disdrodb 0.1.5__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- disdrodb/__init__.py +1 -5
- disdrodb/_version.py +2 -2
- disdrodb/accessor/methods.py +22 -4
- disdrodb/api/checks.py +10 -0
- disdrodb/api/io.py +20 -18
- disdrodb/api/path.py +42 -77
- disdrodb/api/search.py +89 -23
- disdrodb/cli/disdrodb_create_summary.py +1 -1
- disdrodb/cli/disdrodb_run_l0.py +1 -1
- disdrodb/cli/disdrodb_run_l0a.py +1 -1
- disdrodb/cli/disdrodb_run_l0b.py +1 -1
- disdrodb/cli/disdrodb_run_l0c.py +1 -1
- disdrodb/cli/disdrodb_run_l1.py +1 -1
- disdrodb/cli/disdrodb_run_l2e.py +1 -1
- disdrodb/cli/disdrodb_run_l2m.py +1 -1
- disdrodb/configs.py +30 -83
- disdrodb/constants.py +4 -3
- disdrodb/data_transfer/download_data.py +4 -2
- disdrodb/docs.py +2 -2
- disdrodb/etc/products/L1/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/LPM/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/LPM_V0/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/PARSIVEL/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/PARSIVEL2/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/PWS100/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/RD80/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/SWS250/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/global.yaml +6 -0
- disdrodb/etc/products/L2E/10MIN.yaml +1 -12
- disdrodb/etc/products/L2E/global.yaml +1 -1
- disdrodb/etc/products/L2M/MODELS/NGAMMA_GS_R_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/global.yaml +1 -1
- disdrodb/issue/checks.py +2 -2
- disdrodb/l0/check_configs.py +1 -1
- disdrodb/l0/configs/LPM/l0a_encodings.yml +0 -1
- disdrodb/l0/configs/LPM/l0b_cf_attrs.yml +0 -4
- disdrodb/l0/configs/LPM/l0b_encodings.yml +9 -9
- disdrodb/l0/configs/LPM/raw_data_format.yml +11 -11
- disdrodb/l0/configs/LPM_V0/bins_diameter.yml +103 -0
- disdrodb/l0/configs/LPM_V0/bins_velocity.yml +103 -0
- disdrodb/l0/configs/LPM_V0/l0a_encodings.yml +45 -0
- disdrodb/l0/configs/LPM_V0/l0b_cf_attrs.yml +180 -0
- disdrodb/l0/configs/LPM_V0/l0b_encodings.yml +410 -0
- disdrodb/l0/configs/LPM_V0/raw_data_format.yml +474 -0
- disdrodb/l0/configs/PARSIVEL/l0b_encodings.yml +1 -1
- disdrodb/l0/configs/PARSIVEL/raw_data_format.yml +8 -8
- disdrodb/l0/configs/PARSIVEL2/raw_data_format.yml +9 -9
- disdrodb/l0/l0_reader.py +2 -2
- disdrodb/l0/l0a_processing.py +6 -2
- disdrodb/l0/l0b_processing.py +26 -19
- disdrodb/l0/l0c_processing.py +17 -3
- disdrodb/l0/manuals/LPM_V0.pdf +0 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM.py +15 -7
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_PI.py +279 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_T.py +276 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_W.py +2 -2
- disdrodb/l0/readers/LPM/NETHERLANDS/DELFT_RWANDA_LPM_NC.py +103 -0
- disdrodb/l0/readers/LPM/NORWAY/HAUKELISETER_LPM.py +216 -0
- disdrodb/l0/readers/LPM/NORWAY/NMBU_LPM.py +208 -0
- disdrodb/l0/readers/LPM/UK/WITHWORTH_LPM.py +219 -0
- disdrodb/l0/readers/LPM/USA/CHARLESTON.py +229 -0
- disdrodb/l0/readers/{LPM → LPM_V0}/BELGIUM/ULIEGE.py +33 -49
- disdrodb/l0/readers/LPM_V0/ITALY/GID_LPM_V0.py +240 -0
- disdrodb/l0/readers/PARSIVEL/BASQUECOUNTRY/EUSKALMET_OTT.py +227 -0
- disdrodb/l0/readers/{PARSIVEL2 → PARSIVEL}/NASA/LPVEX.py +16 -28
- disdrodb/l0/readers/PARSIVEL/{GPM → NASA}/MC3E.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/VORTEX2_2010_UF.py +3 -3
- disdrodb/l0/readers/PARSIVEL2/BASQUECOUNTRY/EUSKALMET_OTT2.py +232 -0
- disdrodb/l0/readers/PARSIVEL2/DENMARK/EROSION_raw.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/JAPAN/PRECIP.py +155 -0
- disdrodb/l0/readers/PARSIVEL2/MPI/BCO_PARSIVEL2.py +14 -7
- disdrodb/l0/readers/PARSIVEL2/MPI/BOWTIE.py +8 -3
