disdrodb 0.1.5__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- disdrodb/__init__.py +1 -5
- disdrodb/_version.py +2 -2
- disdrodb/accessor/methods.py +22 -4
- disdrodb/api/checks.py +10 -0
- disdrodb/api/io.py +20 -18
- disdrodb/api/path.py +42 -77
- disdrodb/api/search.py +89 -23
- disdrodb/cli/disdrodb_create_summary.py +1 -1
- disdrodb/cli/disdrodb_run_l0.py +1 -1
- disdrodb/cli/disdrodb_run_l0a.py +1 -1
- disdrodb/cli/disdrodb_run_l0b.py +1 -1
- disdrodb/cli/disdrodb_run_l0c.py +1 -1
- disdrodb/cli/disdrodb_run_l1.py +1 -1
- disdrodb/cli/disdrodb_run_l2e.py +1 -1
- disdrodb/cli/disdrodb_run_l2m.py +1 -1
- disdrodb/configs.py +30 -83
- disdrodb/constants.py +4 -3
- disdrodb/data_transfer/download_data.py +4 -2
- disdrodb/docs.py +2 -2
- disdrodb/etc/products/L1/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/LPM/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/LPM_V0/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/PARSIVEL/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/PARSIVEL2/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/PWS100/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/RD80/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/SWS250/1MIN.yaml +13 -0
- disdrodb/etc/products/L1/global.yaml +6 -0
- disdrodb/etc/products/L2E/10MIN.yaml +1 -12
- disdrodb/etc/products/L2E/global.yaml +1 -1
- disdrodb/etc/products/L2M/MODELS/NGAMMA_GS_R_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/global.yaml +1 -1
- disdrodb/issue/checks.py +2 -2
- disdrodb/l0/check_configs.py +1 -1
- disdrodb/l0/configs/LPM/l0a_encodings.yml +0 -1
- disdrodb/l0/configs/LPM/l0b_cf_attrs.yml +0 -4
- disdrodb/l0/configs/LPM/l0b_encodings.yml +9 -9
- disdrodb/l0/configs/LPM/raw_data_format.yml +11 -11
- disdrodb/l0/configs/LPM_V0/bins_diameter.yml +103 -0
- disdrodb/l0/configs/LPM_V0/bins_velocity.yml +103 -0
- disdrodb/l0/configs/LPM_V0/l0a_encodings.yml +45 -0
- disdrodb/l0/configs/LPM_V0/l0b_cf_attrs.yml +180 -0
- disdrodb/l0/configs/LPM_V0/l0b_encodings.yml +410 -0
- disdrodb/l0/configs/LPM_V0/raw_data_format.yml +474 -0
- disdrodb/l0/configs/PARSIVEL/l0b_encodings.yml +1 -1
- disdrodb/l0/configs/PARSIVEL/raw_data_format.yml +8 -8
- disdrodb/l0/configs/PARSIVEL2/raw_data_format.yml +9 -9
- disdrodb/l0/l0_reader.py +2 -2
- disdrodb/l0/l0a_processing.py +6 -2
- disdrodb/l0/l0b_processing.py +26 -19
- disdrodb/l0/l0c_processing.py +17 -3
- disdrodb/l0/manuals/LPM_V0.pdf +0 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM.py +15 -7
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_PI.py +279 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_T.py +276 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_W.py +2 -2
- disdrodb/l0/readers/LPM/NETHERLANDS/DELFT_RWANDA_LPM_NC.py +103 -0
- disdrodb/l0/readers/LPM/NORWAY/HAUKELISETER_LPM.py +216 -0
- disdrodb/l0/readers/LPM/NORWAY/NMBU_LPM.py +208 -0
- disdrodb/l0/readers/LPM/UK/WITHWORTH_LPM.py +219 -0
- disdrodb/l0/readers/LPM/USA/CHARLESTON.py +229 -0
- disdrodb/l0/readers/{LPM → LPM_V0}/BELGIUM/ULIEGE.py +33 -49
- disdrodb/l0/readers/LPM_V0/ITALY/GID_LPM_V0.py +240 -0
- disdrodb/l0/readers/PARSIVEL/BASQUECOUNTRY/EUSKALMET_OTT.py +227 -0
- disdrodb/l0/readers/{PARSIVEL2 → PARSIVEL}/NASA/LPVEX.py +16 -28
- disdrodb/l0/readers/PARSIVEL/{GPM → NASA}/MC3E.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/VORTEX2_2010_UF.py +3 -3
- disdrodb/l0/readers/PARSIVEL2/BASQUECOUNTRY/EUSKALMET_OTT2.py +232 -0
- disdrodb/l0/readers/PARSIVEL2/DENMARK/EROSION_raw.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/JAPAN/PRECIP.py +155 -0
