disdrodb 0.1.5__py3-none-any.whl → 0.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (125) hide show
  1. disdrodb/__init__.py +1 -5
  2. disdrodb/_version.py +2 -2
  3. disdrodb/accessor/methods.py +22 -4
  4. disdrodb/api/checks.py +10 -0
  5. disdrodb/api/io.py +20 -18
  6. disdrodb/api/path.py +42 -77
  7. disdrodb/api/search.py +89 -23
  8. disdrodb/cli/disdrodb_create_summary.py +1 -1
  9. disdrodb/cli/disdrodb_run_l0.py +1 -1
  10. disdrodb/cli/disdrodb_run_l0a.py +1 -1
  11. disdrodb/cli/disdrodb_run_l0b.py +1 -1
  12. disdrodb/cli/disdrodb_run_l0c.py +1 -1
  13. disdrodb/cli/disdrodb_run_l1.py +1 -1
  14. disdrodb/cli/disdrodb_run_l2e.py +1 -1
  15. disdrodb/cli/disdrodb_run_l2m.py +1 -1
  16. disdrodb/configs.py +30 -83
  17. disdrodb/constants.py +4 -3
  18. disdrodb/data_transfer/download_data.py +4 -2
  19. disdrodb/docs.py +2 -2
  20. disdrodb/etc/products/L1/1MIN.yaml +13 -0
  21. disdrodb/etc/products/L1/LPM/1MIN.yaml +13 -0
  22. disdrodb/etc/products/L1/LPM_V0/1MIN.yaml +13 -0
  23. disdrodb/etc/products/L1/PARSIVEL/1MIN.yaml +13 -0
  24. disdrodb/etc/products/L1/PARSIVEL2/1MIN.yaml +13 -0
  25. disdrodb/etc/products/L1/PWS100/1MIN.yaml +13 -0
  26. disdrodb/etc/products/L1/RD80/1MIN.yaml +13 -0
  27. disdrodb/etc/products/L1/SWS250/1MIN.yaml +13 -0
  28. disdrodb/etc/products/L1/global.yaml +6 -0
  29. disdrodb/etc/products/L2E/10MIN.yaml +1 -12
  30. disdrodb/etc/products/L2E/global.yaml +1 -1
  31. disdrodb/etc/products/L2M/MODELS/NGAMMA_GS_R_MAE.yaml +6 -0
  32. disdrodb/etc/products/L2M/global.yaml +1 -1
  33. disdrodb/issue/checks.py +2 -2
  34. disdrodb/l0/check_configs.py +1 -1
  35. disdrodb/l0/configs/LPM/l0a_encodings.yml +0 -1
  36. disdrodb/l0/configs/LPM/l0b_cf_attrs.yml +0 -4
  37. disdrodb/l0/configs/LPM/l0b_encodings.yml +9 -9
  38. disdrodb/l0/configs/LPM/raw_data_format.yml +11 -11
  39. disdrodb/l0/configs/LPM_V0/bins_diameter.yml +103 -0
  40. disdrodb/l0/configs/LPM_V0/bins_velocity.yml +103 -0
  41. disdrodb/l0/configs/LPM_V0/l0a_encodings.yml +45 -0
  42. disdrodb/l0/configs/LPM_V0/l0b_cf_attrs.yml +180 -0
  43. disdrodb/l0/configs/LPM_V0/l0b_encodings.yml +410 -0
  44. disdrodb/l0/configs/LPM_V0/raw_data_format.yml +474 -0
  45. disdrodb/l0/configs/PARSIVEL/l0b_encodings.yml +1 -1
  46. disdrodb/l0/configs/PARSIVEL/raw_data_format.yml +8 -8
  47. disdrodb/l0/configs/PARSIVEL2/raw_data_format.yml +9 -9
  48. disdrodb/l0/l0_reader.py +2 -2
  49. disdrodb/l0/l0a_processing.py +6 -2
  50. disdrodb/l0/l0b_processing.py +26 -19
  51. disdrodb/l0/l0c_processing.py +17 -3
  52. disdrodb/l0/manuals/LPM_V0.pdf +0 -0
  53. disdrodb/l0/readers/LPM/ITALY/GID_LPM.py +15 -7
  54. disdrodb/l0/readers/LPM/ITALY/GID_LPM_PI.py +279 -0
  55. disdrodb/l0/readers/LPM/ITALY/GID_LPM_T.py +276 -0
  56. disdrodb/l0/readers/LPM/ITALY/GID_LPM_W.py +2 -2
  57. disdrodb/l0/readers/LPM/NETHERLANDS/DELFT_RWANDA_LPM_NC.py +103 -0
  58. disdrodb/l0/readers/LPM/NORWAY/HAUKELISETER_LPM.py +216 -0
  59. disdrodb/l0/readers/LPM/NORWAY/NMBU_LPM.py +208 -0
  60. disdrodb/l0/readers/LPM/UK/WITHWORTH_LPM.py +219 -0
  61. disdrodb/l0/readers/LPM/USA/CHARLESTON.py +229 -0
  62. disdrodb/l0/readers/{LPM → LPM_V0}/BELGIUM/ULIEGE.py +33 -49
  63. disdrodb/l0/readers/LPM_V0/ITALY/GID_LPM_V0.py +240 -0
  64. disdrodb/l0/readers/PARSIVEL/BASQUECOUNTRY/EUSKALMET_OTT.py +227 -0
  65. disdrodb/l0/readers/{PARSIVEL2 → PARSIVEL}/NASA/LPVEX.py +16 -28
  66. disdrodb/l0/readers/PARSIVEL/{GPM → NASA}/MC3E.py +1 -1
  67. disdrodb/l0/readers/PARSIVEL/NCAR/VORTEX2_2010_UF.py +3 -3
  68. disdrodb/l0/readers/PARSIVEL2/BASQUECOUNTRY/EUSKALMET_OTT2.py +232 -0
  69. disdrodb/l0/readers/PARSIVEL2/DENMARK/EROSION_raw.py +1 -1
  70. disdrodb/l0/readers/PARSIVEL2/JAPAN/PRECIP.py +155 -0
  71. disdrodb/l0/readers/PARSIVEL2/MPI/BCO_PARSIVEL2.py +14 -7
