dnt 0.2.4__py3-none-any.whl → 0.3.1.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dnt might be problematic. Click here for more details.

Files changed (311) hide show
  1. dnt/__init__.py +3 -2
  2. dnt/analysis/__init__.py +3 -2
  3. dnt/analysis/count.py +54 -37
  4. dnt/analysis/interaction2.py +518 -0
  5. dnt/analysis/stop.py +22 -17
  6. dnt/analysis/stop2.py +289 -0
  7. dnt/analysis/stop3.py +758 -0
  8. dnt/detect/signal/detector.py +326 -0
  9. dnt/detect/timestamp.py +105 -0
  10. dnt/detect/yolov8/detector.py +179 -36
  11. dnt/detect/yolov8/segmentor.py +60 -2
  12. dnt/engine/__init__.py +8 -0
  13. dnt/engine/bbox_interp.py +83 -0
  14. dnt/engine/bbox_iou.py +20 -0
  15. dnt/engine/cluster.py +31 -0
  16. dnt/engine/iob.py +66 -0
  17. dnt/filter/filter.py +333 -2
  18. dnt/label/labeler.py +4 -4
  19. dnt/label/labeler2.py +605 -0
  20. dnt/shared/__init__.py +2 -1
  21. dnt/shared/data/coco.names +0 -0
  22. dnt/shared/data/openimages.names +0 -0
  23. dnt/shared/data/voc.names +0 -0
  24. dnt/shared/download.py +12 -0
  25. dnt/shared/synhcro.py +150 -0
  26. dnt/shared/util.py +17 -4
  27. dnt/third_party/fast-reid/__init__.py +1 -0
  28. dnt/third_party/fast-reid/configs/Base-AGW.yml +19 -0
  29. dnt/third_party/fast-reid/configs/Base-MGN.yml +12 -0
  30. dnt/third_party/fast-reid/configs/Base-SBS.yml +63 -0
  31. dnt/third_party/fast-reid/configs/Base-bagtricks.yml +76 -0
  32. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R101-ibn.yml +12 -0
  33. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R50-ibn.yml +11 -0
  34. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R50.yml +7 -0
  35. dnt/third_party/fast-reid/configs/DukeMTMC/AGW_S50.yml +11 -0
  36. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R101-ibn.yml +12 -0
  37. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R50-ibn.yml +11 -0
  38. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R50.yml +7 -0
  39. dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_S50.yml +11 -0
  40. dnt/third_party/fast-reid/configs/DukeMTMC/mgn_R50-ibn.yml +11 -0
  41. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R101-ibn.yml +12 -0
  42. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R50-ibn.yml +11 -0
  43. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R50.yml +7 -0
  44. dnt/third_party/fast-reid/configs/DukeMTMC/sbs_S50.yml +11 -0
  45. dnt/third_party/fast-reid/configs/MOT17/AGW_R101-ibn.yml +12 -0
  46. dnt/third_party/fast-reid/configs/MOT17/AGW_R50-ibn.yml +11 -0
  47. dnt/third_party/fast-reid/configs/MOT17/AGW_R50.yml +7 -0
  48. dnt/third_party/fast-reid/configs/MOT17/AGW_S50.yml +11 -0
  49. dnt/third_party/fast-reid/configs/MOT17/bagtricks_R101-ibn.yml +12 -0
  50. dnt/third_party/fast-reid/configs/MOT17/bagtricks_R50-ibn.yml +11 -0
  51. dnt/third_party/fast-reid/configs/MOT17/bagtricks_R50.yml +7 -0
  52. dnt/third_party/fast-reid/configs/MOT17/bagtricks_S50.yml +11 -0
  53. dnt/third_party/fast-reid/configs/MOT17/mgn_R50-ibn.yml +11 -0
  54. dnt/third_party/fast-reid/configs/MOT17/sbs_R101-ibn.yml +12 -0
  55. dnt/third_party/fast-reid/configs/MOT17/sbs_R50-ibn.yml +11 -0
  56. dnt/third_party/fast-reid/configs/MOT17/sbs_R50.yml +7 -0
  57. dnt/third_party/fast-reid/configs/MOT17/sbs_S50.yml +11 -0
  58. dnt/third_party/fast-reid/configs/MOT20/AGW_R101-ibn.yml +12 -0
  59. dnt/third_party/fast-reid/configs/MOT20/AGW_R50-ibn.yml +11 -0
  60. dnt/third_party/fast-reid/configs/MOT20/AGW_R50.yml +7 -0
  61. dnt/third_party/fast-reid/configs/MOT20/AGW_S50.yml +11 -0
  62. dnt/third_party/fast-reid/configs/MOT20/bagtricks_R101-ibn.yml +12 -0
  63. dnt/third_party/fast-reid/configs/MOT20/bagtricks_R50-ibn.yml +11 -0
  64. dnt/third_party/fast-reid/configs/MOT20/bagtricks_R50.yml +7 -0
  65. dnt/third_party/fast-reid/configs/MOT20/bagtricks_S50.yml +11 -0
  66. dnt/third_party/fast-reid/configs/MOT20/mgn_R50-ibn.yml +11 -0
  67. dnt/third_party/fast-reid/configs/MOT20/sbs_R101-ibn.yml +12 -0
  68. dnt/third_party/fast-reid/configs/MOT20/sbs_R50-ibn.yml +11 -0
  69. dnt/third_party/fast-reid/configs/MOT20/sbs_R50.yml +7 -0
  70. dnt/third_party/fast-reid/configs/MOT20/sbs_S50.yml +11 -0
  71. dnt/third_party/fast-reid/configs/MSMT17/AGW_R101-ibn.yml +12 -0
  72. dnt/third_party/fast-reid/configs/MSMT17/AGW_R50-ibn.yml +11 -0
  73. dnt/third_party/fast-reid/configs/MSMT17/AGW_R50.yml +7 -0
  74. dnt/third_party/fast-reid/configs/MSMT17/AGW_S50.yml +11 -0
  75. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R101-ibn.yml +13 -0
  76. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R50-ibn.yml +12 -0
  77. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R50.yml +7 -0
  78. dnt/third_party/fast-reid/configs/MSMT17/bagtricks_S50.yml +12 -0
  79. dnt/third_party/fast-reid/configs/MSMT17/mgn_R50-ibn.yml +11 -0
  80. dnt/third_party/fast-reid/configs/MSMT17/sbs_R101-ibn.yml +12 -0
  81. dnt/third_party/fast-reid/configs/MSMT17/sbs_R50-ibn.yml +11 -0
  82. dnt/third_party/fast-reid/configs/MSMT17/sbs_R50.yml +7 -0
  83. dnt/third_party/fast-reid/configs/MSMT17/sbs_S50.yml +11 -0
  84. dnt/third_party/fast-reid/configs/Market1501/AGW_R101-ibn.yml +12 -0
  85. dnt/third_party/fast-reid/configs/Market1501/AGW_R50-ibn.yml +11 -0
  86. dnt/third_party/fast-reid/configs/Market1501/AGW_R50.yml +7 -0
  87. dnt/third_party/fast-reid/configs/Market1501/AGW_S50.yml +11 -0
  88. dnt/third_party/fast-reid/configs/Market1501/bagtricks_R101-ibn.yml +12 -0
  89. dnt/third_party/fast-reid/configs/Market1501/bagtricks_R50-ibn.yml +11 -0
  90. dnt/third_party/fast-reid/configs/Market1501/bagtricks_R50.yml +7 -0
  91. dnt/third_party/fast-reid/configs/Market1501/bagtricks_S50.yml +11 -0
  92. dnt/third_party/fast-reid/configs/Market1501/bagtricks_vit.yml +88 -0
  93. dnt/third_party/fast-reid/configs/Market1501/mgn_R50-ibn.yml +11 -0