- disdrodb/l0/readers/PARSIVEL2/MPI/BCO_PARSIVEL2.py +14 -7
- disdrodb/l0/readers/PARSIVEL2/MPI/BOWTIE.py +8 -3
- disdrodb/l0/readers/PARSIVEL2/NASA/APU.py +28 -5
- disdrodb/l0/readers/PARSIVEL2/NCAR/RELAMPAGO_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/{GPM/GCPEX.py → NORWAY/UIB.py} +54 -29
- disdrodb/l0/readers/PARSIVEL2/PHILIPPINES/{PANGASA.py → PAGASA.py} +6 -3
- disdrodb/l0/readers/PARSIVEL2/SPAIN/GRANADA.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/SWEDEN/SMHI.py +189 -0
- disdrodb/l0/readers/{PARSIVEL/GPM/PIERS.py → PARSIVEL2/USA/CSU.py} +62 -29
- disdrodb/l0/readers/PARSIVEL2/USA/{C3WE.py → CW3E.py} +51 -24
- disdrodb/l0/readers/{PARSIVEL/GPM/IFLOODS.py → RD80/BRAZIL/ATTO_RD80.py} +50 -34
- disdrodb/l0/readers/{SW250 → SWS250}/BELGIUM/KMI.py +1 -1
- disdrodb/l1/beard_model.py +45 -1
- disdrodb/l1/fall_velocity.py +1 -6
- disdrodb/l1/filters.py +2 -0
- disdrodb/l1/processing.py +6 -5
- disdrodb/l1/resampling.py +101 -38
- disdrodb/l2/empirical_dsd.py +12 -8
- disdrodb/l2/processing.py +4 -3
- disdrodb/metadata/search.py +3 -4
- disdrodb/routines/l0.py +4 -4
- disdrodb/routines/l1.py +173 -60
- disdrodb/routines/l2.py +121 -269
- disdrodb/routines/options.py +347 -0
- disdrodb/routines/wrappers.py +9 -1
- disdrodb/scattering/axis_ratio.py +3 -0
- disdrodb/scattering/routines.py +1 -1
- disdrodb/summary/routines.py +765 -724
- disdrodb/utils/archiving.py +51 -44
- disdrodb/utils/attrs.py +1 -1
- disdrodb/utils/compression.py +4 -2
- disdrodb/utils/dask.py +35 -15
- disdrodb/utils/dict.py +33 -0
- disdrodb/utils/encoding.py +1 -1
- disdrodb/utils/manipulations.py +7 -1
- disdrodb/utils/routines.py +9 -8
- disdrodb/utils/time.py +9 -1
- disdrodb/viz/__init__.py +0 -13
- disdrodb/viz/plots.py +209 -0
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/METADATA +1 -1
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/RECORD +124 -95
- disdrodb/l0/readers/PARSIVEL/GPM/LPVEX.py +0 -85
- /disdrodb/etc/products/L2M/{GAMMA_GS_ND_MAE.yaml → MODELS/GAMMA_GS_ND_MAE.yaml} +0 -0
- /disdrodb/etc/products/L2M/{GAMMA_ML.yaml → MODELS/GAMMA_ML.yaml} +0 -0
- /disdrodb/etc/products/L2M/{LOGNORMAL_GS_LOG_ND_MAE.yaml → MODELS/LOGNORMAL_GS_LOG_ND_MAE.yaml} +0 -0
- /disdrodb/etc/products/L2M/{LOGNORMAL_GS_ND_MAE.yaml → MODELS/LOGNORMAL_GS_ND_MAE.yaml} +0 -0
- /disdrodb/etc/products/L2M/{LOGNORMAL_ML.yaml → MODELS/LOGNORMAL_ML.yaml} +0 -0
- /disdrodb/etc/products/L2M/{NGAMMA_GS_LOG_ND_MAE.yaml → MODELS/NGAMMA_GS_LOG_ND_MAE.yaml} +0 -0
- /disdrodb/etc/products/L2M/{NGAMMA_GS_ND_MAE.yaml → MODELS/NGAMMA_GS_ND_MAE.yaml} +0 -0
- /disdrodb/etc/products/L2M/{NGAMMA_GS_Z_MAE.yaml → MODELS/NGAMMA_GS_Z_MAE.yaml} +0 -0
- /disdrodb/l0/readers/PARSIVEL2/{GPM → NASA}/NSSTC.py +0 -0
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/WHEEL +0 -0
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/entry_points.txt +0 -0
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/licenses/LICENSE +0 -0
- {disdrodb-0.1.5.dist-info → disdrodb-0.2.1.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
#!/usr/bin/env python3
|
|
2
1
|
# -----------------------------------------------------------------------------.
|
|
3
2
|
# Copyright (c) 2021-2023 DISDRODB developers
|
|
4
3
|
#
|
|
@@ -15,7 +14,8 @@
|
|
|
15
14
|
# You should have received a copy of the GNU General Public License
|
|
16
15
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
16
|
# -----------------------------------------------------------------------------.
|
|
18
|
-
"""
|
|
17
|
+
"""DISDRODB reader for University of Bergen OTT Parsivel 2 raw data."""