  72. disdrodb/l0/readers/PARSIVEL2/MPI/BOWTIE.py +8 -3
  73. disdrodb/l0/readers/PARSIVEL2/NASA/APU.py +28 -5
  74. disdrodb/l0/readers/PARSIVEL2/NCAR/RELAMPAGO_PARSIVEL2.py +1 -1
  75. disdrodb/l0/readers/PARSIVEL2/{GPM/GCPEX.py → NORWAY/UIB.py} +54 -29
  76. disdrodb/l0/readers/PARSIVEL2/PHILIPPINES/{PANGASA.py → PAGASA.py} +6 -3
  77. disdrodb/l0/readers/PARSIVEL2/SPAIN/GRANADA.py +1 -1
  78. disdrodb/l0/readers/PARSIVEL2/SWEDEN/SMHI.py +189 -0
  79. disdrodb/l0/readers/{PARSIVEL/GPM/PIERS.py → PARSIVEL2/USA/CSU.py} +62 -29
  80. disdrodb/l0/readers/PARSIVEL2/USA/{C3WE.py → CW3E.py} +51 -24
  81. disdrodb/l0/readers/{PARSIVEL/GPM/IFLOODS.py → RD80/BRAZIL/ATTO_RD80.py} +50 -34
  82. disdrodb/l0/readers/{SW250 → SWS250}/BELGIUM/KMI.py +1 -1
  83. disdrodb/l1/beard_model.py +45 -1
  84. disdrodb/l1/fall_velocity.py +1 -6
  85. disdrodb/l1/filters.py +2 -0
  86. disdrodb/l1/processing.py +6 -5
  87. disdrodb/l1/resampling.py +101 -38
  88. disdrodb/l2/empirical_dsd.py +12 -8
  89. disdrodb/l2/processing.py +4 -3
  90. disdrodb/metadata/search.py +3 -4
  91. disdrodb/routines/l0.py +4 -4
  92. disdrodb/routines/l1.py +173 -60
  93. disdrodb/routines/l2.py +121 -269
  94. disdrodb/routines/options.py +347 -0
  95. disdrodb/routines/wrappers.py +9 -1
  96. disdrodb/scattering/axis_ratio.py +3 -0
  97. disdrodb/scattering/routines.py +1 -1
  98. disdrodb/summary/routines.py +765 -724
  99. disdrodb/utils/archiving.py +51 -44
  100. disdrodb/utils/attrs.py +1 -1
  101. disdrodb/utils/compression.py +4 -2
  102. disdrodb/utils/dask.py +35 -15
  103. disdrodb/utils/dict.py +33 -0
  104. disdrodb/utils/encoding.py +1 -1
  105. disdrodb/utils/manipulations.py +7 -1
  106. disdrodb/utils/routines.py +9 -8
  107. disdrodb/utils/time.py +9 -1
  108. disdrodb/viz/__init__.py +0 -13
  109. disdrodb/viz/plots.py +209 -0
  110. {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/METADATA +1 -1
  111. {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/RECORD +124 -95
  112. disdrodb/l0/readers/PARSIVEL/GPM/LPVEX.py +0 -85
  113. /disdrodb/etc/products/L2M/{GAMMA_GS_ND_MAE.yaml → MODELS/GAMMA_GS_ND_MAE.yaml} +0 -0
  114. /disdrodb/etc/products/L2M/{GAMMA_ML.yaml → MODELS/GAMMA_ML.yaml} +0 -0
  115. /disdrodb/etc/products/L2M/{LOGNORMAL_GS_LOG_ND_MAE.yaml → MODELS/LOGNORMAL_GS_LOG_ND_MAE.yaml} +0 -0
  116. /disdrodb/etc/products/L2M/{LOGNORMAL_GS_ND_MAE.yaml → MODELS/LOGNORMAL_GS_ND_MAE.yaml} +0 -0
  117. /disdrodb/etc/products/L2M/{LOGNORMAL_ML.yaml → MODELS/LOGNORMAL_ML.yaml} +0 -0
  118. /disdrodb/etc/products/L2M/{NGAMMA_GS_LOG_ND_MAE.yaml → MODELS/NGAMMA_GS_LOG_ND_MAE.yaml} +0 -0
  119. /disdrodb/etc/products/L2M/{NGAMMA_GS_ND_MAE.yaml → MODELS/NGAMMA_GS_ND_MAE.yaml} +0 -0
  120. /disdrodb/etc/products/L2M/{NGAMMA_GS_Z_MAE.yaml → MODELS/NGAMMA_GS_Z_MAE.yaml} +0 -0
  121. /disdrodb/l0/readers/PARSIVEL2/{GPM → NASA}/NSSTC.py +0 -0
  122. {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/WHEEL +0 -0
  123. {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/entry_points.txt +0 -0
  124. {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/licenses/LICENSE +0 -0
  125. {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/top_level.txt +0 -0
@@ -88,31 +88,22 @@ def read_txt_file(file, filename, logger):
88
88
  df = df["TO_PARSE"].str.split(";", expand=True, n=43)
89
89
 
90
90
  # Assign column names
91
- column_names = [
92
- "id",
93
- "sample_interval",
94
- "weather_code_synop_4677_5min", # or "weather_code_synop_4680_5min",
91
+ names = [
92
+ "start_identifier",
93
+ "sensor_serial_number",
94
+ "weather_code_synop_4680_5min",
95
95
  "weather_code_metar_4678_5min",
96
96
  "precipitation_rate_5min",
97
- "weather_code_synop_4677", # or "weather_code_synop_4680",
97
+ "weather_code_synop_4680",