  94. dnt/third_party/fast-reid/configs/Market1501/sbs_R101-ibn.yml +12 -0
  95. dnt/third_party/fast-reid/configs/Market1501/sbs_R50-ibn.yml +11 -0
  96. dnt/third_party/fast-reid/configs/Market1501/sbs_R50.yml +7 -0
  97. dnt/third_party/fast-reid/configs/Market1501/sbs_S50.yml +11 -0
  98. dnt/third_party/fast-reid/configs/VERIWild/bagtricks_R50-ibn.yml +35 -0
  99. dnt/third_party/fast-reid/configs/VeRi/sbs_R50-ibn.yml +35 -0
  100. dnt/third_party/fast-reid/configs/VehicleID/bagtricks_R50-ibn.yml +36 -0
  101. dnt/third_party/fast-reid/configs/__init__.py +0 -0
  102. dnt/third_party/fast-reid/fast_reid_interfece.py +175 -0
  103. dnt/third_party/fast-reid/fastreid/__init__.py +6 -0
  104. dnt/third_party/fast-reid/fastreid/config/__init__.py +15 -0
  105. dnt/third_party/fast-reid/fastreid/config/config.py +319 -0
  106. dnt/third_party/fast-reid/fastreid/config/defaults.py +329 -0
  107. dnt/third_party/fast-reid/fastreid/data/__init__.py +17 -0
  108. dnt/third_party/fast-reid/fastreid/data/build.py +194 -0
  109. dnt/third_party/fast-reid/fastreid/data/common.py +58 -0
  110. dnt/third_party/fast-reid/fastreid/data/data_utils.py +202 -0
  111. dnt/third_party/fast-reid/fastreid/data/datasets/AirportALERT.py +50 -0
  112. dnt/third_party/fast-reid/fastreid/data/datasets/__init__.py +43 -0
  113. dnt/third_party/fast-reid/fastreid/data/datasets/bases.py +183 -0
  114. dnt/third_party/fast-reid/fastreid/data/datasets/caviara.py +44 -0
  115. dnt/third_party/fast-reid/fastreid/data/datasets/cuhk03.py +274 -0
  116. dnt/third_party/fast-reid/fastreid/data/datasets/cuhk_sysu.py +58 -0
  117. dnt/third_party/fast-reid/fastreid/data/datasets/dukemtmcreid.py +70 -0
  118. dnt/third_party/fast-reid/fastreid/data/datasets/grid.py +44 -0
  119. dnt/third_party/fast-reid/fastreid/data/datasets/iLIDS.py +45 -0
  120. dnt/third_party/fast-reid/fastreid/data/datasets/lpw.py +49 -0
  121. dnt/third_party/fast-reid/fastreid/data/datasets/market1501.py +89 -0
  122. dnt/third_party/fast-reid/fastreid/data/datasets/msmt17.py +114 -0
  123. dnt/third_party/fast-reid/fastreid/data/datasets/pes3d.py +44 -0
  124. dnt/third_party/fast-reid/fastreid/data/datasets/pku.py +44 -0
  125. dnt/third_party/fast-reid/fastreid/data/datasets/prai.py +43 -0
  126. dnt/third_party/fast-reid/fastreid/data/datasets/prid.py +41 -0
  127. dnt/third_party/fast-reid/fastreid/data/datasets/saivt.py +47 -0
  128. dnt/third_party/fast-reid/fastreid/data/datasets/sensereid.py +47 -0
  129. dnt/third_party/fast-reid/fastreid/data/datasets/shinpuhkan.py +48 -0
  130. dnt/third_party/fast-reid/fastreid/data/datasets/sysu_mm.py +47 -0
  131. dnt/third_party/fast-reid/fastreid/data/datasets/thermalworld.py +43 -0
  132. dnt/third_party/fast-reid/fastreid/data/datasets/vehicleid.py +126 -0
  133. dnt/third_party/fast-reid/fastreid/data/datasets/veri.py +69 -0
  134. dnt/third_party/fast-reid/fastreid/data/datasets/veriwild.py +140 -0
  135. dnt/third_party/fast-reid/fastreid/data/datasets/viper.py +45 -0
  136. dnt/third_party/fast-reid/fastreid/data/datasets/wildtracker.py +59 -0
  137. dnt/third_party/fast-reid/fastreid/data/samplers/__init__.py +18 -0
  138. dnt/third_party/fast-reid/fastreid/data/samplers/data_sampler.py +85 -0
  139. dnt/third_party/fast-reid/fastreid/data/samplers/imbalance_sampler.py +67 -0
  140. dnt/third_party/fast-reid/fastreid/data/samplers/triplet_sampler.py +260 -0
  141. dnt/third_party/fast-reid/fastreid/data/transforms/__init__.py +11 -0
  142. dnt/third_party/fast-reid/fastreid/data/transforms/autoaugment.py +806 -0
  143. dnt/third_party/fast-reid/fastreid/data/transforms/build.py +100 -0
  144. dnt/third_party/fast-reid/fastreid/data/transforms/functional.py +180 -0
  145. dnt/third_party/fast-reid/fastreid/data/transforms/transforms.py +161 -0
  146. dnt/third_party/fast-reid/fastreid/engine/__init__.py +15 -0
  147. dnt/third_party/fast-reid/fastreid/engine/defaults.py +490 -0
  148. dnt/third_party/fast-reid/fastreid/engine/hooks.py +534 -0
  149. dnt/third_party/fast-reid/fastreid/engine/launch.py +103 -0
  150. dnt/third_party/fast-reid/fastreid/engine/train_loop.py +357 -0
  151. dnt/third_party/fast-reid/fastreid/evaluation/__init__.py +6 -0
  152. dnt/third_party/fast-reid/fastreid/evaluation/clas_evaluator.py +81 -0
  153. dnt/third_party/fast-reid/fastreid/evaluation/evaluator.py +176 -0
  154. dnt/third_party/fast-reid/fastreid/evaluation/query_expansion.py +46 -0
  155. dnt/third_party/fast-reid/fastreid/evaluation/rank.py +200 -0
  156. dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/__init__.py +20 -0
  157. dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/setup.py +32 -0
  158. dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/test_cython.py +106 -0
  159. dnt/third_party/fast-reid/fastreid/evaluation/reid_evaluation.py +143 -0
  160. dnt/third_party/fast-reid/fastreid/evaluation/rerank.py +73 -0
  161. dnt/third_party/fast-reid/fastreid/evaluation/roc.py +90 -0
  162. dnt/third_party/fast-reid/fastreid/evaluation/testing.py +88 -0
  163. dnt/third_party/fast-reid/fastreid/layers/__init__.py +19 -0
  164. dnt/third_party/fast-reid/fastreid/layers/activation.py +59 -0
  165. dnt/third_party/fast-reid/fastreid/layers/any_softmax.py +80 -0
  166. dnt/third_party/fast-reid/fastreid/layers/batch_norm.py +205 -0
  167. dnt/third_party/fast-reid/fastreid/layers/context_block.py +113 -0
  168. dnt/third_party/fast-reid/fastreid/layers/drop.py +161 -0
  169. dnt/third_party/fast-reid/fastreid/layers/frn.py +199 -0
  170. dnt/third_party/fast-reid/fastreid/layers/gather_layer.py +30 -0
  171. dnt/third_party/fast-reid/fastreid/layers/helpers.py +31 -0
  172. dnt/third_party/fast-reid/fastreid/layers/non_local.py +54 -0
  173. dnt/third_party/fast-reid/fastreid/layers/pooling.py +124 -0