- disdrodb/l0/readers/PARSIVEL2/NASA/APU.py +28 -5
- disdrodb/l0/readers/PARSIVEL2/NCAR/RELAMPAGO_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/{GPM/GCPEX.py → NORWAY/UIB.py} +54 -29
- disdrodb/l0/readers/PARSIVEL2/PHILIPPINES/{PANGASA.py → PAGASA.py} +6 -3
- disdrodb/l0/readers/PARSIVEL2/SPAIN/GRANADA.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/SWEDEN/SMHI.py +189 -0
- disdrodb/l0/readers/{PARSIVEL/GPM/PIERS.py → PARSIVEL2/USA/CSU.py} +62 -29
- disdrodb/l0/readers/PARSIVEL2/USA/{C3WE.py → CW3E.py} +51 -24
- disdrodb/l0/readers/{PARSIVEL/GPM/IFLOODS.py → RD80/BRAZIL/ATTO_RD80.py} +50 -34
- disdrodb/l0/readers/{SW250 → SWS250}/BELGIUM/KMI.py +1 -1
- disdrodb/l1/beard_model.py +45 -1
- disdrodb/l1/fall_velocity.py +1 -6
- disdrodb/l1/filters.py +2 -0
- disdrodb/l1/processing.py +6 -5
- disdrodb/l1/resampling.py +101 -38
- disdrodb/l2/empirical_dsd.py +12 -8
- disdrodb/l2/processing.py +4 -3
- disdrodb/metadata/search.py +3 -4
- disdrodb/routines/l0.py +4 -4
- disdrodb/routines/l1.py +173 -60
- disdrodb/routines/l2.py +121 -269
- disdrodb/routines/options.py +347 -0
- disdrodb/routines/wrappers.py +9 -1
- disdrodb/scattering/axis_ratio.py +3 -0
- disdrodb/scattering/routines.py +1 -1
- disdrodb/summary/routines.py +765 -724
- disdrodb/utils/archiving.py +51 -44
- disdrodb/utils/attrs.py +1 -1
- disdrodb/utils/compression.py +4 -2
- disdrodb/utils/dask.py +35 -15
- disdrodb/utils/dict.py +33 -0
- disdrodb/utils/encoding.py +1 -1
- disdrodb/utils/manipulations.py +7 -1
- disdrodb/utils/routines.py +9 -8
- disdrodb/utils/time.py +9 -1
- disdrodb/viz/__init__.py +0 -13
- disdrodb/viz/plots.py +209 -0
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/METADATA +1 -1
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/RECORD +124 -95
- disdrodb/l0/readers/PARSIVEL/GPM/LPVEX.py +0 -85
- /disdrodb/etc/products/L2M/{GAMMA_GS_ND_MAE.yaml → MODELS/GAMMA_GS_ND_MAE.yaml} +0 -0
- /disdrodb/etc/products/L2M/{GAMMA_ML.yaml → MODELS/GAMMA_ML.yaml} +0 -0
- /disdrodb/etc/products/L2M/{LOGNORMAL_GS_LOG_ND_MAE.yaml → MODELS/LOGNORMAL_GS_LOG_ND_MAE.yaml} +0 -0
- /disdrodb/etc/products/L2M/{LOGNORMAL_GS_ND_MAE.yaml → MODELS/LOGNORMAL_GS_ND_MAE.yaml} +0 -0
- /disdrodb/etc/products/L2M/{LOGNORMAL_ML.yaml → MODELS/LOGNORMAL_ML.yaml} +0 -0
- /disdrodb/etc/products/L2M/{NGAMMA_GS_LOG_ND_MAE.yaml → MODELS/NGAMMA_GS_LOG_ND_MAE.yaml} +0 -0
- /disdrodb/etc/products/L2M/{NGAMMA_GS_ND_MAE.yaml → MODELS/NGAMMA_GS_ND_MAE.yaml} +0 -0
- /disdrodb/etc/products/L2M/{NGAMMA_GS_Z_MAE.yaml → MODELS/NGAMMA_GS_Z_MAE.yaml} +0 -0
- /disdrodb/l0/readers/PARSIVEL2/{GPM → NASA}/NSSTC.py +0 -0
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/WHEEL +0 -0
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/entry_points.txt +0 -0
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/licenses/LICENSE +0 -0
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/top_level.txt +0 -0
|
@@ -130,8 +130,8 @@ def reader(
|
|
|
130
130
|
# "23": "station_number",
|
|
131
131
|
"24": "rainfall_amount_absolute_32bit",
|
|
132
132
|
# "25": "error_code",
|
|
133
|
-
# "30": "
|
|
134
|
-
# "31": "
|
|
133
|
+
# "30": "rainfall_rate_16bit",
|
|
134
|
+
# "31": "rainfall_rate_12bit",
|
|
135
135
|
"32": "rainfall_accumulated_16bit",
|
|
136
136
|
# "90": "raw_drop_concentration",
|
|
137
137
|
# "91": "raw_drop_average_velocity",
|
|
@@ -168,7 +168,7 @@ def reader(
|
|
|
168
168
|
df = df.drop(columns=columns_to_drop)
|
|
169
169
|
|
|
170
170
|
# Stations UF4-7 have NAN at the end of the raw drop number
|
|
171
|
-
df["raw_drop_number"] = df["raw_drop_number"].str.replace("NaN;", "")
|
|
171
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace("NaN;", "")