|
|
18
|
+
|
|
19
19
|
import pandas as pd
|
|
20
20
|
|
|
21
21
|
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
@@ -30,34 +30,44 @@ def reader(
|
|
|
30
30
|
"""Reader."""
|
|
31
31
|
##------------------------------------------------------------------------.
|
|
32
32
|
#### Define column names
|
|
33
|
-
column_names = ["
|
|
33
|
+
column_names = ["TO_PARSE"]
|
|
34
34
|
|
|
35
35
|
##------------------------------------------------------------------------.
|
|
36
36
|
#### Define reader options
|
|
37
37
|
reader_kwargs = {}
|
|
38
|
+
|
|
38
39
|
# - Define delimiter
|
|
39
|
-
reader_kwargs["delimiter"] = "
|
|
40
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
41
|
+
|
|
40
42
|
# - Skip first row as columns names
|
|
41
43
|
reader_kwargs["header"] = None
|
|
44
|
+
|
|
45
|
+
# - Skip header
|
|
42
46
|
reader_kwargs["skiprows"] = 0
|
|
43
|
-
|
|
44
|
-
|
|
47
|
+
|
|
48
|
+
# - Define encoding
|
|
49
|
+
reader_kwargs["encoding"] = "ISO-8859-1"
|
|
50
|
+
|
|
45
51
|
# - Avoid first column to become df index !!!
|
|
46
52
|
reader_kwargs["index_col"] = False
|
|
53
|
+
|
|
47
54
|
# - Define behaviour when encountering bad lines
|
|
48
55
|
reader_kwargs["on_bad_lines"] = "skip"
|
|
56
|
+
|
|
49
57
|
# - Define reader engine
|
|
50
58
|
# - C engine is faster
|
|
51
59
|
# - Python engine is more feature-complete
|
|
52
60
|
reader_kwargs["engine"] = "python"
|
|
61
|
+
|
|
53
62
|
# - Define on-the-fly decompression of on-disk data
|
|
54
63
|
# - Available: gzip, bz2, zip
|
|
55
|
-
reader_kwargs[
|
|
64
|
+
# reader_kwargs['compression'] = 'xz'
|
|
65
|
+
|
|
56
66
|
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
57
67
|
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
58
68
|
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
59
69
|
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
60
|
-
reader_kwargs["na_values"] = ["na", "", "
|
|
70
|
+
reader_kwargs["na_values"] = ["na", "error", "-.-", " NA"]
|
|
61
71
|
|
|
62
72
|
##------------------------------------------------------------------------.
|
|
63
73
|
#### Read the data
|
|
@@ -70,37 +80,52 @@ def reader(
|
|
|
70
80
|
|
|
71
81
|
##------------------------------------------------------------------------.
|
|
72
82
|
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
73
|
-
#
|
|
74
|
-
|
|
83
|
+
# Remove corrupted rows
|
|
84
|
+
df = df[df["TO_PARSE"].str.count(";") == 1101]
|
|
75
85
|
|
|
76
|
-
# Split
|
|
77
|
-
df = df["
|
|
86
|
+
# Split into columns
|
|
87
|
+
df = df["TO_PARSE"].str.split(";", expand=True, n=13)
|
|
78
88
|
|
|
79
|
-
# Assign
|
|
89
|
+
# Assign columns names
|
|
80
90
|
names = [
|
|
81
|
-
"
|
|
82
|
-
"
|
|
83
|
-
"sensor_temperature",
|
|
84
|
-
"number_particles",
|
|
91
|
+
"date",
|
|
92
|
+
"time",
|
|
85
93
|
"rainfall_rate_32bit",
|
|
86
|
-
"
|
|
87
|
-
"
|
|
94
|
+
"rainfall_accumulated_32bit",
|
|
95
|
+
"snowfall_rate",
|
|
88
96
|
"weather_code_synop_4680",
|
|
89
|
-
"
|
|
90
|
-
"
|
|
97
|
+
"reflectivity_32bit",
|
|
98
|
+
"mor_visibility",
|
|
99
|
+
"rain_kinetic_energy",
|
|
100
|
+
"sensor_temperature",
|
|
101
|
+
"laser_amplitude",
|
|
102
|
+
"number_particles",
|
|
103
|
+
"sensor_battery_voltage",
|
|
104
|
+
"TO_SPLIT",
|
|
91
105
|
]
|
|
92
106
|
df.columns = names
|
|
93
107
|
|
|
94
|
-
#
|
|
95
|
-
df["
|
|
108
|
+
# Sanitize date
|
|
109
|
+
date = pd.to_datetime(df["date"], format="%d.%m.%Y", errors="coerce")
|
|
110
|
+
date = date.ffill().bfill()
|
|
96
111
|
|
|