98
98
  "weather_code_metar_4678",
99
99
  "precipitation_rate",
100
100
  "precipitation_accumulated",
101
101
  "sensor_time",
102
- # "mor_visibility",
103
- # "reflectivity",
104
- # "quality_index",
105
- # "max_hail_diameter",
106
- # "laser_status",
107
- "dummy1",
108
- "dummy2",
109
- # "laser_temperature",
102
+ "temperature_interior",
103
+ "laser_temperature",
110
104
  "laser_current_average",
111
105
  "control_voltage",
112
106
  "optical_control_voltage_output",
113
- # "current_heating_house",
114
- # "current_heating_heads",
115
- # "current_heating_carriers",
116
107
  "number_particles",
117
108
  "number_particles_internal_data",
118
109
  "number_particles_min_speed",
@@ -123,29 +114,27 @@ def read_txt_file(file, filename, logger):
123
114
  "number_particles_min_diameter_internal_data",
124
115
  "number_particles_no_hydrometeor",
125
116
  "number_particles_no_hydrometeor_internal_data",
126
- # "number_particles_unknown_classification", # ????
127
- # "number_particles_unknown_classification_internal_data",
128
- "number_particles_class_1",
129
- "number_particles_class_1_internal_data",
130
- "number_particles_class_2",
131
- "number_particles_class_2_internal_data",
132
- "number_particles_class_3",
133
- "number_particles_class_3_internal_data",
134
- "number_particles_class_4",
135
- "number_particles_class_4_internal_data",
136
- "number_particles_class_5",
137
- "number_particles_class_5_internal_data",
138
- "number_particles_class_6",
139
- "number_particles_class_6_internal_data",
140
- "number_particles_class_7",
141
- "number_particles_class_7_internal_data",
142
- "number_particles_class_8",
143
- "number_particles_class_8_internal_data",
144
- "number_particles_class_9",
145
- "number_particles_class_9_internal_data",
117
+ "number_particles_unknown_classification",
118
+ "total_gross_volume_unknown_classification",
119
+ "number_particles_hail",
120
+ "total_gross_volume_hail",
121
+ "number_particles_solid_precipitation",
122
+ "total_gross_volume_solid_precipitation",
123
+ "number_particles_great_pellet",
124
+ "total_gross_volume_great_pellet",
125
+ "number_particles_small_pellet",
126
+ "total_gross_volume_small_pellet",
127
+ "number_particles_snowgrain",
128
+ "total_gross_volume_snowgrain",
129
+ "number_particles_rain",
130
+ "total_gross_volume_rain",
131
+ "number_particles_small_rain",
132
+ "total_gross_volume_small_rain",
133
+ "number_particles_drizzle",
134
+ "total_gross_volume_drizzle",
146
135
  "raw_drop_number",
147
136
  ]
148
- df.columns = column_names
137
+ df.columns = names
149
138
 
150
139
  # Deal with case if there are 61 timesteps
151
140
  # - Occurs sometimes when previous hourly file miss timesteps
@@ -163,7 +152,12 @@ def read_txt_file(file, filename, logger):
163
152
  start_time = pd.to_datetime(start_time_str, format="%Y%m%d%H")
164
153
 
165
154
  # - Define timedelta based on sensor_time
155
+ # --> Add +24h to subsequent times when time resets
166
156
  dt = pd.to_timedelta(df["sensor_time"] + ":00").to_numpy().astype("m8[s]")
157
+ rollover_indices = np.where(np.diff(dt) < np.timedelta64(0, "s"))[0]
158
+ if rollover_indices.size > 0:
159
+ for idx in rollover_indices:
160
+ dt[idx + 1 :] += np.timedelta64(24, "h")
167
161
  dt = dt - dt[0]
168
162
 
169
163
  # - Define approximate time
@@ -173,25 +167,15 @@ def read_txt_file(file, filename, logger):
173
167
  valid_rows = dt <= np.timedelta64(3540, "s")
174
168
  df = df[valid_rows]
175
169
 
176
- # Drop rows where sample interval is not 60 seconds
177
- df = df[df["sample_interval"] == "000060"]
178
-
179
170
  # Drop rows with invalid raw_drop_number
180
- # --> 440 value # 22x20
181
171
  # --> 400 here # 20x20
182
172
  df = df[df["raw_drop_number"].astype(str).str.len() == 1599]