|
|
172
172
|
|
|
173
173
|
# Return the dataframe adhering to DISDRODB L0 standards
|
|
174
174
|
return df
|
|
@@ -0,0 +1,232 @@
|
|
|
1
|
+
# -----------------------------------------------------------------------------.
|
|
2
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
3
|
+
#
|
|
4
|
+
# This program is free software: you can redistribute it and/or modify
|
|
5
|
+
# it under the terms of the GNU General Public License as published by
|
|
6
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
7
|
+
# (at your option) any later version.
|
|
8
|
+
#
|
|
9
|
+
# This program is distributed in the hope that it will be useful,
|
|
10
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
11
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
12
|
+
# GNU General Public License for more details.
|
|
13
|
+
#
|
|
14
|
+
# You should have received a copy of the GNU General Public License
|
|
15
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
16
|
+
# -----------------------------------------------------------------------------.
|
|
17
|
+
"""DISDRODB reader for EUSKALMET OTT Parsivel 2 raw data."""
|
|
18
|
+
# import os
|
|
19
|
+
# import tempfile
|
|
20
|
+
# from disdrodb.utils.compression import unzip_file_on_terminal
|
|
21
|
+
|
|
22
|
+
import numpy as np
|
|
23
|
+
import pandas as pd
|
|
24
|
+
|
|
25
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
26
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
27
|
+
from disdrodb.utils.logger import log_error
|
|
28
|
+
|
|
29
|
+
COLUMN_DICT = {
|
|
30
|
+
"01": "rainfall_rate_32bit",
|
|
31
|
+
"02": "rainfall_accumulated_32bit",
|
|
32
|
+
"03": "weather_code_synop_4680",
|
|
33
|
+
"04": "weather_code_synop_4677",
|
|
34
|
+
"05": "weather_code_metar_4678", # empty
|
|
35
|
+
"06": "weather_code_nws", # empty
|
|
36
|
+
"07": "reflectivity_32bit",
|
|
37
|
+
"08": "mor_visibility",
|
|
38
|
+
"09": "sample_interval",
|
|
39
|
+
"10": "laser_amplitude",
|
|
40
|
+
"11": "number_particles",
|
|
41
|
+
"12": "sensor_temperature",
|
|
42
|
+
# "13": "sensor_serial_number",
|
|
43
|
+
# "14": "firmware_iop",
|
|
44
|
+
# "15": "firmware_dsp",
|
|
45
|
+
"16": "sensor_heating_current",
|
|
46
|
+
"17": "sensor_battery_voltage",
|
|
47
|
+
"18": "sensor_status",
|
|
48
|
+
# "19": "start_time",
|
|
49
|
+
# "20": "sensor_time",
|
|
50
|
+
# "21": "sensor_date",
|
|
51
|
+
# "22": "station_name",
|
|
52
|
+
# "23": "station_number",
|
|
53
|
+
"24": "rainfall_amount_absolute_32bit",
|
|
54
|
+
"25": "error_code",
|
|
55
|
+
"26": "sensor_temperature_pcb",
|
|
56
|
+
"27": "sensor_temperature_receiver",
|
|
57
|
+
"28": "sensor_temperature_trasmitter",
|
|
58
|
+
"30": "rainfall_rate_16_bit_30",
|
|
59
|
+
"31": "rainfall_rate_16_bit_1200",
|
|
60
|
+
"32": "rainfall_accumulated_16bit",
|
|
61
|
+
"34": "rain_kinetic_energy",
|
|
62
|
+
"35": "snowfall_rate",
|
|
63
|
+
"90": "raw_drop_concentration",
|
|
64
|
+
"91": "raw_drop_average_velocity",
|
|
65
|
+
"93": "raw_drop_number",
|
|
66
|
+
}
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def infill_missing_columns(df):
|
|
70
|
+
"""Infill with NaN missing columns."""
|
|
71
|
+
columns = set(COLUMN_DICT.values())
|
|
72
|
+
for c in columns:
|
|
73
|
+
if c not in df.columns:
|
|
74
|
+
df[c] = "NaN"
|
|
75
|
+
return df
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def read_txt_file(file, filename, logger):
|
|
79
|
+
"""Parse a single txt file within the daily zip file."""
|
|
80
|
+
##------------------------------------------------------------------------.