97
|
-
#
|
|
98
|
-
|
|
112
|
+
# Add datetime time column
|
|
113
|
+
time_str = date.astype(str) + "T" + df["time"]
|
|
114
|
+
df["time"] = pd.to_datetime(time_str, format="%Y-%m-%dT%H:%M:%S", errors="coerce")
|
|
115
|
+
df = df.drop(columns=["date"])
|
|
116
|
+
|
|
117
|
+
# Derive raw drop arrays
|
|
118
|
+
df_split = df["TO_SPLIT"].str.split(";", expand=True)
|
|
119
|
+
df["raw_drop_concentration"] = df_split.iloc[:, :32].agg(";".join, axis=1)
|
|
120
|
+
df["raw_drop_average_velocity"] = df_split.iloc[:, 32:64].agg(";".join, axis=1)
|
|
121
|
+
df["raw_drop_number"] = df_split.iloc[:, 64:].agg(";".join, axis=1)
|
|
122
|
+
del df_split
|
|
99
123
|
|
|
100
|
-
# Drop
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
124
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
125
|
+
columns_to_drop = [
|
|
126
|
+
"TO_SPLIT",
|
|
127
|
+
]
|
|
128
|
+
df = df.drop(columns=columns_to_drop)
|
|
104
129
|
|
|
105
130
|
# Return the dataframe adhering to DISDRODB L0 standards
|
|
106
131
|
return df
|
|
@@ -154,9 +154,12 @@ def read_txt_file(file, filename, logger):
|
|
|
154
154
|
df["time"] = pd.to_datetime(time_str, format="%Y%m%d%H%M%S", errors="coerce")
|
|
155
155
|
|
|
156
156
|
# Keep only rows with valid raw_drop_number
|
|
157
|
-
|
|
158
|
-
if
|
|
159
|
-
|
|
157
|
+
invalid_data = df["raw_drop_number"].str.count(";") != 1024
|
|
158
|
+
df.loc[invalid_data, "raw_drop_number"] = "NaN" # TODO: if number_particles = 0, could be set to "0".
|
|
159
|
+
|
|
160
|
+
# df = df[df["raw_drop_number"].str.count(";") == 1024]
|
|
161
|
+
# if len(df) == 0:
|
|
162
|
+
# raise ValueError("Invalid raw drop number field.")
|
|
160
163
|
|
|
161
164
|
# Drop columns not agreeing with DISDRODB L0 standards
|
|
162
165
|
# columns_to_drop = [
|
|
@@ -109,7 +109,7 @@ def reader(
|
|
|
109
109
|
# Retrieve raw array
|
|
110
110
|
df_split = df["TO_SPLIT"].str.split(",", expand=True)
|
|
111
111
|
df["raw_drop_concentration"] = df_split.iloc[:, :32].agg(",".join, axis=1)
|
|
112
|
-
df["raw_drop_average_velocity"] = df_split.iloc[:, 32:].agg(",".join, axis=1)
|
|
112
|
+
df["raw_drop_average_velocity"] = df_split.iloc[:, 32:64].agg(",".join, axis=1)
|
|
113
113
|
df["raw_drop_number"] = df_split.iloc[:, 64:].agg(",".join, axis=1)
|
|
114
114
|
del df_split
|
|
115
115
|
|
|
@@ -0,0 +1,189 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -----------------------------------------------------------------------------.
|
|
3
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
4
|
+
#
|
|
5
|
+
# This program is free software: you can redistribute it and/or modify
|
|
6
|
+
# it under the terms of the GNU General Public License as published by
|
|
7
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
8
|
+
# (at your option) any later version.
|
|
9
|
+
#
|
|
10
|
+
# This program is distributed in the hope that it will be useful,
|
|
11
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
# GNU General Public License for more details.
|
|
14
|
+
#
|
|
15
|
+
# You should have received a copy of the GNU General Public License
|
|
16
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
|
+
# -----------------------------------------------------------------------------.
|
|
18
|
+
"""Reader for SHMI OTT Parsivel2."""
|
|
19
|
+
import pandas as pd
|
|
20
|
+
|
|
21
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
22
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def parse_old_format(df):
|
|
26
|
+
"""Reformat old format."""