183
173
 
184
- # Deal with old LPM version 20x20 spectrum
185
- # - Add 000 in first two velocity bins
186
- df["raw_drop_number"] = df["raw_drop_number"] + ";" + ";".join(["000"] * 40)
187
-
188
174
  # Drop columns not agreeing with DISDRODB L0 standards
189
175
  columns_to_drop = [
190
- "sample_interval",
176
+ "start_identifier",
177
+ "sensor_serial_number",
191
178
  "sensor_time",
192
- "dummy1",
193
- "dummy2",
194
- "id",
195
179
  ]
196
180
  df = df.drop(columns=columns_to_drop)
197
181
  return df
@@ -0,0 +1,240 @@
1
+ # -----------------------------------------------------------------------------.
2
+ # Copyright (c) 2021-2023 DISDRODB developers
3
+ #
4
+ # This program is free software: you can redistribute it and/or modify
5
+ # it under the terms of the GNU General Public License as published by
6
+ # the Free Software Foundation, either version 3 of the License, or
7
+ # (at your option) any later version.
8
+ #
9
+ # This program is distributed in the hope that it will be useful,
10
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
11
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12
+ # GNU General Public License for more details.
13
+ #
14
+ # You should have received a copy of the GNU General Public License
15
+ # along with this program. If not, see <http://www.gnu.org/licenses/>.
16
+ # -----------------------------------------------------------------------------.
17
+ """DISDRODB reader for GID LPM V0 sensor (TC-TO) with incorrect reported time."""
18
+ import numpy as np
19
+ import pandas as pd
20
+
21
+ from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
22
+ from disdrodb.l0.l0a_processing import read_raw_text_file
23
+ from disdrodb.utils.logger import log_error, log_warning
24
+
25
+
26
+ def read_txt_file(file, filename, logger):
27
+ """Parse for TC-TO LPM hourly file."""
28
+ #### - Define raw data headers
29
+ column_names = ["TO_PARSE"]
30
+
31
+ ##------------------------------------------------------------------------.
32
+ #### Define reader options
33
+ # - For more info: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
34
+ reader_kwargs = {}
35
+
36
+ # - Define delimiter
37
+ reader_kwargs["delimiter"] = "\\n"
38
+
39
+ # - Avoid first column to become df index !!!
40
+ reader_kwargs["index_col"] = False
41
+
42
+ # Since column names are expected to be passed explicitly, header is set to None
43
+ reader_kwargs["header"] = None
44
+
45
+ # - Number of rows to be skipped at the beginning of the file
46
+ reader_kwargs["skiprows"] = None
47
+
48
+ # - Define behaviour when encountering bad lines
49
+ reader_kwargs["on_bad_lines"] = "skip"
50
+
51
+ # - Define reader engine
52
+ # - C engine is faster
53
+ # - Python engine is more feature-complete
54
+ reader_kwargs["engine"] = "python"
55
+
56
+ # - Define on-the-fly decompression of on-disk data
57
+ # - Available: gzip, bz2, zip
58
+ reader_kwargs["compression"] = "infer"
59
+
60
+ # - Strings to recognize as NA/NaN and replace with standard NA flags
61
+ # - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
62
+ # '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
63
+ # 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
64
+ reader_kwargs["na_values"] = ["na", "", "error"]
65
+
66
+ ##------------------------------------------------------------------------.
67
+ #### Read the data
68
+ df = read_raw_text_file(
69
+ filepath=file,
70
+ column_names=column_names,
71
+ reader_kwargs=reader_kwargs,
72
+ logger=logger,
73
+ )
74
+
75
+ ##------------------------------------------------------------------------.
76
+ #### Adapt the dataframe to adhere to DISDRODB L0 standards
77
+ # Raise error if empty file
78
+ if len(df) == 0:
79
+ raise ValueError(f"{filename} is empty.")