  174. dnt/third_party/fast-reid/fastreid/layers/se_layer.py +25 -0
  175. dnt/third_party/fast-reid/fastreid/layers/splat.py +109 -0
  176. dnt/third_party/fast-reid/fastreid/layers/weight_init.py +122 -0
  177. dnt/third_party/fast-reid/fastreid/modeling/__init__.py +23 -0
  178. dnt/third_party/fast-reid/fastreid/modeling/backbones/__init__.py +18 -0
  179. dnt/third_party/fast-reid/fastreid/modeling/backbones/build.py +27 -0
  180. dnt/third_party/fast-reid/fastreid/modeling/backbones/mobilenet.py +195 -0
  181. dnt/third_party/fast-reid/fastreid/modeling/backbones/mobilenetv3.py +283 -0
  182. dnt/third_party/fast-reid/fastreid/modeling/backbones/osnet.py +525 -0
  183. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/__init__.py +4 -0
  184. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/config.py +396 -0
  185. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B0_dds_8gpu.yaml +27 -0
  186. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B1_dds_8gpu.yaml +27 -0
  187. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B2_dds_8gpu.yaml +27 -0
  188. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B3_dds_8gpu.yaml +27 -0
  189. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B4_dds_8gpu.yaml +27 -0
  190. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B5_dds_8gpu.yaml +27 -0
  191. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet.py +281 -0
  192. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnet.py +596 -0
  193. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-1.6GF_dds_8gpu.yaml +26 -0
  194. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-12GF_dds_8gpu.yaml +26 -0
  195. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-16GF_dds_8gpu.yaml +26 -0
  196. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-200MF_dds_8gpu.yaml +26 -0
  197. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-3.2GF_dds_8gpu.yaml +26 -0
  198. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-32GF_dds_8gpu.yaml +26 -0
  199. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-4.0GF_dds_8gpu.yaml +26 -0
  200. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-400MF_dds_8gpu.yaml +26 -0
  201. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-6.4GF_dds_8gpu.yaml +26 -0
  202. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-600MF_dds_8gpu.yaml +26 -0
  203. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-8.0GF_dds_8gpu.yaml +26 -0
  204. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-800MF_dds_8gpu.yaml +26 -0
  205. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-1.6GF_dds_8gpu.yaml +27 -0
  206. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-12GF_dds_8gpu.yaml +27 -0
  207. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-16GF_dds_8gpu.yaml +27 -0
  208. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-200MF_dds_8gpu.yaml +26 -0
  209. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-3.2GF_dds_8gpu.yaml +27 -0
  210. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-32GF_dds_8gpu.yaml +27 -0
  211. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-4.0GF_dds_8gpu.yaml +27 -0
  212. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-400MF_dds_8gpu.yaml +27 -0
  213. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-6.4GF_dds_8gpu.yaml +27 -0
  214. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-600MF_dds_8gpu.yaml +27 -0
  215. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-8.0GF_dds_8gpu.yaml +27 -0
  216. dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-800MF_dds_8gpu.yaml +27 -0
  217. dnt/third_party/fast-reid/fastreid/modeling/backbones/repvgg.py +309 -0
  218. dnt/third_party/fast-reid/fastreid/modeling/backbones/resnest.py +365 -0
  219. dnt/third_party/fast-reid/fastreid/modeling/backbones/resnet.py +364 -0
  220. dnt/third_party/fast-reid/fastreid/modeling/backbones/resnext.py +335 -0
  221. dnt/third_party/fast-reid/fastreid/modeling/backbones/shufflenet.py +203 -0
  222. dnt/third_party/fast-reid/fastreid/modeling/backbones/vision_transformer.py +399 -0
  223. dnt/third_party/fast-reid/fastreid/modeling/heads/__init__.py +11 -0
  224. dnt/third_party/fast-reid/fastreid/modeling/heads/build.py +25 -0
  225. dnt/third_party/fast-reid/fastreid/modeling/heads/clas_head.py +36 -0
  226. dnt/third_party/fast-reid/fastreid/modeling/heads/embedding_head.py +151 -0
  227. dnt/third_party/fast-reid/fastreid/modeling/losses/__init__.py +12 -0
  228. dnt/third_party/fast-reid/fastreid/modeling/losses/circle_loss.py +71 -0
  229. dnt/third_party/fast-reid/fastreid/modeling/losses/cross_entroy_loss.py +54 -0
  230. dnt/third_party/fast-reid/fastreid/modeling/losses/focal_loss.py +92 -0
  231. dnt/third_party/fast-reid/fastreid/modeling/losses/triplet_loss.py +113 -0
  232. dnt/third_party/fast-reid/fastreid/modeling/losses/utils.py +48 -0
  233. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/__init__.py +14 -0
  234. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/baseline.py +188 -0
  235. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/build.py +26 -0
  236. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/distiller.py +140 -0
  237. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/mgn.py +394 -0
  238. dnt/third_party/fast-reid/fastreid/modeling/meta_arch/moco.py +126 -0
  239. dnt/third_party/fast-reid/fastreid/solver/__init__.py +8 -0
  240. dnt/third_party/fast-reid/fastreid/solver/build.py +348 -0
  241. dnt/third_party/fast-reid/fastreid/solver/lr_scheduler.py +66 -0
  242. dnt/third_party/fast-reid/fastreid/solver/optim/__init__.py +10 -0
  243. dnt/third_party/fast-reid/fastreid/solver/optim/lamb.py +123 -0
  244. dnt/third_party/fast-reid/fastreid/solver/optim/radam.py +149 -0
  245. dnt/third_party/fast-reid/fastreid/solver/optim/swa.py +246 -0
  246. dnt/third_party/fast-reid/fastreid/utils/__init__.py +6 -0