|
|
81
|
+
#### Define column names
|
|
82
|
+
column_names = ["TO_PARSE"]
|
|
83
|
+
|
|
84
|
+
##------------------------------------------------------------------------.
|
|
85
|
+
#### Define reader options
|
|
86
|
+
reader_kwargs = {}
|
|
87
|
+
# - Define delimiter
|
|
88
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
89
|
+
# - Skip first row as columns names
|
|
90
|
+
# - Define encoding
|
|
91
|
+
reader_kwargs["encoding"] = "latin" # "ISO-8859-1"
|
|
92
|
+
# - Avoid first column to become df index !!!
|
|
93
|
+
reader_kwargs["index_col"] = False
|
|
94
|
+
# - Define behaviour when encountering bad lines
|
|
95
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
96
|
+
# - Define reader engine
|
|
97
|
+
# - C engine is faster
|
|
98
|
+
# - Python engine is more feature-complete
|
|
99
|
+
reader_kwargs["engine"] = "python"
|
|
100
|
+
# - Define on-the-fly decompression of on-disk data
|
|
101
|
+
# - Available: gzip, bz2, zip
|
|
102
|
+
reader_kwargs["compression"] = "infer"
|
|
103
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
104
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
105
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
106
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
107
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
108
|
+
|
|
109
|
+
##------------------------------------------------------------------------.
|
|
110
|
+
#### Read the data
|
|
111
|
+
df = read_raw_text_file(
|
|
112
|
+
filepath=file,
|
|
113
|
+
column_names=column_names,
|
|
114
|
+
reader_kwargs=reader_kwargs,
|
|
115
|
+
logger=logger,
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
##--------------------------------\----------------------------------------.
|
|
119
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
120
|
+
# Empty file, raise error
|
|
121
|
+
if len(df) == 0:
|
|
122
|
+
raise ValueError(f"{filename} is empty.")
|
|
123
|
+
|
|
124
|
+
# Select rows with valid spectrum
|
|
125
|
+
# df = df[df["TO_PARSE"].str.count(";") == 1191] # 1112
|
|
126
|
+
|
|
127
|
+
# Raise error if corrupted file
|
|
128
|
+
if len(df) == 4:
|
|
129
|
+
raise ValueError(f"{filename} is corrupted.")
|
|
130
|
+
|
|
131
|
+
# Extract string
|
|
132
|
+
string = df["TO_PARSE"].iloc[4]
|
|
133
|
+
|
|
134
|
+
# Split into lines
|
|
135
|
+
decoded_text = string.encode().decode("unicode_escape")
|
|
136
|
+
decoded_text = decoded_text.replace("'", "").replace('"', "")
|
|
137
|
+
lines = decoded_text.split()
|
|
138
|
+
|
|
139
|
+
# Extract time
|
|
140
|
+
time_str = lines[0].split(",")[1]
|
|
141
|
+
|
|
142
|
+
# Split each line at the first colon
|
|
143
|
+
data = [line.split(":", 1) for line in lines if ":" in line]
|
|
144
|
+
|
|
145
|
+
# Create the DataFrame
|
|
146
|
+
df = pd.DataFrame(data, columns=["ID", "Value"])
|
|
147
|
+
|
|
148
|
+
# Drop rows with invalid IDs
|
|
149
|
+
valid_id_str = np.char.rjust(np.arange(0, 94).astype(str), width=2, fillchar="0")
|
|
150
|
+
df = df[df["ID"].astype(str).isin(valid_id_str)]
|
|
151
|
+
|
|
152
|
+
# Select only rows with values
|
|
153
|
+
df = df[df["Value"].apply(lambda x: x is not None)]
|
|
154
|
+
|
|
155
|
+
# Reshape dataframe
|
|
156
|
+
df = df.set_index("ID").T
|
|
157
|
+
|
|
158
|
+
# Assign column names
|
|
159
|
+
df = df.rename(COLUMN_DICT, axis=1)
|
|
160
|
+
|
|
161
|
+
# Keep only columns defined in the dictionary
|
|
162
|
+
df = df.filter(items=list(COLUMN_DICT.values()))
|
|
163
|
+
|
|
164
|
+
# Infill missing columns
|
|
165
|
+
df = infill_missing_columns(df)
|
|
166
|
+
|
|
167
|
+
# Add time column ad datetime dtype
|
|
168
|
+
df["time"] = pd.to_datetime(time_str, format="%Y%m%d%H%M%S", errors="coerce")
|
|
169
|
+
|
|
170
|
+
# Preprocess the raw spectrum and raw_drop_average_velocity
|
|
171
|
+
# - Add 0 before every ; if ; not preceded by a digit
|
|
172
|
+
# - Example: ';;1;;' --> '0;0;1;0;'
|
|
173
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace(r"(?<!\d);", "0;", regex=True)
|
|
174
|
+
df["raw_drop_average_velocity"] = df["raw_drop_average_velocity"].str.replace(r"(?<!\d);", "0;", regex=True)
|
|
175
|
+
|
|
176
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
177
|
+
return df
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
@is_documented_by(reader_generic_docstring)
|
|
181
|
+
def reader(
|
|
182
|
+
filepath,
|
|
183
|
+
logger=None,
|
|
184
|
+
):
|
|
185
|
+
"""Reader."""