80
+
81
+ # Select only rows with expected number of delimiters
82
+ df = df[df["TO_PARSE"].str.count(";") == 442]
83
+
84
+ # Check there are still valid rows
85
+ if len(df) == 0:
86
+ raise ValueError(f"No valid rows in {filename}.")
87
+
88
+ # Split by ; delimiter (before raw drop number)
89
+ df = df["TO_PARSE"].str.split(";", expand=True, n=43)
90
+
91
+ # Assign column names
92
+ names = [
93
+ "start_identifier",
94
+ "sensor_serial_number",
95
+ "weather_code_synop_4680_5min",
96
+ "weather_code_metar_4678_5min",
97
+ "precipitation_rate_5min",
98
+ "weather_code_synop_4680",
99
+ "weather_code_metar_4678",
100
+ "precipitation_rate",
101
+ "precipitation_accumulated",
102
+ "sensor_time",
103
+ "temperature_interior",
104
+ "laser_temperature",
105
+ "laser_current_average",
106
+ "control_voltage",
107
+ "optical_control_voltage_output",
108
+ "number_particles",
109
+ "number_particles_internal_data",
110
+ "number_particles_min_speed",
111
+ "number_particles_min_speed_internal_data",
112
+ "number_particles_max_speed",
113
+ "number_particles_max_speed_internal_data",
114
+ "number_particles_min_diameter",
115
+ "number_particles_min_diameter_internal_data",
116
+ "number_particles_no_hydrometeor",
117
+ "number_particles_no_hydrometeor_internal_data",
118
+ "number_particles_unknown_classification",
119
+ "total_gross_volume_unknown_classification",
120
+ "number_particles_hail",
121
+ "total_gross_volume_hail",
122
+ "number_particles_solid_precipitation",
123
+ "total_gross_volume_solid_precipitation",
124
+ "number_particles_great_pellet",
125
+ "total_gross_volume_great_pellet",
126
+ "number_particles_small_pellet",
127
+ "total_gross_volume_small_pellet",
128
+ "number_particles_snowgrain",
129
+ "total_gross_volume_snowgrain",
130
+ "number_particles_rain",
131
+ "total_gross_volume_rain",
132
+ "number_particles_small_rain",
133
+ "total_gross_volume_small_rain",
134
+ "number_particles_drizzle",
135
+ "total_gross_volume_drizzle",
136
+ "raw_drop_number",
137
+ ]
138
+ df.columns = names
139
+
140
+ # Deal with case if there are 61 timesteps
141
+ # - Occurs sometimes when previous hourly file miss timesteps
142
+ if len(df) == 61:
143
+ log_warning(logger=logger, msg=f"{filename} contains 61 timesteps. Dropping the first.")
144
+ df = df.iloc[1:]
145
+
146
+ # Raise error if more than 60 timesteps/rows
147
+ n_rows = len(df)
148
+ if n_rows > 60:
149
+ raise ValueError(f"The hourly file contains {n_rows} timesteps.")
150
+
151
+ # Infer and define "time" column
152
+ start_time_str = filename.split(".")[0] # '2024020200.txt'
153
+ start_time = pd.to_datetime(start_time_str, format="%Y%m%d%H")
154
+
155
+ # - Define timedelta based on sensor_time
156
+ dt = pd.to_timedelta(df["sensor_time"] + ":00").to_numpy().astype("m8[s]")
157
+ rollover_indices = np.where(np.diff(dt) < np.timedelta64(0, "s"))[0]
158
+ if rollover_indices.size > 0:
159
+ for idx in rollover_indices:
160
+ dt[idx + 1 :] += np.timedelta64(24, "h")
161
+ dt = dt - dt[0]
162
+
163
+ # - Define approximate time
164
+ df["time"] = start_time + dt
165
+
166
+ # - Keep rows where time increment is between 00 and 59 minutes
167
+ valid_rows = dt <= np.timedelta64(3540, "s")
168
+ df = df[valid_rows]
169
+
170
+ # Drop rows with invalid raw_drop_number
171
+ # --> 440 value # 22x20
172
+ df = df[df["raw_drop_number"].astype(str).str.len() == 1599]
173
+
174
+ # Drop columns not agreeing with DISDRODB L0 standards
175
+ columns_to_drop = [
176
+ "sensor_time",
177
+ "start_identifier",
178
+ "sensor_serial_number",
179
+ ]
180
+ df = df.drop(columns=columns_to_drop)
181
+ return df
182
+
183
+
184
+ @is_documented_by(reader_generic_docstring)
185
+ def reader(
186
+ filepath,
187
+ logger=None,
188
+ ):
189
+ """Reader."""
190
+ import zipfile
191
+
192
+ ##------------------------------------------------------------------------.
193
+ # filename = os.path.basename(filepath)
194
+ # return read_txt_file(file=filepath, filename=filename, logger=logger)
195
+
196
+ # ---------------------------------------------------------------------.
197
+ #### Iterate over all files (aka timesteps) in the daily zip archive
198
+ # - Each file contain a single timestep !