  247. dnt/third_party/fast-reid/fastreid/utils/checkpoint.py +503 -0
  248. dnt/third_party/fast-reid/fastreid/utils/collect_env.py +158 -0
  249. dnt/third_party/fast-reid/fastreid/utils/comm.py +255 -0
  250. dnt/third_party/fast-reid/fastreid/utils/compute_dist.py +200 -0
  251. dnt/third_party/fast-reid/fastreid/utils/env.py +119 -0
  252. dnt/third_party/fast-reid/fastreid/utils/events.py +461 -0
  253. dnt/third_party/fast-reid/fastreid/utils/faiss_utils.py +127 -0
  254. dnt/third_party/fast-reid/fastreid/utils/file_io.py +520 -0
  255. dnt/third_party/fast-reid/fastreid/utils/history_buffer.py +71 -0
  256. dnt/third_party/fast-reid/fastreid/utils/logger.py +211 -0
  257. dnt/third_party/fast-reid/fastreid/utils/params.py +103 -0
  258. dnt/third_party/fast-reid/fastreid/utils/precision_bn.py +94 -0
  259. dnt/third_party/fast-reid/fastreid/utils/registry.py +66 -0
  260. dnt/third_party/fast-reid/fastreid/utils/summary.py +120 -0
  261. dnt/third_party/fast-reid/fastreid/utils/timer.py +68 -0
  262. dnt/third_party/fast-reid/fastreid/utils/visualizer.py +278 -0
  263. dnt/track/__init__.py +2 -0
  264. dnt/track/botsort/__init__.py +4 -0
  265. dnt/track/botsort/bot_tracker/__init__.py +3 -0
  266. dnt/track/botsort/bot_tracker/basetrack.py +60 -0
  267. dnt/track/botsort/bot_tracker/bot_sort.py +473 -0
  268. dnt/track/botsort/bot_tracker/gmc.py +316 -0
  269. dnt/track/botsort/bot_tracker/kalman_filter.py +269 -0
  270. dnt/track/botsort/bot_tracker/matching.py +194 -0
  271. dnt/track/botsort/bot_tracker/mc_bot_sort.py +505 -0
  272. dnt/track/{dsort/utils → botsort/bot_tracker/tracking_utils}/evaluation.py +14 -4
  273. dnt/track/{dsort/utils → botsort/bot_tracker/tracking_utils}/io.py +19 -36
  274. dnt/track/botsort/bot_tracker/tracking_utils/timer.py +37 -0
  275. dnt/track/botsort/inference.py +96 -0
  276. dnt/track/config.py +120 -0
  277. dnt/track/dsort/configs/bagtricks_R50.yml +7 -0
  278. dnt/track/dsort/configs/deep_sort.yaml +0 -0
  279. dnt/track/dsort/configs/fastreid.yaml +1 -1
  280. dnt/track/dsort/deep_sort/deep/checkpoint/ckpt.t7 +0 -0
  281. dnt/track/dsort/deep_sort/deep/feature_extractor.py +87 -8
  282. dnt/track/dsort/deep_sort/deep_sort.py +31 -20
  283. dnt/track/dsort/deep_sort/sort/detection.py +2 -1
  284. dnt/track/dsort/deep_sort/sort/iou_matching.py +0 -2
  285. dnt/track/dsort/deep_sort/sort/linear_assignment.py +0 -3
  286. dnt/track/dsort/deep_sort/sort/nn_matching.py +5 -5
  287. dnt/track/dsort/deep_sort/sort/preprocessing.py +1 -2
  288. dnt/track/dsort/deep_sort/sort/track.py +2 -1
  289. dnt/track/dsort/deep_sort/sort/tracker.py +1 -1
  290. dnt/track/dsort/dsort.py +43 -33
  291. dnt/track/re_class.py +117 -0
  292. dnt/track/sort/sort.py +9 -6
  293. dnt/track/tracker.py +213 -32
  294. {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info}/METADATA +41 -13
  295. dnt-0.3.1.7.dist-info/RECORD +315 -0
  296. {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info}/WHEEL +1 -1
  297. dnt/analysis/yield.py +0 -9
  298. dnt/track/dsort/deep_sort/deep/evaluate.py +0 -15
  299. dnt/track/dsort/deep_sort/deep/original_model.py +0 -106
  300. dnt/track/dsort/deep_sort/deep/test.py +0 -77
  301. dnt/track/dsort/deep_sort/deep/train.py +0 -189
  302. dnt/track/dsort/utils/asserts.py +0 -13
  303. dnt/track/dsort/utils/draw.py +0 -36
  304. dnt/track/dsort/utils/json_logger.py +0 -383
  305. dnt/track/dsort/utils/log.py +0 -17
  306. dnt/track/dsort/utils/parser.py +0 -35
  307. dnt/track/dsort/utils/tools.py +0 -39
  308. dnt-0.2.4.dist-info/RECORD +0 -64
  309. /dnt/{track/dsort/utils → third_party/fast-reid/checkpoint}/__init__.py +0 -0
  310. {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info/licenses}/LICENSE +0 -0
  311. {dnt-0.2.4.dist-info → dnt-0.3.1.7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,364 @@
1
+ # encoding: utf-8
2
+ """
3
+ @author: liaoxingyu
4
+ @contact: sherlockliao01@gmail.com
5
+ """
6
+
7
+ import logging
8
+ import math
9
+
10
+ import torch
11
+ from torch import nn
12
+
13
+ from fastreid.layers import (
14
+ IBN,
15
+ SELayer,
16
+ Non_local,
17
+ get_norm,
18
+ )
19
+ from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
20
+ from .build import BACKBONE_REGISTRY
21
+ from fastreid.utils import comm
22
+
23
+
24
+ logger = logging.getLogger(__name__)
25
+ model_urls = {
26
+ '18x': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
27
+ '34x': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
28
+ '50x': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
29
+ '101x': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
30
+ 'ibn_18x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet18_ibn_a-2f571257.pth',
31
+ 'ibn_34x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet34_ibn_a-94bc1577.pth',
32
+ 'ibn_50x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet50_ibn_a-d9d0bb7b.pth',
33
+ 'ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet101_ibn_a-59ea0ac6.pth',
34
+ 'se_ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/se_resnet101_ibn_a-fabed4e2.pth',
35
+ }
36
+
37
+
38
+ class BasicBlock(nn.Module):
39
+ expansion = 1
40
+
41
+ def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False,
42
+ stride=1, downsample=None, reduction=16):
43
+ super(BasicBlock, self).__init__()
44
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
45
+ if with_ibn:
46
+ self.bn1 = IBN(planes, bn_norm)
47
+ else:
48
+ self.bn1 = get_norm(bn_norm, planes)
49
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
50
+ self.bn2 = get_norm(bn_norm, planes)
51
+ self.relu = nn.ReLU(inplace=True)
52
+ if with_se:
53
+ self.se = SELayer(planes, reduction)
54
+ else:
55
+ self.se = nn.Identity()
56
+ self.downsample = downsample
57
+ self.stride = stride
58
+
59
+ def forward(self, x):
60
+ identity = x
61
+
62
+ out = self.conv1(x)
63