|
|
27
|
+
# Remove rows with invalid number of separators
|
|
28
|
+
df = df[df["TO_PARSE"].str.count(";") == 1106]
|
|
29
|
+
|
|
30
|
+
# Split the columns
|
|
31
|
+
df = df["TO_PARSE"].str.split(";", n=18, expand=True)
|
|
32
|
+
|
|
33
|
+
# Assign column names
|
|
34
|
+
names = [
|
|
35
|
+
"time",
|
|
36
|
+
"rainfall_rate_32bit",
|
|
37
|
+
"rainfall_accumulated_32bit",
|
|
38
|
+
"weather_code_synop_4680", # wawa
|
|
39
|
+
"reflectivity_32bit",
|
|
40
|
+
"mor_visibility",
|
|
41
|
+
"sample_interval",
|
|
42
|
+
"laser_amplitude",
|
|
43
|
+
"number_particles",
|
|
44
|
+
"sensor_temperature",
|
|
45
|
+
"sensor_serial_number",
|
|
46
|
+
"firmware_iop",
|
|
47
|
+
"sensor_heating_current",
|
|
48
|
+
"sensor_battery_voltage",
|
|
49
|
+
"sensor_status",
|
|
50
|
+
"station_id",
|
|
51
|
+
"rainfall_amount_absolute_32bit",
|
|
52
|
+
"error_code",
|
|
53
|
+
"TO_SPLIT",
|
|
54
|
+
]
|
|
55
|
+
|
|
56
|
+
df.columns = names
|
|
57
|
+
|
|
58
|
+
# Derive raw arrays
|
|
59
|
+
df_split = df["TO_SPLIT"].str.split(";", expand=True)
|
|
60
|
+
df["raw_drop_concentration"] = df_split.iloc[:, :32].agg(",".join, axis=1)
|
|
61
|
+
df["raw_drop_average_velocity"] = df_split.iloc[:, 32:64].agg(",".join, axis=1)
|
|
62
|
+
df["raw_drop_number"] = df_split.iloc[:, 64:1088].agg(",".join, axis=1)
|
|
63
|
+
|
|
64
|
+
# Ensure the time column is datetime dtype
|
|
65
|
+
df["time"] = df["time"].str[0:12] + "00"
|
|
66
|
+
df["time"] = pd.to_datetime(df["time"], format="%Y%m%d%H%M%S", errors="coerce")
|
|
67
|
+
|
|
68
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
69
|
+
columns_to_drop = [
|
|
70
|
+
"sensor_serial_number",
|
|
71
|
+
"firmware_iop",
|
|
72
|
+
"station_id",
|
|
73
|
+
"TO_SPLIT",
|
|
74
|
+
]
|
|
75
|
+
df = df.drop(columns=columns_to_drop)
|
|
76
|
+
|
|
77
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
78
|
+
return df
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def parse_new_format(df):
|
|
82
|
+
"""Reformat new format."""
|
|
83
|
+
# Remove rows with invalid number of separators
|
|
84
|
+
df = df[df["TO_PARSE"].str.count(";") == 1106]
|
|
85
|
+
|
|
86
|
+
# Split the columns
|
|
87
|
+
df = df["TO_PARSE"].str.split(";", n=18, expand=True)
|
|
88
|
+
|
|
89
|
+
# Assign column names
|
|
90
|
+
names = [
|
|
91
|
+
"time",
|
|
92
|
+
"rainfall_rate_32bit",
|
|
93
|
+
"rainfall_accumulated_32bit",
|
|
94
|
+
"weather_code_synop_4680", # wawa
|
|
95
|
+
"reflectivity_32bit",
|
|
96
|
+
"mor_visibility",
|
|
97
|
+
"sample_interval",
|
|
98
|
+
"laser_amplitude",
|
|
99
|
+
"number_particles",
|
|
100
|
+
"sensor_temperature",
|
|
101
|
+
"sensor_serial_number",
|
|
102
|
+
"firmware_iop",
|
|
103
|
+
"sensor_heating_current",
|
|
104
|
+
"sensor_battery_voltage",
|
|
105
|
+
"sensor_status",
|
|
106
|
+
"station_id",
|
|
107
|
+
"rainfall_amount_absolute_32bit",
|
|
108
|
+
"error_code",
|
|
109
|
+
"TO_SPLIT",
|
|
110
|
+
]
|
|
111
|
+
|
|
112
|
+
df.columns = names
|
|
113
|
+
|
|
114
|
+
# Derive raw arrays
|
|
115
|
+
df_split = df["TO_SPLIT"].str.split(";", expand=True)
|
|
116
|
+
df["raw_drop_concentration"] = df_split.iloc[:, :32].agg(",".join, axis=1)
|
|
117
|
+
df["raw_drop_average_velocity"] = df_split.iloc[:, 32:64].agg(",".join, axis=1)
|
|
118
|
+
df["raw_drop_number"] = df_split.iloc[:, 64:1088].agg(",".join, axis=1)
|
|
119
|
+
|
|
120
|
+
# Add the time column
|
|
121
|
+
df["time"] = pd.to_datetime(df["time"], format="%Y-%m-%d %H:%M:%S", errors="coerce")
|
|
122
|
+
|
|
123
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
124
|
+
columns_to_drop = [
|
|
125
|
+
"sensor_serial_number",
|
|
126
|
+
"firmware_iop",
|
|
127
|
+
"station_id",
|
|
128
|
+
"TO_SPLIT",
|
|
129
|
+
]
|
|
130
|
+
df = df.drop(columns=columns_to_drop)
|
|
131
|
+
|
|
132
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
133
|
+
return df
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
@is_documented_by(reader_generic_docstring)
|
|
137
|
+
def reader(
|
|
138
|
+
filepath,
|
|
139
|
+
logger=None,
|
|
140
|
+
):
|
|
141
|
+
"""Reader."""