199
+ # list_df = []
200
+ # with tempfile.TemporaryDirectory() as temp_dir:
201
+ # # Extract all files
202
+ # unzip_file_on_terminal(filepath, temp_dir)
203
+
204
+ # # Walk through extracted files
205
+ # for root, _, files in os.walk(temp_dir):
206
+ # for filename in sorted(files):
207
+ # if filename.endswith(".txt"):
208
+ # full_path = os.path.join(root, filename)
209
+ # try:
210
+ # df = read_txt_file(file=full_path, filename=filename, logger=logger)
211
+ # if df is not None:
212
+ # list_df.append(df)
213
+ # except Exception as e:
214
+ # msg = f"An error occurred while reading {filename}: {e}"
215
+ # log_error(logger=logger, msg=msg, verbose=True)
216
+
217
+ list_df = []
218
+ with zipfile.ZipFile(filepath, "r") as zip_ref:
219
+ filenames = sorted(zip_ref.namelist())
220
+ for filename in filenames:
221
+ if filename.endswith(".txt"):
222
+ # Open file
223
+ with zip_ref.open(filename) as file:
224
+ try:
225
+ df = read_txt_file(file=file, filename=filename, logger=logger)
226
+ if df is not None:
227
+ list_df.append(df)
228
+ except Exception as e:
229
+ msg = f"An error occurred while reading {filename}. The error is: {e}"
230
+ log_error(logger=logger, msg=msg, verbose=True)
231
+
232
+ # Check the zip file contains at least some non.empty files
233
+ if len(list_df) == 0:
234
+ raise ValueError(f"{filepath} contains only empty files!")
235
+
236
+ # Concatenate all dataframes into a single one
237
+ df = pd.concat(list_df)
238
+
239
+ # ---------------------------------------------------------------------.
240
+ return df
@@ -0,0 +1,227 @@
1
+ # -----------------------------------------------------------------------------.
2
+ # Copyright (c) 2021-2023 DISDRODB developers
3
+ #
4
+ # This program is free software: you can redistribute it and/or modify
5
+ # it under the terms of the GNU General Public License as published by
6
+ # the Free Software Foundation, either version 3 of the License, or
7
+ # (at your option) any later version.
8
+ #
9
+ # This program is distributed in the hope that it will be useful,
10
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
11
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12
+ # GNU General Public License for more details.
13
+ #
14
+ # You should have received a copy of the GNU General Public License
15
+ # along with this program. If not, see <http://www.gnu.org/licenses/>.
16
+ # -----------------------------------------------------------------------------.
17
+ """DISDRODB reader for EUSKALMET OTT Parsivel raw data."""
18
+ # import os
19
+ # import tempfile
20
+ # from disdrodb.utils.compression import unzip_file_on_terminal
21
+
22
+ import numpy as np
23
+ import pandas as pd
24
+
25
+ from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
26
+ from disdrodb.l0.l0a_processing import read_raw_text_file
27
+ from disdrodb.utils.logger import log_error
28
+
29
+ COLUMN_DICT = {
30
+ "01": "rainfall_rate_32bit",
31
+ "02": "rainfall_accumulated_32bit",
32
+ "03": "weather_code_synop_4680",
33
+ "04": "weather_code_synop_4677",
34
+ "05": "weather_code_metar_4678", # empty
35
+ "06": "weather_code_nws", # empty
36
+ "07": "reflectivity_32bit",
37
+ "08": "mor_visibility",
38
+ "09": "sample_interval",
39
+ "10": "laser_amplitude",
40
+ "11": "number_particles",
41
+ "12": "sensor_temperature",
42
+ # "13": "sensor_serial_number",
43
+ # "14": "firmware_iop",
44
+ # "15": "firmware_dsp",
45
+ "16": "sensor_heating_current",
46
+ "17": "sensor_battery_voltage",
47
+ "18": "sensor_status",
48
+ # "19": "start_time",
49
+ # "20": "sensor_time",
50
+ # "21": "sensor_date",
51
+ # "22": "station_name",
52
+ # "23": "station_number",
53
+ "24": "rainfall_amount_absolute_32bit",
54
+ "25": "error_code",
55
+ "30": "rainfall_rate_16bit",
56
+ "31": "rainfall_rate_12bit",
57
+ "32": "rainfall_accumulated_16bit",
58
+ "90": "raw_drop_concentration",
59
+ "91": "raw_drop_average_velocity",
60
+ "93": "raw_drop_number",
61
+ }
62
+
63
+
64
+ def infill_missing_columns(df):
65
+ """Infill with NaN missing columns."""
66
+ columns = set(COLUMN_DICT.values())
67
+ for c in columns:
68
+ if c not in df.columns:
69
+ df[c] = "NaN"
70
+ return df
71
+
72
+
73
+ def read_txt_file(file, filename, logger):
74
+ """Parse a single txt file within the daily zip file."""
75
+ ##------------------------------------------------------------------------.
76
+ #### Define column names
77
+ column_names = ["TO_PARSE"]
78
+
79
+ ##------------------------------------------------------------------------.