+ out = self.bn1(out)
64
+ out = self.relu(out)
65
+
66
+ out = self.conv2(out)
67
+ out = self.bn2(out)
68
+ out = self.se(out)
69
+
70
+ if self.downsample is not None:
71
+ identity = self.downsample(x)
72
+
73
+ out += identity
74
+ out = self.relu(out)
75
+
76
+ return out
77
+
78
+
79
+ class Bottleneck(nn.Module):
80
+ expansion = 4
81
+
82
+ def __init__(self, inplanes, planes, bn_norm, with_ibn=False, with_se=False,
83
+ stride=1, downsample=None, reduction=16):
84
+ super(Bottleneck, self).__init__()
85
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
86
+ if with_ibn:
87
+ self.bn1 = IBN(planes, bn_norm)
88
+ else:
89
+ self.bn1 = get_norm(bn_norm, planes)
90
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
91
+ padding=1, bias=False)
92
+ self.bn2 = get_norm(bn_norm, planes)
93
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
94
+ self.bn3 = get_norm(bn_norm, planes * self.expansion)
95
+ self.relu = nn.ReLU(inplace=True)
96
+ if with_se:
97
+ self.se = SELayer(planes * self.expansion, reduction)
98
+ else:
99
+ self.se = nn.Identity()
100
+ self.downsample = downsample
101
+ self.stride = stride
102
+
103
+ def forward(self, x):
104
+ residual = x
105
+
106
+ out = self.conv1(x)
107
+ out = self.bn1(out)
108
+ out = self.relu(out)
109
+
110
+ out = self.conv2(out)
111
+ out = self.bn2(out)
112
+ out = self.relu(out)
113
+
114
+ out = self.conv3(out)
115
+ out = self.bn3(out)
116
+ out = self.se(out)
117
+
118
+ if self.downsample is not None:
119
+ residual = self.downsample(x)
120
+
121
+ out += residual
122
+ out = self.relu(out)
123
+
124
+ return out
125
+
126
+
127
+ class ResNet(nn.Module):
128
+ def __init__(self, last_stride, bn_norm, with_ibn, with_se, with_nl, block, layers, non_layers):
129
+ self.inplanes = 64
130
+ super().__init__()
131
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
132
+ bias=False)
133
+ self.bn1 = get_norm(bn_norm, 64)
134
+ self.relu = nn.ReLU(inplace=True)
135
+ # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
136
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True)
137
+ self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, with_ibn, with_se)
138
+ self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, with_ibn, with_se)
139
+ self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, with_ibn, with_se)
140
+ self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, with_se=with_se)
141
+
142
+ self.random_init()
143
+
144
+ # fmt: off
145
+ if with_nl: self._build_nonlocal(layers, non_layers, bn_norm)
146
+ else: self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = []
147
+ # fmt: on
148
+
149
+ def _make_layer(self, block, planes, blocks, stride=1, bn_norm="BN", with_ibn=False, with_se=False):
150
+ downsample = None
151
+ if stride != 1 or self.inplanes != planes * block.expansion:
152
+ downsample = nn.Sequential(
153
+ nn.Conv2d(self.inplanes, planes * block.expansion,
154
+ kernel_size=1, stride=stride, bias=False),
155
+ get_norm(bn_norm, planes * block.expansion),
156
+ )
157
+
158
+ layers = []
159
+ layers.append(block(self.inplanes, planes, bn_norm, with_ibn, with_se, stride, downsample))
160
+ self.inplanes = planes * block.expansion
161
+ for i in range(1, blocks):
162
+ layers.append(block(self.inplanes, planes, bn_norm, with_ibn, with_se))
163
+
164
+ return nn.Sequential(*layers)
165
+
166
+ def _build_nonlocal(self, layers, non_layers, bn_norm):
167
+ self.NL_1 = nn.ModuleList(
168
+ [Non_local(256, bn_norm) for _ in range(non_layers[0])])
169
+ self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
170
+ self.NL_2 = nn.ModuleList(
171
+ [Non_local(512, bn_norm) for _ in range(non_layers[1])])
172
+ self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
173
+ self.NL_3 = nn.ModuleList(
174
+ [Non_local(1024, bn_norm) for _ in range(non_layers[2])])
175
+ self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
176
+ self.NL_4 = nn.ModuleList(
177
+ [Non_local(2048, bn_norm) for _ in range(non_layers[3])])
178
+ self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])
179
+
180
+ def forward(self, x):
181
+ x = self.conv1(x)
182
+ x = self.bn1(x)
183
+ x = self.relu(x)
184
+ x = self.maxpool(x)
185
+
186
+ # layer 1
187
+ NL1_counter = 0
188
+ if len(self.NL_1_idx) == 0:
189
+ self.NL_1_idx = [-1]
190
+ for i in range(len(self.layer1)):
191
+ x = self.layer1[i](x)
192
+ if i == self.NL_1_idx[NL1_counter]:
193
+ _, C, H, W = x.shape
194
+ x = self.NL_1[NL1_counter](x)
195
+ NL1_counter += 1
196
+ # layer 2
197
+ NL2_counter = 0
198
+ if len(self.NL_2_idx) == 0:
199
+ self.NL_2_idx = [-1]
200
+ for i in range(len(self.layer2)):
201
+ x = self.layer2[i](x)
202
+ if i == self.NL_2_idx[NL2_counter]:
203
+ _, C, H, W = x.shape
204
+ x = self.NL_2[NL2_counter](x)
205
+ NL2_counter += 1
206
+
207
+ # layer 3
208
+ NL3_counter = 0
209
+ if len(self.NL_3_idx) == 0:
210
+ self.NL_3_idx = [-1]
211
+ for i in range(len(self.layer3)):
212
+ x = self.layer3[i](x)
213
+ if i == self.NL_3_idx[NL3_counter]:
214
+ _, C, H, W = x.shape
215
+ x = self.NL_3[NL3_counter](x)
216
+ NL3_counter += 1
217
+
218
+ # layer 4
219
+ NL4_counter = 0
220
+ if len(self.NL_4_idx) == 0:
221
+ self.NL_4_idx = [-1]
222
+ for i in range(len(self.layer4)):
223
+ x = self.layer4[i](x)
224
+ if i == self.NL_4_idx[NL4_counter]:
225
+ _, C, H, W = x.shape
226
+ x = self.NL_4[NL4_counter](x)
227
+ NL4_counter += 1
228
+
229
+ return x
230
+
231
+ def random_init(self):
232
+ for m in self.modules():
233
+ if isinstance(m, nn.Conv2d):
234
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
235
+ nn.init.normal_(m.weight, 0, math.sqrt(2. / n))
236
+ elif isinstance(m, nn.BatchNorm2d):
237
+ nn.init.constant_(m.weight, 1)
238
+ nn.init.constant_(m.bias, 0)
239
+
240
+
241
+ def init_pretrained_weights(key):
242
+ """Initializes model with pretrained weights.