|
|
142
|
+
##------------------------------------------------------------------------.
|
|
143
|
+
#### Define column names
|
|
144
|
+
column_names = ["TO_PARSE"]
|
|
145
|
+
|
|
146
|
+
##------------------------------------------------------------------------.
|
|
147
|
+
#### Define reader options
|
|
148
|
+
reader_kwargs = {}
|
|
149
|
+
# Skip first row as columns names
|
|
150
|
+
reader_kwargs["header"] = None
|
|
151
|
+
# Skip file with encoding errors
|
|
152
|
+
reader_kwargs["encoding_errors"] = "ignore"
|
|
153
|
+
# - Define delimiter
|
|
154
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
155
|
+
# - Avoid first column to become df index !!!
|
|
156
|
+
reader_kwargs["index_col"] = False
|
|
157
|
+
# - Define behaviour when encountering bad lines
|
|
158
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
159
|
+
|
|
160
|
+
# - Define reader engine
|
|
161
|
+
# - C engine is faster
|
|
162
|
+
# - Python engine is more feature-complete
|
|
163
|
+
reader_kwargs["engine"] = "python"
|
|
164
|
+
# - Define on-the-fly decompression of on-disk data
|
|
165
|
+
# - Available: gzip, bz2, zip
|
|
166
|
+
reader_kwargs["compression"] = "infer"
|
|
167
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
168
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
169
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
170
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
171
|
+
reader_kwargs["na_values"] = ["na", "", "error", "NA", "-.-"]
|
|
172
|
+
|
|
173
|
+
##------------------------------------------------------------------------.
|
|
174
|
+
#### Read the data
|
|
175
|
+
df = read_raw_text_file(
|
|
176
|
+
filepath=filepath,
|
|
177
|
+
column_names=column_names,
|
|
178
|
+
reader_kwargs=reader_kwargs,
|
|
179
|
+
logger=logger,
|
|
180
|
+
)
|
|
181
|
+
|
|
182
|
+
##------------------------------------------------------------------------.
|
|
183
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
184
|
+
if df["TO_PARSE"].iloc[0].startswith("datetime_utc"):
|
|
185
|
+
# Remove header if present (2025 onward)
|
|
186
|
+
df = df.iloc[1:]
|
|
187
|
+
# Parse new format
|
|
188
|
+
return parse_new_format(df)
|
|
189
|
+
return parse_old_format(df)
|
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
#!/usr/bin/env python3
|
|
2
1
|
# -----------------------------------------------------------------------------.
|
|
3
2
|
# Copyright (c) 2021-2023 DISDRODB developers
|
|
4
3
|
#
|
|
@@ -15,6 +14,8 @@
|
|
|
15
14
|
# You should have received a copy of the GNU General Public License
|
|
16
15
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
16
|
# -----------------------------------------------------------------------------.
|
|
17
|
+
"""DISDRODB reader for Colorado State University OTT Parsivel 2 raw data."""
|
|
18
|
+
|
|
18
19
|
import pandas as pd
|
|
19
20
|
|
|
20
21
|
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
@@ -29,34 +30,44 @@ def reader(
|
|
|
29
30
|
"""Reader."""
|
|
30
31
|
##------------------------------------------------------------------------.
|
|
31
32
|
#### Define column names
|
|
32
|
-
column_names = ["
|
|
33
|
+
column_names = ["TO_PARSE"]
|
|
33
34
|
|
|
34
35
|
##------------------------------------------------------------------------.
|
|
35
36
|
#### Define reader options
|
|
36
37
|
reader_kwargs = {}
|
|
38
|
+
|
|
37
39
|
# - Define delimiter
|
|
38
|
-
reader_kwargs["delimiter"] = "
|
|
40
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
41
|
+
|
|
39
42
|
# - Skip first row as columns names
|
|
40
43
|
reader_kwargs["header"] = None
|
|
44
|
+
|
|
45
|
+
# - Skip header
|
|
41
46
|
reader_kwargs["skiprows"] = 0
|
|
42
|
-
|
|
43
|
-
|
|
47
|
+
|
|
48
|
+
# - Define encoding
|
|
49
|
+
reader_kwargs["encoding"] = "ISO-8859-1"
|
|
50
|
+
|
|
44
51
|
# - Avoid first column to become df index !!!
|
|
45
52
|
reader_kwargs["index_col"] = False
|
|
53
|
+
|
|
46
54
|
# - Define behaviour when encountering bad lines
|
|
47
55
|
reader_kwargs["on_bad_lines"] = "skip"
|
|
56
|
+
|
|
48
57
|
# - Define reader engine
|
|
49
58
|
# - C engine is faster
|
|
50
59
|
# - Python engine is more feature-complete
|
|
51
60
|
reader_kwargs["engine"] = "python"
|
|
61
|
+
|
|
52
62
|
# - Define on-the-fly decompression of on-disk data
|
|
53
63
|
# - Available: gzip, bz2, zip
|
|
54
|
-
reader_kwargs[
|
|
64
|
+
# reader_kwargs['compression'] = 'xz'
|
|
65
|
+
|
|
55
66
|
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
56
67
|
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
57
68
|
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
58
69
|
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
59
|
-
reader_kwargs["na_values"] = ["na", "", "
|
|
70
|
+
reader_kwargs["na_values"] = ["na", "error", "-.-", " NA"]
|
|
60
71
|
|
|
61
72
|
##------------------------------------------------------------------------.