|
|
186
|
+
import zipfile
|
|
187
|
+
|
|
188
|
+
# ---------------------------------------------------------------------.
|
|
189
|
+
#### Iterate over all files (aka timesteps) in the daily zip archive
|
|
190
|
+
# - Each file contain a single timestep !
|
|
191
|
+
# list_df = []
|
|
192
|
+
# with tempfile.TemporaryDirectory() as temp_dir:
|
|
193
|
+
# # Extract all files
|
|
194
|
+
# unzip_file_on_terminal(filepath, temp_dir)
|
|
195
|
+
|
|
196
|
+
# # Walk through extracted files
|
|
197
|
+
# for root, _, files in os.walk(temp_dir):
|
|
198
|
+
# for filename in sorted(files):
|
|
199
|
+
# if filename.endswith(".txt"):
|
|
200
|
+
# full_path = os.path.join(root, filename)
|
|
201
|
+
# try:
|
|
202
|
+
# df = read_txt_file(file=full_path, filename=filename, logger=logger)
|
|
203
|
+
# if df is not None:
|
|
204
|
+
# list_df.append(df)
|
|
205
|
+
# except Exception as e:
|
|
206
|
+
# msg = f"An error occurred while reading {filename}: {e}"
|
|
207
|
+
# log_error(logger=logger, msg=msg, verbose=True)
|
|
208
|
+
|
|
209
|
+
list_df = []
|
|
210
|
+
with zipfile.ZipFile(filepath, "r") as zip_ref:
|
|
211
|
+
filenames = sorted(zip_ref.namelist())
|
|
212
|
+
for filename in filenames:
|
|
213
|
+
if filename.endswith(".dat"):
|
|
214
|
+
# Open file
|
|
215
|
+
with zip_ref.open(filename) as file:
|
|
216
|
+
try:
|
|
217
|
+
df = read_txt_file(file=file, filename=filename, logger=logger)
|
|
218
|
+
if df is not None:
|
|
219
|
+
list_df.append(df)
|
|
220
|
+
except Exception as e:
|
|
221
|
+
msg = f"An error occurred while reading {filename}. The error is: {e}."
|
|
222
|
+
log_error(logger=logger, msg=msg, verbose=True)
|
|
223
|
+
|
|
224
|
+
# Check the zip file contains at least some non.empty files
|
|
225
|
+
if len(list_df) == 0:
|
|
226
|
+
raise ValueError(f"{filepath} contains only empty files!")
|
|
227
|
+
|
|
228
|
+
# Concatenate all dataframes into a single one
|
|
229
|
+
df = pd.concat(list_df)
|
|
230
|
+
|
|
231
|
+
# ---------------------------------------------------------------------.
|
|
232
|
+
return df
|
|
@@ -184,7 +184,7 @@ def read_par_format(filepath, logger):
|
|
|
184
184
|
# Retrieve raw array
|
|
185
185
|
df_split = df["TO_SPLIT"].str.split(",", expand=True)
|
|
186
186
|
df["raw_drop_concentration"] = df_split.iloc[:, :32].agg(",".join, axis=1)
|
|
187
|
-
df["raw_drop_average_velocity"] = df_split.iloc[:, 32:].agg(",".join, axis=1)
|
|
187
|
+
df["raw_drop_average_velocity"] = df_split.iloc[:, 32:64].agg(",".join, axis=1)
|
|
188
188
|
df["raw_drop_number"] = df_split.iloc[:, 64:].agg(",".join, axis=1)
|
|
189
189
|
df["raw_drop_number"] = df["raw_drop_number"].str.replace("-9", "0")
|
|
190
190
|
del df_split
|
|
@@ -0,0 +1,155 @@
|
|
|
1
|
+
# -----------------------------------------------------------------------------.
|
|
2
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
3
|
+
#
|
|
4
|
+
# This program is free software: you can redistribute it and/or modify
|
|
5
|
+
# it under the terms of the GNU General Public License as published by
|
|
6
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
7
|
+
# (at your option) any later version.
|
|
8
|
+
#
|
|
9
|
+
# This program is distributed in the hope that it will be useful,
|
|
10
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
11
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
12
|
+
# GNU General Public License for more details.
|
|
13
|
+
#
|
|
14
|
+
# You should have received a copy of the GNU General Public License
|
|
15
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
16
|
+
# -----------------------------------------------------------------------------.
|
|
17
|
+
"""DISDRODB reader for Colorado State University PRECIP OTT Parsivel 2 raw data."""