243
+
244
+ Layers that don't match with pretrained layers in name or size are kept unchanged.
245
+ """
246
+ import os
247
+ import errno
248
+ import gdown
249
+
250
+ def _get_torch_home():
251
+ ENV_TORCH_HOME = 'TORCH_HOME'
252
+ ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
253
+ DEFAULT_CACHE_DIR = '~/.cache'
254
+ torch_home = os.path.expanduser(
255
+ os.getenv(
256
+ ENV_TORCH_HOME,
257
+ os.path.join(
258
+ os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch'
259
+ )
260
+ )
261
+ )
262
+ return torch_home
263
+
264
+ torch_home = _get_torch_home()
265
+ model_dir = os.path.join(torch_home, 'checkpoints')
266
+ try:
267
+ os.makedirs(model_dir)
268
+ except OSError as e:
269
+ if e.errno == errno.EEXIST:
270
+ # Directory already exists, ignore.
271
+ pass
272
+ else:
273
+ # Unexpected OSError, re-raise.
274
+ raise
275
+
276
+ filename = model_urls[key].split('/')[-1]
277
+
278
+ cached_file = os.path.join(model_dir, filename)
279
+
280
+ if not os.path.exists(cached_file):
281
+ logger.info(f"Pretrain model don't exist, downloading from {model_urls[key]}")
282
+ if comm.is_main_process():
283
+ gdown.download(model_urls[key], cached_file, quiet=False)
284
+
285
+ comm.synchronize()
286
+
287
+ logger.info(f"Loading pretrained model from {cached_file}")
288
+ state_dict = torch.load(cached_file, map_location=torch.device('cpu'))
289
+
290
+ return state_dict
291
+
292
+
293
+ @BACKBONE_REGISTRY.register()
294
+ def build_resnet_backbone(cfg):
295
+ """
296
+ Create a ResNet instance from config.
297
+ Returns:
298
+ ResNet: a :class:`ResNet` instance.
299
+ """
300
+
301
+ # fmt: off
302
+ pretrain = cfg.MODEL.BACKBONE.PRETRAIN
303
+ pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
304
+ last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
305
+ bn_norm = cfg.MODEL.BACKBONE.NORM
306
+ with_ibn = cfg.MODEL.BACKBONE.WITH_IBN
307
+ with_se = cfg.MODEL.BACKBONE.WITH_SE
308
+ with_nl = cfg.MODEL.BACKBONE.WITH_NL
309
+ depth = cfg.MODEL.BACKBONE.DEPTH
310
+ # fmt: on
311
+
312
+ num_blocks_per_stage = {
313
+ '18x': [2, 2, 2, 2],
314
+ '34x': [3, 4, 6, 3],
315
+ '50x': [3, 4, 6, 3],
316
+ '101x': [3, 4, 23, 3],
317
+ }[depth]
318
+
319
+ nl_layers_per_stage = {
320
+ '18x': [0, 0, 0, 0],
321
+ '34x': [0, 0, 0, 0],
322
+ '50x': [0, 2, 3, 0],
323
+ '101x': [0, 2, 9, 0]
324
+ }[depth]
325
+
326
+ block = {
327
+ '18x': BasicBlock,
328
+ '34x': BasicBlock,
329
+ '50x': Bottleneck,
330
+ '101x': Bottleneck
331
+ }[depth]
332
+
333
+ model = ResNet(last_stride, bn_norm, with_ibn, with_se, with_nl, block,
334
+ num_blocks_per_stage, nl_layers_per_stage)
335
+ if pretrain:
336
+ # Load pretrain path if specifically
337
+ if pretrain_path:
338
+ try:
339
+ state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))
340
+ logger.info(f"Loading pretrained model from {pretrain_path}")
341
+ except FileNotFoundError as e:
342
+ logger.info(f'{pretrain_path} is not found! Please check this path.')
343
+ raise e
344
+ except KeyError as e:
345
+ logger.info("State dict keys error! Please check the state dict.")