80
+ #### Define reader options
81
+ reader_kwargs = {}
82
+ # - Define delimiter
83
+ reader_kwargs["delimiter"] = "\\n"
84
+ # - Skip first row as columns names
85
+ # - Define encoding
86
+ reader_kwargs["encoding"] = "latin" # "ISO-8859-1"
87
+ # - Avoid first column to become df index !!!
88
+ reader_kwargs["index_col"] = False
89
+ # - Define behaviour when encountering bad lines
90
+ reader_kwargs["on_bad_lines"] = "skip"
91
+ # - Define reader engine
92
+ # - C engine is faster
93
+ # - Python engine is more feature-complete
94
+ reader_kwargs["engine"] = "python"
95
+ # - Define on-the-fly decompression of on-disk data
96
+ # - Available: gzip, bz2, zip
97
+ reader_kwargs["compression"] = "infer"
98
+ # - Strings to recognize as NA/NaN and replace with standard NA flags
99
+ # - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
100
+ # '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
101
+ # 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
102
+ reader_kwargs["na_values"] = ["na", "", "error"]
103
+
104
+ ##------------------------------------------------------------------------.
105
+ #### Read the data
106
+ df = read_raw_text_file(
107
+ filepath=file,
108
+ column_names=column_names,
109
+ reader_kwargs=reader_kwargs,
110
+ logger=logger,
111
+ )
112
+
113
+ ##--------------------------------\----------------------------------------.
114
+ #### Adapt the dataframe to adhere to DISDRODB L0 standards
115
+ # Empty file, raise error
116
+ if len(df) == 0:
117
+ raise ValueError(f"{filename} is empty.")
118
+
119
+ # Select rows with valid spectrum
120
+ # df = df[df["TO_PARSE"].str.count(";") == 1191] # 1112
121
+
122
+ # Raise errof if corrupted file
123
+ if len(df) == 4:
124
+ raise ValueError(f"{filename} is corrupted.")
125
+
126
+ # Extract string
127
+ string = df["TO_PARSE"].iloc[4]
128
+
129
+ # Split into lines
130
+ decoded_text = string.encode().decode("unicode_escape")
131
+ decoded_text = decoded_text.replace("'", "").replace('"', "")
132
+ lines = decoded_text.split()
133
+
134
+ # Extract time
135
+ time_str = lines[0].split(",")[1]
136
+
137
+ # Split each line at the first colon
138
+ data = [line.split(":", 1) for line in lines if ":" in line]
139
+
140
+ # Create the DataFrame
141
+ df = pd.DataFrame(data, columns=["ID", "Value"])
142
+
143
+ # Drop rows with invalid IDs
144
+ valid_id_str = np.char.rjust(np.arange(0, 94).astype(str), width=2, fillchar="0")
145
+ df = df[df["ID"].astype(str).isin(valid_id_str)]
146
+
147
+ # Select only rows with values
148
+ df = df[df["Value"].apply(lambda x: x is not None)]
149
+
150
+ # Reshape dataframe
151
+ df = df.set_index("ID").T
152
+
153
+ # Assign column names
154
+ df = df.rename(COLUMN_DICT, axis=1)
155
+
156
+ # Keep only columns defined in the dictionary
157
+ df = df.filter(items=list(COLUMN_DICT.values()))
158
+
159
+ # Infill missing columns
160
+ df = infill_missing_columns(df)
161
+
162
+ # Add time column ad datetime dtype
163
+ df["time"] = pd.to_datetime(time_str, format="%Y%m%d%H%M%S", errors="coerce")
164
+
165
+ # Preprocess the raw spectrum and raw_drop_average_velocity
166
+ # - Add 0 before every ; if ; not preceded by a digit
167
+ # - Example: ';;1;;' --> '0;0;1;0;'
168
+ df["raw_drop_number"] = df["raw_drop_number"].str.replace(r"(?<!\d);", "0;", regex=True)
169
+ df["raw_drop_average_velocity"] = df["raw_drop_average_velocity"].str.replace(r"(?<!\d);", "0;", regex=True)
170
+
171
+ # Return the dataframe adhering to DISDRODB L0 standards
172
+ return df
173
+
174
+
175
+ @is_documented_by(reader_generic_docstring)
176
+ def reader(
177
+ filepath,
178
+ logger=None,
179
+ ):
180
+ """Reader."""
181
+ import zipfile
182
+
183
+ # ---------------------------------------------------------------------.
184
+ #### Iterate over all files (aka timesteps) in the daily zip archive
185
+ # - Each file contain a single timestep !