|
|
18
|
+
|
|
19
|
+
import pandas as pd
|
|
20
|
+
|
|
21
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
22
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@is_documented_by(reader_generic_docstring)
|
|
26
|
+
def reader(
|
|
27
|
+
filepath,
|
|
28
|
+
logger=None,
|
|
29
|
+
):
|
|
30
|
+
"""Reader."""
|
|
31
|
+
##------------------------------------------------------------------------.
|
|
32
|
+
#### Define column names
|
|
33
|
+
column_names = ["TO_PARSE"]
|
|
34
|
+
|
|
35
|
+
##------------------------------------------------------------------------.
|
|
36
|
+
#### Define reader options
|
|
37
|
+
reader_kwargs = {}
|
|
38
|
+
|
|
39
|
+
# - Define delimiter
|
|
40
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
41
|
+
|
|
42
|
+
# - Skip first row as columns names
|
|
43
|
+
reader_kwargs["header"] = None
|
|
44
|
+
|
|
45
|
+
# - Skip header
|
|
46
|
+
reader_kwargs["skiprows"] = 0
|
|
47
|
+
|
|
48
|
+
# - Define encoding
|
|
49
|
+
reader_kwargs["encoding"] = "ISO-8859-1"
|
|
50
|
+
|
|
51
|
+
# - Avoid first column to become df index !!!
|
|
52
|
+
reader_kwargs["index_col"] = False
|
|
53
|
+
|
|
54
|
+
# - Define behaviour when encountering bad lines
|
|
55
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
56
|
+
|
|
57
|
+
# - Define reader engine
|
|
58
|
+
# - C engine is faster
|
|
59
|
+
# - Python engine is more feature-complete
|
|
60
|
+
reader_kwargs["engine"] = "python"
|
|
61
|
+
|
|
62
|
+
# - Define on-the-fly decompression of on-disk data
|
|
63
|
+
# - Available: gzip, bz2, zip
|
|
64
|
+
# reader_kwargs['compression'] = 'xz'
|
|
65
|
+
|
|
66
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
67
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
68
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
69
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
70
|
+
reader_kwargs["na_values"] = ["na", "error", "-.-", " NA"]
|
|
71
|
+
|
|
72
|
+
##------------------------------------------------------------------------.
|
|
73
|
+
#### Read the data
|
|
74
|
+
df = read_raw_text_file(
|
|
75
|
+
filepath=filepath,
|
|
76
|
+
column_names=column_names,
|
|
77
|
+
reader_kwargs=reader_kwargs,
|
|
78
|
+
logger=logger,
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
##------------------------------------------------------------------------.
|
|
82
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
83
|
+
# Raise error if empty file
|
|
84
|
+
if len(df) == 0:
|
|
85
|
+
raise ValueError(f"{filepath} is empty.")
|
|
86
|
+
|
|
87
|
+
# Select only rows with expected number of delimiters
|
|
88
|
+
df = df[df["TO_PARSE"].str.count(",") == 1041]
|
|
89
|
+
|
|
90
|
+
# Raise error if no data left
|
|
91
|
+
if len(df) == 0:
|
|
92
|
+
raise ValueError(f"No valid data in {filepath}.")
|
|
93
|
+
|
|
94
|
+
# Split into columns
|
|
95
|
+
df = df["TO_PARSE"].str.split(",", expand=True, n=17)
|
|
96
|
+
|
|
97
|
+
# Assign columns names
|
|
98
|
+
names = [
|
|
99
|
+
"date",
|
|
100
|
+
"time",
|
|
101
|
+
"rainfall_rate_32bit",
|
|
102
|
+
"rainfall_accumulated_32bit",
|
|
103
|
+
"weather_code_synop_4680",
|
|
104
|
+
"weather_code_metar_4678",
|
|
105
|
+
"weather_code_nws",
|
|
106
|
+
"reflectivity_32bit",
|
|
107
|
+
"mor_visibility",
|
|
108
|
+
"laser_amplitude",
|
|
109
|
+
"number_particles",
|
|
110
|
+
"sensor_temperature",
|
|
111
|
+
"sensor_heating_current",
|
|
112
|
+
"sensor_battery_voltage",
|
|
113
|
+
"sensor_status",
|
|
114
|
+
"rain_kinetic_energy",
|
|
115
|
+
"snowfall_rate",
|
|
116
|
+
"raw_drop_number",
|
|
117
|
+
]
|
|
118
|
+
df.columns = names
|
|
119
|
+
|
|
120
|
+
# Add datetime time column
|
|
121
|
+
time_str = df["date"] + "-" + df["time"]
|
|
122
|
+
df["time"] = pd.to_datetime(time_str, format="%d.%m.%Y-%H:%M:%S", errors="coerce")
|
|
123
|
+
|
|
124
|