346
+ raise e
347
+ else:
348
+ key = depth
349
+ if with_ibn: key = 'ibn_' + key
350
+ if with_se: key = 'se_' + key
351
+
352
+ state_dict = init_pretrained_weights(key)
353
+
354
+ incompatible = model.load_state_dict(state_dict, strict=False)
355
+ if incompatible.missing_keys:
356
+ logger.info(
357
+ get_missing_parameters_message(incompatible.missing_keys)
358
+ )
359
+ if incompatible.unexpected_keys:
360
+ logger.info(
361
+ get_unexpected_parameters_message(incompatible.unexpected_keys)
362
+ )
363
+
364
+ return model
@@ -0,0 +1,335 @@
1
+ # encoding: utf-8
2
+ """
3
+ @author: xingyu liao
4
+ @contact: sherlockliao01@gmail.com
5
+ """
6
+
7
+ # based on:
8
+ # https://github.com/XingangPan/IBN-Net/blob/master/models/imagenet/resnext_ibn_a.py
9
+
10
+ import logging
11
+ import math
12
+
13
+ import torch
14
+ import torch.nn as nn
15
+
16
+ from fastreid.layers import *
17
+ from fastreid.utils import comm
18
+ from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
19
+ from .build import BACKBONE_REGISTRY
20
+
21
+ logger = logging.getLogger(__name__)
22
+ model_urls = {
23
+ 'ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnext101_ibn_a-6ace051d.pth',
24
+ }
25
+
26
+
27
+ class Bottleneck(nn.Module):
28
+ """
29
+ RexNeXt bottleneck type C
30
+ """
31
+ expansion = 4
32
+
33
+ def __init__(self, inplanes, planes, bn_norm, with_ibn, baseWidth, cardinality, stride=1,
34
+ downsample=None):
35
+ """ Constructor
36
+ Args:
37
+ inplanes: input channel dimensionality
38
+ planes: output channel dimensionality
39
+ baseWidth: base width.
40
+ cardinality: num of convolution groups.
41
+ stride: conv stride. Replaces pooling layer.
42
+ """
43
+ super(Bottleneck, self).__init__()
44
+
45
+ D = int(math.floor(planes * (baseWidth / 64)))
46
+ C = cardinality
47
+ self.conv1 = nn.Conv2d(inplanes, D * C, kernel_size=1, stride=1, padding=0, bias=False)
48
+ if with_ibn:
49
+ self.bn1 = IBN(D * C, bn_norm)
50
+ else:
51
+ self.bn1 = get_norm(bn_norm, D * C)
52
+ self.conv2 = nn.Conv2d(D * C, D * C, kernel_size=3, stride=stride, padding=1, groups=C, bias=False)
53
+ self.bn2 = get_norm(bn_norm, D * C)
54
+ self.conv3 = nn.Conv2d(D * C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False)
55
+ self.bn3 = get_norm(bn_norm, planes * 4)
56
+ self.relu = nn.ReLU(inplace=True)
57
+
58
+ self.downsample = downsample
59
+
60
+ def forward(self, x):
61
+ residual = x
62
+
63
+ out = self.conv1(x)
64
+ out = self.bn1(out)
65
+ out = self.relu(out)
66
+
67
+ out = self.conv2(out)
68
+ out = self.bn2(out)
69
+ out = self.relu(out)
70
+
71
+ out = self.conv3(out)
72
+ out = self.bn3(out)
73
+
74
+ if self.downsample is not None:
75
+ residual = self.downsample(x)
76
+
77
+ out += residual
78
+ out = self.relu(out)
79
+
80
+ return out
81
+
82
+
83
+ class ResNeXt(nn.Module):
84
+ """
85
+ ResNext optimized for the ImageNet dataset, as specified in
86
+ https://arxiv.org/pdf/1611.05431.pdf
87
+ """
88
+
89
+ def __init__(self, last_stride, bn_norm, with_ibn, with_nl, block, layers, non_layers,
90
+ baseWidth=4, cardinality=32):
91
+ """ Constructor
92
+ Args:
93
+ baseWidth: baseWidth for ResNeXt.
94
+ cardinality: number of convolution groups.
95
+ layers: config of layers, e.g., [3, 4, 6, 3]
96
+ """
97
+ super(ResNeXt, self).__init__()
98
+
99
+ self.cardinality = cardinality
100
+ self.baseWidth = baseWidth
101
+ self.inplanes = 64
102
+ self.output_size = 64
103
+
104
+ self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False)
105
+ self.bn1 = get_norm(bn_norm, 64)
106
+ self.relu = nn.ReLU(inplace=True)
107
+ self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
108
+ self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, with_ibn=with_ibn)
109
+ self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, with_ibn=with_ibn)
110
+ self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, with_ibn=with_ibn)
111
+ self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, with_ibn=with_ibn)
112
+
113
+ self.random_init()
114
+
115
+ # fmt: off
116
+ if with_nl: self._build_nonlocal(layers, non_layers, bn_norm)
117
+ else: self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = []
118
+ # fmt: on
119
+
120
+ def _make_layer(self, block, planes, blocks, stride=1, bn_norm='BN', with_ibn=False):
121
+ """ Stack n bottleneck modules where n is inferred from the depth of the network.
122
+ Args:
123
+ block: block type used to construct ResNext
124
+ planes: number of output channels (need to multiply by block.expansion)
125
+ blocks: number of blocks to be built
126
+ stride: factor to reduce the spatial dimensionality in the first bottleneck of the block.
127
+ Returns: a Module consisting of n sequential bottlenecks.
128
+ """
129
+ downsample = None
130
+ if stride != 1 or self.inplanes != planes * block.expansion:
131
+ downsample = nn.Sequential(
132
+ nn.Conv2d(self.inplanes, planes * block.expansion,
133
+ kernel_size=1, stride=stride, bias=False),
134
+ get_norm(bn_norm, planes * block.expansion),
135
+ )
136
+
137
+ layers = []
138
+ layers.append(block(self.inplanes, planes, bn_norm, with_ibn,
139
+ self.baseWidth, self.cardinality, stride, downsample))
140
+ self.inplanes = planes * block.expansion
141
+ for i in range(1, blocks):
142
+ layers.append(
143
+ block(self.inplanes, planes, bn_norm, with_ibn, self.baseWidth, self.cardinality, 1, None))
144
+
145
+ return nn.Sequential(*layers)
146
+
147
+ def _build_nonlocal(self, layers, non_layers, bn_norm):
148
+ self.NL_1 = nn.ModuleList(
149
+ [Non_local(256, bn_norm) for _ in range(non_layers[0])])
150
+ self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
151
+ self.NL_2 = nn.ModuleList(
152
+ [Non_local(512, bn_norm) for _ in range(non_layers[1])])
153
+ self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