186
+ # list_df = []
187
+ # with tempfile.TemporaryDirectory() as temp_dir:
188
+ # # Extract all files
189
+ # unzip_file_on_terminal(filepath, temp_dir)
190
+
191
+ # # Walk through extracted files
192
+ # for root, _, files in os.walk(temp_dir):
193
+ # for filename in sorted(files):
194
+ # if filename.endswith(".txt"):
195
+ # full_path = os.path.join(root, filename)
196
+ # try:
197
+ # df = read_txt_file(file=full_path, filename=filename, logger=logger)
198
+ # if df is not None:
199
+ # list_df.append(df)
200
+ # except Exception as e:
201
+ # msg = f"An error occurred while reading {filename}: {e}"
202
+ # log_error(logger=logger, msg=msg, verbose=True)
203
+
204
+ list_df = []
205
+ with zipfile.ZipFile(filepath, "r") as zip_ref:
206
+ filenames = sorted(zip_ref.namelist())
207
+ for filename in filenames:
208
+ if filename.endswith(".dat"):
209
+ # Open file
210
+ with zip_ref.open(filename) as file:
211
+ try:
212
+ df = read_txt_file(file=file, filename=filename, logger=logger)
213
+ if df is not None:
214
+ list_df.append(df)
215
+ except Exception as e:
216
+ msg = f"An error occurred while reading {filename}. The error is: {e}."
217
+ log_error(logger=logger, msg=msg, verbose=True)
218
+
219
+ # Check the zip file contains at least some non.empty files
220
+ if len(list_df) == 0:
221
+ raise ValueError(f"{filepath} contains only empty files!")
222
+
223
+ # Concatenate all dataframes into a single one
224
+ df = pd.concat(list_df)
225
+
226
+ # ---------------------------------------------------------------------.
227
+ return df
@@ -15,21 +15,6 @@
15
15
  # You should have received a copy of the GNU General Public License
16
16
  # along with this program. If not, see <http://www.gnu.org/licenses/>.
17
17
  # -----------------------------------------------------------------------------.
18
- """This reader allows to read raw data from NASA APU stations.
19
-
20
- The reader allows to read raw APU data from the following NASA campaigns:
21
-
22
- - HYMEX
23
- - IFLOODS
24
- - IPHEX
25
- - OLYMPEX
26
- - ICEPOP
27
- - IMPACTS
28
- - GCPEX
29
- - WFF
30
-
31
- """
32
-
33
18
  import pandas as pd
34
19
 
35
20
  from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
@@ -44,13 +29,13 @@ def reader(
44
29
  """Reader."""
45
30
  ##------------------------------------------------------------------------.
46
31
  #### Define column names
47
- column_names = ["time", "TO_BE_SPLITTED"]
32
+ column_names = ["TO_PARSE"]
48
33
 
49
34
  ##------------------------------------------------------------------------.
50
35
  #### Define reader options
51
36
  reader_kwargs = {}
52
37
  # - Define delimiter
53
- reader_kwargs["delimiter"] = ";"
38
+ reader_kwargs["delimiter"] = "//n"
54
39
  # - Skip first row as columns names
55
40
  reader_kwargs["header"] = None
56
41
  reader_kwargs["skiprows"] = 0
@@ -84,26 +69,29 @@ def reader(
84
69
 
85
70
  ##------------------------------------------------------------------------.
86
71
  #### Adapt the dataframe to adhere to DISDRODB L0 standards
72
+ # Remove rows with invalid number of separators
73
+ df = df[df["TO_PARSE"].str.count(";") == 1]
74
+ if len(df) == 0:
75
+ raise ValueError(f"No valid data in {filepath}")
76
+
77
+ # Split the columns
78
+ df = df["TO_PARSE"].str.split(";", n=2, expand=True)
79
+
80
+ # Assign column names
81
+ df.columns = ["time", "TO_BE_SPLITTED"]
82
+
87
83
  # Convert time column to datetime
88
84
  df_time = pd.to_datetime(df["time"], format="%Y%m%d%H%M%S", errors="coerce")
89
85
 
90
86
  # Split the 'TO_BE_SPLITTED' column
91
87
  df = df["TO_BE_SPLITTED"].str.split(",", n=3, expand=True)
88
+ df.columns = ["station_id", "sensor_status", "sensor_temperature", "raw_drop_number"]
92
89
 
93
- # Assign column names
94
- names = [
95
- "station_name",
96
- "unknown",
97
- "unknown2",
98
- "raw_drop_number",
99
- ]
100
- df.columns = names
101
-
102
- # Add the time column
90
+ # Add time
103
91
  df["time"] = df_time
104
92
 
105
93
  # Drop columns not agreeing with DISDRODB L0 standards
106
- df = df.drop(columns=["station_name", "unknown", "unknown2"])
94
+ df = df.drop(columns=["station_id"])
107
95
 
108
96
  # Return the dataframe adhering to DISDRODB L0 standards
109
97
  return df
@@ -116,7 +116,7 @@ def reader(
116
116
  return df
117
117
  # ---------------------------------------------------------
118
118
  #### Case of 1032 delimiters
119
- if n_delimiters == 1033: # (most of the files)
119
+ if n_delimiters == 1033: # (most of the files ... PIERS FORMAT)
120
120
  # Select valid rows
121
121
  df = df.loc[df["TO_BE_SPLITTED"].str.count(",") == 1033]
122
122
  # Get time column