+
# Derive the raw spectrum
|
|
125
|
+
# Remove <SPECTRUM> and </SPECTRUM> prefix and suffix from the raw_drop_number field
|
|
126
|
+
df["raw_drop_number"] = df["raw_drop_number"].astype("string")
|
|
127
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace("<SPECTRUM>", "")
|
|
128
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace("</SPECTRUM>", "")
|
|
129
|
+
|
|
130
|
+
# Preprocess the raw spectrum and raw_drop_average_velocity
|
|
131
|
+
# - Add 0 before every ; if ; not preceded by a digit
|
|
132
|
+
# - Example: ';;1;;' --> '0;0;1;0;'
|
|
133
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace(r"(?<!\d),", "0,", regex=True)
|
|
134
|
+
|
|
135
|
+
# Infill missing timesteps with raw_drop_number = 0 spectrum
|
|
136
|
+
# - Define the full time range with 30-second frequency
|
|
137
|
+
full_time_index = pd.date_range(start=df["time"].iloc[0], end=df["time"].iloc[-1], freq="30s")
|
|
138
|
+
|
|
139
|
+
# - Reindex the DataFrame to include all 30-second timesteps
|
|
140
|
+
df = df.set_index("time").reindex(full_time_index)
|
|
141
|
+
|
|
142
|
+
# - Fill missing raw_drop_number with 0
|
|
143
|
+
df["raw_drop_number"] = df["raw_drop_number"].fillna(0)
|
|
144
|
+
|
|
145
|
+
# - Restore 'time' as a column
|
|
146
|
+
df = df.rename_axis("time").reset_index()
|
|
147
|
+
|
|
148
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
149
|
+
columns_to_drop = [
|
|
150
|
+
"date",
|
|
151
|
+
]
|
|
152
|
+
df = df.drop(columns=columns_to_drop)
|
|
153
|
+
|
|
154
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
155
|
+
return df
|
|
@@ -38,11 +38,14 @@ def reader(
|
|
|
38
38
|
# - Define delimiter
|
|
39
39
|
reader_kwargs["delimiter"] = "/\n"
|
|
40
40
|
|
|
41
|
-
# Skip first row as columns names
|
|
41
|
+
# - Skip first row as columns names
|
|
42
42
|
reader_kwargs["header"] = None
|
|
43
43
|
|
|
44
|
-
# Skip first 2 rows
|
|
45
|
-
reader_kwargs["skiprows"] =
|
|
44
|
+
# - Skip first 2 rows
|
|
45
|
+
reader_kwargs["skiprows"] = 0
|
|
46
|
+
|
|
47
|
+
# - Define encoding
|
|
48
|
+
reader_kwargs["encoding"] = "ISO-8859-1"
|
|
46
49
|
|
|
47
50
|
# - Avoid first column to become df index !!!
|
|
48
51
|
reader_kwargs["index_col"] = False
|
|
@@ -76,12 +79,17 @@ def reader(
|
|
|
76
79
|
|
|
77
80
|
##------------------------------------------------------------------------.
|
|
78
81
|
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
79
|
-
#
|
|
80
|
-
|
|
82
|
+
# Raise error if empty file
|
|
83
|
+
if len(df) == 0:
|
|
84
|
+
raise ValueError(f"{filepath} is empty.")
|
|
81
85
|
|
|
82
|
-
#
|
|
86
|
+
# Select only rows with expected number of delimiters
|
|
83
87
|
df = df[df["TO_BE_PARSED"].str.count(";") == 1107]
|
|
84
88
|
|
|
89
|
+
# Raise error if no data left
|
|
90
|
+
if len(df) == 0:
|
|
91
|
+
raise ValueError(f"No valid data in {filepath}.")
|
|
92
|
+
|
|
85
93
|
# Split by ; delimiter
|
|
86
94
|
df = df["TO_BE_PARSED"].str.split(";", expand=True, n=19)
|
|
87
95
|
|
|
@@ -132,5 +140,4 @@ def reader(
|
|
|
132
140
|
"sample_interval",
|
|
133
141
|
]
|
|
134
142
|
df = df.drop(columns=columns_to_drop)
|
|
135
|
-
|
|
136
143
|
return df
|
|
@@ -157,12 +157,17 @@ def reader(
|
|
|
157
157
|
|
|
158
158
|
##------------------------------------------------------------------------.
|
|
159
159
|
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
160
|
-
#
|
|
161
|
-
|
|
160
|
+
# Raise error if empty file
|
|
161
|
+
if len(df) == 0:
|
|
162
|
+
raise ValueError(f"{filepath} is empty.")
|
|
162
163
|
|
|
163
|
-
#
|
|
164
|
+
# Select only rows with expected number of delimiters
|
|
164
165
|
df = df[df["TO_BE_PARSED"].str.count(";") == 1107]
|
|
165
166
|
|
|
167
|
+
# Raise error if no data left
|
|
168
|
+
if len(df) == 0:
|
|
169
|
+
raise ValueError(f"No valid data in {filepath}.")
