {} iterations... ".format(self._num_iter)
452
+ + "Note that this could produce different statistics every time."
453
+ )
454
+ update_bn_stats(self._model, data_loader(), self._num_iter)
455
+
456
+
457
+ class LayerFreeze(HookBase):
458
+ def __init__(self, model, freeze_layers, freeze_iters):
459
+ self._logger = logging.getLogger(__name__)
460
+ if isinstance(model, DistributedDataParallel):
461
+ model = model.module
462
+ self.model = model
463
+
464
+ self.freeze_layers = freeze_layers
465
+ self.freeze_iters = freeze_iters
466
+
467
+ self.is_frozen = False
468
+
469
+ def before_step(self):
470
+ # Freeze specific layers
471
+ if self.trainer.iter < self.freeze_iters and not self.is_frozen:
472
+ self.freeze_specific_layer()
473
+
474
+ # Recover original layers status
475
+ if self.trainer.iter >= self.freeze_iters and self.is_frozen:
476
+ self.open_all_layer()
477
+
478
+ def freeze_specific_layer(self):
479
+ for layer in self.freeze_layers:
480
+ if not hasattr(self.model, layer):
481
+ self._logger.info(f'{layer} is not an attribute of the model, will skip this layer')
482
+
483
+ for name, module in self.model.named_children():
484
+ if name in self.freeze_layers:
485
+ # Change BN in freeze layers to eval mode
486
+ module.eval()
487
+
488
+ self.is_frozen = True
489
+ freeze_layers = ", ".join(self.freeze_layers)
490
+ self._logger.info(f'Freeze layer group "{freeze_layers}" training for {self.freeze_iters:d} iterations')
491
+
492
+ def open_all_layer(self):
493
+ for name, module in self.model.named_children():
494
+ if name in self.freeze_layers:
495
+ module.train()
496
+
497
+ self.is_frozen = False
498
+
499
+ freeze_layers = ", ".join(self.freeze_layers)
500
+ self._logger.info(f'Open layer group "{freeze_layers}" training')
501
+
502
+
503
+ class SWA(HookBase):
504
+ def __init__(self, swa_start: int, swa_freq: int, swa_lr_factor: float, eta_min: float, lr_sched=False, ):
505
+ self.swa_start = swa_start
506
+ self.swa_freq = swa_freq
507
+ self.swa_lr_factor = swa_lr_factor
508
+ self.eta_min = eta_min
509
+ self.lr_sched = lr_sched
510
+
511
+ def before_step(self):
512
+ is_swa = self.trainer.iter == self.swa_start
513
+ if is_swa:
514
+ # Wrapper optimizer with SWA
515
+ self.trainer.optimizer = optim.SWA(self.trainer.optimizer, self.swa_freq, self.swa_lr_factor)
516
+ self.trainer.optimizer.reset_lr_to_swa()
517
+
518
+ if self.lr_sched:
519
+ self.scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
520
+ optimizer=self.trainer.optimizer,
521
+ T_0=self.swa_freq,
522
+ eta_min=self.eta_min,
523
+ )
524
+
525
+ def after_step(self):
526
+ next_iter = self.trainer.iter + 1
527
+
528
+ # Use Cyclic learning rate scheduler
529
+ if next_iter > self.swa_start and self.lr_sched:
530
+ self.scheduler.step()
531
+
532
+ is_final = next_iter == self.trainer.max_iter
533
+ if is_final:
534
+ self.trainer.optimizer.swap_swa_param()
@@ -0,0 +1,103 @@
1
+ # encoding: utf-8
2
+ """
3
+ @author: xingyu liao
4
+ @contact: sherlockliao01@gmail.com
5
+ """
6
+
7
+ # based on:
8
+ # https://github.com/facebookresearch/detectron2/blob/master/detectron2/engine/launch.py
9
+
10
+
11
+ import logging
12
+
13
+ import torch
14
+ import torch.distributed as dist
15
+ import torch.multiprocessing as mp
16
+
17
+ from fastreid.utils import comm
18
+
19
+ __all__ = ["launch"]
20
+
21
+
22
+ def _find_free_port():
23
+ import socket
24
+
25
+ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
26
+ # Binding to port 0 will cause the OS to find an available port for us
27
+ sock.bind(("", 0))
28
+ port = sock.getsockname()[1]
29
+ sock.close()
30
+ # NOTE: there is still a chance the port could be taken by other processes.
31
+ return port
32
+
33
+
34
+ def launch(main_func, num_gpus_per_machine, num_machines=1, machine_rank=0, dist_url=None, args=()):
35
+ """
36
+ Launch multi-gpu or distributed training.
37
+ This function must be called on all machines involved in the training.
38
+ It will spawn child processes (defined by ``num_gpus_per_machine`) on each machine.
39
+ Args:
40
+ main_func: a function that will be called by `main_func(*args)`
41
+ num_gpus_per_machine (int): number of GPUs per machine
42
+ num_machines (int): the total number of machines
43
+ machine_rank (int): the rank of this machine
44
+ dist_url (str): url to connect to for distributed jobs, including protocol
45
+ e.g. "tcp://127.0.0.1:8686".
46
+ Can be set to "auto" to automatically select a free port on localhost
47
+ args (tuple): arguments passed to main_func
48
+ """
49
+ world_size = num_machines * num_gpus_per_machine
50
+ if world_size > 1:
51
+ # https://github.com/pytorch/pytorch/pull/14391
52
+ # TODO prctl in spawned processes
53
+
54
+ if dist_url == "auto":
55
+ assert num_machines == 1, "dist_url=auto not supported in multi-machine jobs."
56
+ port = _find_free_port()
57
+ dist_url = f"tcp://127.0.0.1:{port}"
58
+ if num_machines > 1 and dist_url.startswith("file://"):
59
+ logger = logging.getLogger(__name__)
60
+ logger.warning(
61
+ "file:// is not a reliable init_method in multi-machine jobs. Prefer tcp://"
62
+ )
63
+
64
+ mp.spawn(
65
+ _distributed_worker,
66
+ nprocs=num_gpus_per_machine,
67
+ args=(main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args),
68
+ daemon=False,
69
+ )
70
+ else:
71
+ main_func(*args)
72
+
73
+
74
+ def _distributed_worker(
75
+ local_rank, main_func, world_size, num_gpus_per_machine, machine_rank, dist_url, args
76
+ ):
77
+ assert torch.cuda.is_available(), "cuda is not available. Please check your installation."
78
+ global_rank = machine_rank * num_gpus_per_machine + local_rank
79
+ try:
80
+ dist.init_process_group(
81
+ backend="NCCL", init_method=dist_url, world_size=world_size, rank=global_rank
82
+ )
83
+ except Exception as e:
84
+ logger = logging.getLogger(__name__)
85
+ logger.error("Process group URL: {}".format(dist_url))
86
+ raise e
87
+ # synchronize is needed here to prevent a possible timeout after calling init_process_group
88
+ # See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172
89
+ comm.synchronize()
90
+
91
+ assert num_gpus_per_machine <= torch.cuda.device_count()
92
+ torch.cuda.set_device(local_rank)
93
+
94
+ # Setup the local process group (which contains ranks within the same machine)
95
+ assert comm._LOCAL_PROCESS_GROUP is None
96
+ num_machines = world_size // num_gpus_per_machine
97
+ for i in range(num_machines):
98
+ ranks_on_i = list(range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine))
99
+ pg = dist.new_group(ranks_on_i)
100
+ if i == machine_rank:
101
+ comm._LOCAL_PROCESS_GROUP = pg
102
+
103
+ main_func(*args)