154
+ self.NL_3 = nn.ModuleList(
155
+ [Non_local(1024, bn_norm) for _ in range(non_layers[2])])
156
+ self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
157
+ self.NL_4 = nn.ModuleList(
158
+ [Non_local(2048, bn_norm) for _ in range(non_layers[3])])
159
+ self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])
160
+
161
+ def forward(self, x):
162
+ x = self.conv1(x)
163
+ x = self.bn1(x)
164
+ x = self.relu(x)
165
+ x = self.maxpool1(x)
166
+
167
+ NL1_counter = 0
168
+ if len(self.NL_1_idx) == 0:
169
+ self.NL_1_idx = [-1]
170
+ for i in range(len(self.layer1)):
171
+ x = self.layer1[i](x)
172
+ if i == self.NL_1_idx[NL1_counter]:
173
+ _, C, H, W = x.shape
174
+ x = self.NL_1[NL1_counter](x)
175
+ NL1_counter += 1
176
+ # Layer 2
177
+ NL2_counter = 0
178
+ if len(self.NL_2_idx) == 0:
179
+ self.NL_2_idx = [-1]
180
+ for i in range(len(self.layer2)):
181
+ x = self.layer2[i](x)
182
+ if i == self.NL_2_idx[NL2_counter]:
183
+ _, C, H, W = x.shape
184
+ x = self.NL_2[NL2_counter](x)
185
+ NL2_counter += 1
186
+ # Layer 3
187
+ NL3_counter = 0
188
+ if len(self.NL_3_idx) == 0:
189
+ self.NL_3_idx = [-1]
190
+ for i in range(len(self.layer3)):
191
+ x = self.layer3[i](x)
192
+ if i == self.NL_3_idx[NL3_counter]:
193
+ _, C, H, W = x.shape
194
+ x = self.NL_3[NL3_counter](x)
195
+ NL3_counter += 1
196
+ # Layer 4
197
+ NL4_counter = 0
198
+ if len(self.NL_4_idx) == 0:
199
+ self.NL_4_idx = [-1]
200
+ for i in range(len(self.layer4)):
201
+ x = self.layer4[i](x)
202
+ if i == self.NL_4_idx[NL4_counter]:
203
+ _, C, H, W = x.shape
204
+ x = self.NL_4[NL4_counter](x)
205
+ NL4_counter += 1
206
+ return x
207
+
208
+ def random_init(self):
209
+ self.conv1.weight.data.normal_(0, math.sqrt(2. / (7 * 7 * 64)))
210
+ for m in self.modules():
211
+ if isinstance(m, nn.Conv2d):
212
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
213
+ m.weight.data.normal_(0, math.sqrt(2. / n))
214
+ elif isinstance(m, nn.BatchNorm2d):
215
+ m.weight.data.fill_(1)
216
+ m.bias.data.zero_()
217
+ elif isinstance(m, nn.InstanceNorm2d):
218
+ m.weight.data.fill_(1)
219
+ m.bias.data.zero_()
220
+
221
+
222
+ def init_pretrained_weights(key):
223
+ """Initializes model with pretrained weights.
224
+
225
+ Layers that don't match with pretrained layers in name or size are kept unchanged.
226
+ """
227
+ import os
228
+ import errno
229
+ import gdown
230
+
231
+ def _get_torch_home():
232
+ ENV_TORCH_HOME = 'TORCH_HOME'
233
+ ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
234
+ DEFAULT_CACHE_DIR = '~/.cache'
235
+ torch_home = os.path.expanduser(
236
+ os.getenv(
237
+ ENV_TORCH_HOME,
238
+ os.path.join(
239
+ os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch'
240
+ )
241
+ )
242
+ )
243
+ return torch_home
244
+
245
+ torch_home = _get_torch_home()
246
+ model_dir = os.path.join(torch_home, 'checkpoints')
247
+ try:
248
+ os.makedirs(model_dir)
249
+ except OSError as e:
250
+ if e.errno == errno.EEXIST:
251
+ # Directory already exists, ignore.
252
+ pass
253
+ else:
254
+ # Unexpected OSError, re-raise.
255
+ raise
256
+
257
+ filename = model_urls[key].split('/')[-1]
258
+
259
+ cached_file = os.path.join(model_dir, filename)
260
+
261
+ if not os.path.exists(cached_file):
262
+ logger.info(f"Pretrain model don't exist, downloading from {model_urls[key]}")
263
+ if comm.is_main_process():
264
+ gdown.download(model_urls[key], cached_file, quiet=False)
265
+
266
+ comm.synchronize()
267
+
268
+ logger.info(f"Loading pretrained model from {cached_file}")
269
+ state_dict = torch.load(cached_file, map_location=torch.device('cpu'))
270
+
271
+ return state_dict
272
+
273
+
274
+ @BACKBONE_REGISTRY.register()
275
+ def build_resnext_backbone(cfg):
276
+ """
277
+ Create a ResNeXt instance from config.
278
+ Returns:
279
+ ResNeXt: a :class:`ResNeXt` instance.
280
+ """
281
+
282
+ # fmt: off
283
+ pretrain = cfg.MODEL.BACKBONE.PRETRAIN
284
+ pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
285
+ last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
286
+ bn_norm = cfg.MODEL.BACKBONE.NORM
287
+ with_ibn = cfg.MODEL.BACKBONE.WITH_IBN
288
+ with_nl = cfg.MODEL.BACKBONE.WITH_NL
289
+ depth = cfg.MODEL.BACKBONE.DEPTH
290
+ # fmt: on
291
+
292
+ num_blocks_per_stage = {
293
+ '50x': [3, 4, 6, 3],
294
+ '101x': [3, 4, 23, 3],
295
+ '152x': [3, 8, 36, 3], }[depth]
296
+ nl_layers_per_stage = {
297
+ '50x': [0, 2, 3, 0],
298
+ '101x': [0, 2, 3, 0]}[depth]
299
+ model = ResNeXt(last_stride, bn_norm, with_ibn, with_nl, Bottleneck,
300
+ num_blocks_per_stage, nl_layers_per_stage)
301
+ if pretrain:
302
+ if pretrain_path:
303
+ try:
304
+ state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))['model']
305
+ # Remove module.encoder in name
306
+ new_state_dict = {}
307
+ for k in state_dict:
308
+ new_k = '.'.join(k.split('.')[2:])
309
+ if new_k in model.state_dict() and (model.state_dict()[new_k].shape == state_dict[k].shape):
310
+ new_state_dict[new_k] = state_dict[k]
311
+ state_dict = new_state_dict
312
+ logger.info(f"Loading pretrained model from {pretrain_path}")
313
+ except FileNotFoundError as e:
314
+ logger.info(f'{pretrain_path} is not found! Please check this path.')
315
+ raise e
316
+ except KeyError as e:
317
+ logger.info("State dict keys error! Please check the state dict.")
318
+ raise e
319
+ else:
320
+ key = depth
321
+ if with_ibn: key = 'ibn_' + key
322
+
323
+ state_dict = init_pretrained_weights(key)
324
+
325
+ incompatible = model.load_state_dict(state_dict, strict=False)
326
+ if incompatible.missing_keys:
327
+ logger.info(
328
+ get_missing_parameters_message(incompatible.missing_keys)
329
+ )
330
+ if incompatible.unexpected_keys:
331
+ logger.info(
332
+ get_unexpected_parameters_message(incompatible.unexpected_keys)
333
+ )
334
+
335
+ return model