|
|
170
|
+
|
|
166
171
|
# Split by ; delimiter
|
|
167
172
|
df = df["TO_BE_PARSED"].str.split(";", expand=True, n=19)
|
|
168
173
|
|
|
@@ -44,13 +44,13 @@ def reader(
|
|
|
44
44
|
"""Reader."""
|
|
45
45
|
##------------------------------------------------------------------------.
|
|
46
46
|
#### Define column names
|
|
47
|
-
column_names = ["
|
|
47
|
+
column_names = ["TO_PARSE"]
|
|
48
48
|
|
|
49
49
|
##------------------------------------------------------------------------.
|
|
50
50
|
#### Define reader options
|
|
51
51
|
reader_kwargs = {}
|
|
52
52
|
# - Define delimiter
|
|
53
|
-
reader_kwargs["delimiter"] = "
|
|
53
|
+
reader_kwargs["delimiter"] = "//n"
|
|
54
54
|
# - Skip first row as columns names
|
|
55
55
|
reader_kwargs["header"] = None
|
|
56
56
|
reader_kwargs["skiprows"] = 0
|
|
@@ -84,6 +84,20 @@ def reader(
|
|
|
84
84
|
|
|
85
85
|
##------------------------------------------------------------------------.
|
|
86
86
|
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
87
|
+
# Remove rows with invalid number of separators
|
|
88
|
+
df = df[df["TO_PARSE"].str.count(";") == 1]
|
|
89
|
+
if len(df) == 0:
|
|
90
|
+
raise ValueError(f"No valid data in {filepath}")
|
|
91
|
+
|
|
92
|
+
# Retrieve time and telegram field
|
|
93
|
+
df = df["TO_PARSE"].str.split(";", expand=True)
|
|
94
|
+
df.columns = ["time", "TO_BE_SPLITTED"]
|
|
95
|
+
|
|
96
|
+
# Remove rows with invalid number of separators
|
|
97
|
+
df = df[df["TO_BE_SPLITTED"].str.count(",") == 1033]
|
|
98
|
+
if len(df) == 0:
|
|
99
|
+
raise ValueError(f"No valid data in {filepath}")
|
|
100
|
+
|
|
87
101
|
# Convert time column to datetime
|
|
88
102
|
df_time = pd.to_datetime(df["time"], format="%Y%m%d%H%M%S", errors="coerce")
|
|
89
103
|
|
|
@@ -91,7 +105,7 @@ def reader(
|
|
|
91
105
|
df = df["TO_BE_SPLITTED"].str.split(",", n=9, expand=True)
|
|
92
106
|
|
|
93
107
|
# Assign column names
|
|
94
|
-
|
|
108
|
+
columns_names = [
|
|
95
109
|
"station_name",
|
|
96
110
|
"sensor_status",
|
|
97
111
|
"sensor_temperature",
|
|
@@ -103,7 +117,7 @@ def reader(
|
|
|
103
117
|
"weather_code_synop_4677",
|
|
104
118
|
"raw_drop_number",
|
|
105
119
|
]
|
|
106
|
-
df.columns =
|
|
120
|
+
df.columns = columns_names
|
|
107
121
|
|
|
108
122
|
# Add the time column
|
|
109
123
|
df["time"] = df_time
|
|
@@ -111,10 +125,19 @@ def reader(
|
|
|
111
125
|
# Drop columns not agreeing with DISDRODB L0 standards
|
|
112
126
|
df = df.drop(columns=["station_name"])
|
|
113
127
|
|
|
128
|
+
# Remove rows with invalid raw drop number
|
|
129
|
+
# --> Occurs e.g. in UCONN apu28
|
|
130
|
+
# def mask_invalid_raw_drop_number(df)
|
|
131
|
+
# df_split = df["raw_drop_number"].str.split(",", expand=True)
|
|
132
|
+
# idx = np.where(np.any(df_split.astype(float) > 998, axis=1))[0]
|
|
133
|
+
# df.loc[idx, "raw_drop_number"] = "NaN"
|
|
134
|
+
# return df
|
|
135
|
+
df = df[df["raw_drop_number"].str.len() == 4096]
|
|
136
|
+
|
|
114
137
|
# Drop rows with invalid values
|
|
115
138
|
# --> Ensure that weather_code_synop_4677 has length 2
|
|
116
139
|
# --> If a previous column is missing it will have 000
|
|
117
|
-
df = df[df["weather_code_synop_4677"].str.len() == 2]
|
|
140
|
+
# df = df[df["weather_code_synop_4677"].str.len() == 2]
|
|
118
141
|
|
|
119
142
|
# Return the dataframe adhering to DISDRODB L0 standards
|
|
120
143
|
return df
|