|
|
62
73
|
#### Read the data
|
|
@@ -69,37 +80,59 @@ def reader(
|
|
|
69
80
|
|
|
70
81
|
##------------------------------------------------------------------------.
|
|
71
82
|
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
72
|
-
#
|
|
73
|
-
|
|
83
|
+
# Remove corrupted rows
|
|
84
|
+
df = df[df["TO_PARSE"].str.count(",").isin([15, 1040])]
|
|
74
85
|
|
|
75
|
-
# Split
|
|
76
|
-
df = df["
|
|
86
|
+
# Split into columns
|
|
87
|
+
df["TO_PARSE"] = df["TO_PARSE"] + ",0"
|
|
88
|
+
df = df["TO_PARSE"].str.split(",", expand=True, n=16)
|
|
77
89
|
|
|
78
|
-
# Assign
|
|
79
|
-
|
|
80
|
-
"
|
|
81
|
-
"
|
|
82
|
-
"sensor_temperature",
|
|
83
|
-
"number_particles",
|
|
90
|
+
# Assign columns names
|
|
91
|
+
names = [
|
|
92
|
+
"date",
|
|
93
|
+
"time",
|
|
84
94
|
"rainfall_rate_32bit",
|
|
85
|
-
"
|
|
86
|
-
"mor_visibility",
|
|
95
|
+
"rainfall_accumulated_32bit",
|
|
87
96
|
"weather_code_synop_4680",
|
|
88
|
-
"
|
|
97
|
+
"weather_code_metar_4678",
|
|
98
|
+
"weather_code_nws",
|
|
99
|
+
"reflectivity_32bit",
|
|
100
|
+
"mor_visibility",
|
|
101
|
+
"laser_amplitude",
|
|
102
|
+
"number_particles",
|
|
103
|
+
"sensor_temperature",
|
|
104
|
+
"sensor_heating_current",
|
|
105
|
+
"sensor_battery_voltage",
|
|
106
|
+
"rain_kinetic_energy",
|
|
107
|
+
"snowfall_rate",
|
|
89
108
|
"raw_drop_number",
|
|
90
109
|
]
|
|
91
|
-
df.columns =
|
|
110
|
+
df.columns = names
|
|
92
111
|
|
|
93
|
-
# Add
|
|
94
|
-
df["
|
|
112
|
+
# Add datetime time column
|
|
113
|
+
time_str = df["date"] + "-" + df["time"]
|
|
114
|
+
df["time"] = pd.to_datetime(time_str, format="%d.%m.%Y-%H:%M:%S", errors="coerce")
|
|
95
115
|
|
|
96
|
-
#
|
|
97
|
-
|
|
116
|
+
# Derive the raw spectrum
|
|
117
|
+
# - When no drops detected, None
|
|
118
|
+
# - After conversion to string, becomes NaN
|
|
119
|
+
df["raw_drop_number"] = df["raw_drop_number"].astype("string")
|
|
120
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.strip()
|
|
121
|
+
|
|
122
|
+
# Remove <SPECTRUM> and </SPECTRUM> prefix and suffix from the raw_drop_number field
|
|
123
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace("<SPECTRUM>", "")
|
|
124
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace("</SPECTRUM>,0", "")
|
|
125
|
+
|
|
126
|
+
# Preprocess the raw spectrum and raw_drop_average_velocity
|
|
127
|
+
# - Add 0 before every ; if ; not preceded by a digit
|
|
128
|
+
# - Example: ';;1;;' --> '0;0;1;0;'
|
|
129
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace(r"(?<!\d),", "0,", regex=True)
|
|
98
130
|
|
|
99
|
-
# Drop
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
131
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
132
|
+
columns_to_drop = [
|
|
133
|
+
"date",
|
|
134
|
+
]
|
|
135
|
+
df = df.drop(columns=columns_to_drop)
|
|
103
136
|
|
|
104
137
|
# Return the dataframe adhering to DISDRODB L0 standards
|
|
105
138
|
return df
|
|
@@ -15,6 +15,7 @@
|
|
|
15
15
|
# You should have received a copy of the GNU General Public License
|
|
16
16
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
17
|
# -----------------------------------------------------------------------------.
|
|
18
|
+
"""Reader for the OTT Parsivel2 sensors of the CW3E network."""
|
|
18
19
|
import pandas as pd
|
|
19
20
|
|
|
20
21
|
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
@@ -68,39 +69,65 @@ def reader(
|
|
|
68
69
|
|
|
69
70
|
##------------------------------------------------------------------------.
|
|
70
71
|
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
71
|
-
#
|
|
72
|
+
# Remove rows with invalid number of separators
|
|
73
|
+
df = df[df["TO_PARSE"].str.count(";").isin([1104, 1105])]
|
|
74
|
+
if len(df) == 0:
|
|
75
|
+
raise ValueError(f"No valid data in {filepath}")
|
|
72
76
|
|
|
73
|
-
|
|
74
|
-
|
|
77
|
+
n_delimiters = int(df["TO_PARSE"].str.count(";").iloc[0])
|
|
78
|
+
if n_delimiters == 1104:
|
|
79
|
+
names = [
|
|
80
|
+
"sensor_serial_number",
|
|
81
|
+
"sensor_status",
|
|
82
|
+
"laser_amplitude",
|
|
83
|
+
"sensor_heating_current",
|
|
84
|
+
"sensor_battery_voltage",
|
|
85
|
+
"dummy_date",
|
|
86
|
+
"sensor_time",
|
|
87
|
+
"sensor_date",
|
|
88
|
+
# "sensor_temperature",
|
|
89
|
+
"number_particles",
|
|
90
|
+
"rainfall_rate_32bit",
|
|
91
|
+
"reflectivity_32bit",
|
|
92
|
+
"rainfall_accumulated_16bit",
|
|
93
|
+
"mor_visibility",
|
|
94
|
+
"weather_code_synop_4680",
|
|
95
|
+
"weather_code_synop_4677",
|
|
96
|
+
"TO_SPLIT",
|
|
97
|
+
]
|
|
98
|
+
n = 15
|
|
99
|
+
else:
|
|
100
|
+
names = [
|
|
101
|
+
"sensor_serial_number",
|
|
102
|
+
"sensor_status",
|
|
103
|
+
"laser_amplitude",
|
|
104
|
+
"sensor_heating_current",
|
|
105
|
+
"sensor_battery_voltage",
|
|
106
|
+
"dummy_date",
|
|
107
|
+
"sensor_time",
|
|
108
|
+
"sensor_date",
|
|
109
|
+
"sensor_temperature",
|
|
110
|
+
"number_particles",
|
|
111
|
+
"rainfall_rate_32bit",
|
|
112
|
+
"reflectivity_32bit",
|
|
113
|
+
"rainfall_accumulated_16bit",
|
|
114
|
+
"mor_visibility",
|
|
115
|
+
"weather_code_synop_4680",
|
|
116
|
+
"weather_code_synop_4677",
|
|
117
|
+
"TO_SPLIT",
|
|
118
|
+
]
|
|
119
|
+
n = 16
|
|
75
120
|
|
|
76
|
-
|
|
121
|
+
# Split the columns
|
|
122
|
+
df = df["TO_PARSE"].str.split(";", n=n, expand=True)
|
|
77
123
|
|
|
78
124
|
# Assign column names
|
|
79
|
-
names = [
|
|
80
|
-
"sensor_serial_number",
|
|
81
|
-
"sensor_status",
|
|
82
|
-
"laser_amplitude",
|
|
83
|
-
"sensor_heating_current",
|
|
84
|
-
"sensor_battery_voltage",
|
|
85
|
-
"dummy_date",
|
|
86
|
-
"sensor_time",
|
|
87
|
-
"sensor_date",
|
|
88
|
-
"sensor_temperature",
|
|
89
|
-
"number_particles",
|
|
90
|
-
"rainfall_rate_32bit",
|
|
91
|
-
"reflectivity_32bit",
|
|
92
|
-
"rainfall_accumulated_16bit",
|
|
93
|
-
"mor_visibility",
|
|
94
|
-
"weather_code_synop_4680",
|
|
95
|
-
"weather_code_synop_4677",
|
|
96
|
-
"TO_SPLIT",
|
|
97
|
-
]
|
|
98
125
|
df.columns = names
|
|
99
126
|
|
|
100
127
|
# Derive raw arrays
|
|
101
128
|
df_split = df["TO_SPLIT"].str.split(";", expand=True)
|
|
102
129
|
df["raw_drop_concentration"] = df_split.iloc[:, :32].agg(",".join, axis=1)
|
|
103
|
-
df["raw_drop_average_velocity"] = df_split.iloc[:, 32:].agg(",".join, axis=1)
|
|
130
|
+
df["raw_drop_average_velocity"] = df_split.iloc[:, 32:64].agg(",".join, axis=1)
|
|
104
131
|
df["raw_drop_number"] = df_split.iloc[:, 64:1088].agg(",".join, axis=1)
|
|
105
132
|
df["rain_kinetic_energy"] = df_split.iloc[:, 1088]
|
|
106
133
|
df["CHECK_EMPTY"] = df_split.iloc[:, 1089]
|