diffusers 0.34.0__py3-none-any.whl → 0.35.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (191) hide show
  1. diffusers/__init__.py +98 -1
  2. diffusers/callbacks.py +35 -0
  3. diffusers/commands/custom_blocks.py +134 -0
  4. diffusers/commands/diffusers_cli.py +2 -0
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/configuration_utils.py +11 -2
  7. diffusers/dependency_versions_table.py +3 -3
  8. diffusers/guiders/__init__.py +41 -0
  9. diffusers/guiders/adaptive_projected_guidance.py +188 -0
  10. diffusers/guiders/auto_guidance.py +190 -0
  11. diffusers/guiders/classifier_free_guidance.py +141 -0
  12. diffusers/guiders/classifier_free_zero_star_guidance.py +152 -0
  13. diffusers/guiders/frequency_decoupled_guidance.py +327 -0
  14. diffusers/guiders/guider_utils.py +309 -0
  15. diffusers/guiders/perturbed_attention_guidance.py +271 -0
  16. diffusers/guiders/skip_layer_guidance.py +262 -0
  17. diffusers/guiders/smoothed_energy_guidance.py +251 -0
  18. diffusers/guiders/tangential_classifier_free_guidance.py +143 -0
  19. diffusers/hooks/__init__.py +17 -0
  20. diffusers/hooks/_common.py +56 -0
  21. diffusers/hooks/_helpers.py +293 -0
  22. diffusers/hooks/faster_cache.py +7 -6
  23. diffusers/hooks/first_block_cache.py +259 -0
  24. diffusers/hooks/group_offloading.py +292 -286
  25. diffusers/hooks/hooks.py +56 -1
  26. diffusers/hooks/layer_skip.py +263 -0
  27. diffusers/hooks/layerwise_casting.py +2 -7
  28. diffusers/hooks/pyramid_attention_broadcast.py +14 -11
  29. diffusers/hooks/smoothed_energy_guidance_utils.py +167 -0
  30. diffusers/hooks/utils.py +43 -0
  31. diffusers/loaders/__init__.py +6 -0
  32. diffusers/loaders/ip_adapter.py +255 -4
  33. diffusers/loaders/lora_base.py +63 -30
  34. diffusers/loaders/lora_conversion_utils.py +434 -53
  35. diffusers/loaders/lora_pipeline.py +834 -37
  36. diffusers/loaders/peft.py +28 -5
  37. diffusers/loaders/single_file_model.py +44 -11
  38. diffusers/loaders/single_file_utils.py +170 -2
  39. diffusers/loaders/transformer_flux.py +9 -10
  40. diffusers/loaders/transformer_sd3.py +6 -1
  41. diffusers/loaders/unet.py +22 -5
  42. diffusers/loaders/unet_loader_utils.py +5 -2
  43. diffusers/models/__init__.py +8 -0
  44. diffusers/models/attention.py +484 -3
  45. diffusers/models/attention_dispatch.py +1218 -0
  46. diffusers/models/attention_processor.py +105 -663
  47. diffusers/models/auto_model.py +2 -2
  48. diffusers/models/autoencoders/__init__.py +1 -0
  49. diffusers/models/autoencoders/autoencoder_dc.py +14 -1
  50. diffusers/models/autoencoders/autoencoder_kl.py +1 -1
  51. diffusers/models/autoencoders/autoencoder_kl_cosmos.py +3 -1
  52. diffusers/models/autoencoders/autoencoder_kl_qwenimage.py +1070 -0
  53. diffusers/models/autoencoders/autoencoder_kl_wan.py +370 -40
  54. diffusers/models/cache_utils.py +31 -9
  55. diffusers/models/controlnets/controlnet_flux.py +5 -5
  56. diffusers/models/controlnets/controlnet_union.py +4 -4
  57. diffusers/models/embeddings.py +26 -34
  58. diffusers/models/model_loading_utils.py +233 -1
  59. diffusers/models/modeling_flax_utils.py +1 -2
  60. diffusers/models/modeling_utils.py +159 -94
  61. diffusers/models/transformers/__init__.py +2 -0
  62. diffusers/models/transformers/transformer_chroma.py +16 -117
  63. diffusers/models/transformers/transformer_cogview4.py +36 -2
  64. diffusers/models/transformers/transformer_cosmos.py +11 -4
  65. diffusers/models/transformers/transformer_flux.py +372 -132
  66. diffusers/models/transformers/transformer_hunyuan_video.py +6 -0
  67. diffusers/models/transformers/transformer_ltx.py +104 -23
  68. diffusers/models/transformers/transformer_qwenimage.py +645 -0
  69. diffusers/models/transformers/transformer_skyreels_v2.py +607 -0
  70. diffusers/models/transformers/transformer_wan.py +298 -85
  71. diffusers/models/transformers/transformer_wan_vace.py +15 -21
  72. diffusers/models/unets/unet_2d_condition.py +2 -1
  73. diffusers/modular_pipelines/__init__.py +83 -0
  74. diffusers/modular_pipelines/components_manager.py +1068 -0
  75. diffusers/modular_pipelines/flux/__init__.py +66 -0
  76. diffusers/modular_pipelines/flux/before_denoise.py +689 -0
  77. diffusers/modular_pipelines/flux/decoders.py +109 -0
  78. diffusers/modular_pipelines/flux/denoise.py +227 -0
  79. diffusers/modular_pipelines/flux/encoders.py +412 -0
  80. diffusers/modular_pipelines/flux/modular_blocks.py +181 -0
  81. diffusers/modular_pipelines/flux/modular_pipeline.py +59 -0
  82. diffusers/modular_pipelines/modular_pipeline.py +2446 -0
  83. diffusers/modular_pipelines/modular_pipeline_utils.py +672 -0
  84. diffusers/modular_pipelines/node_utils.py +665 -0
  85. diffusers/modular_pipelines/stable_diffusion_xl/__init__.py +77 -0
  86. diffusers/modular_pipelines/stable_diffusion_xl/before_denoise.py +1874 -0
  87. diffusers/modular_pipelines/stable_diffusion_xl/decoders.py +208 -0
  88. diffusers/modular_pipelines/stable_diffusion_xl/denoise.py +771 -0
  89. diffusers/modular_pipelines/stable_diffusion_xl/encoders.py +887 -0
  90. diffusers/modular_pipelines/stable_diffusion_xl/modular_blocks.py +380 -0
  91. diffusers/modular_pipelines/stable_diffusion_xl/modular_pipeline.py +365 -0
  92. diffusers/modular_pipelines/wan/__init__.py +66 -0
  93. diffusers/modular_pipelines/wan/before_denoise.py +365 -0
  94. diffusers/modular_pipelines/wan/decoders.py +105 -0
  95. diffusers/modular_pipelines/wan/denoise.py +261 -0
  96. diffusers/modular_pipelines/wan/encoders.py +242 -0
  97. diffusers/modular_pipelines/wan/modular_blocks.py +144 -0
  98. diffusers/modular_pipelines/wan/modular_pipeline.py +90 -0
  99. diffusers/pipelines/__init__.py +31 -0
  100. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +2 -3
  101. diffusers/pipelines/auto_pipeline.py +17 -13
  102. diffusers/pipelines/chroma/pipeline_chroma.py +5 -5
  103. diffusers/pipelines/chroma/pipeline_chroma_img2img.py +5 -5
  104. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +9 -8
  105. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +9 -8
  106. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +10 -9
  107. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +9 -8
  108. diffusers/pipelines/cogview4/pipeline_cogview4.py +16 -15
  109. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +3 -2
  110. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +212 -93
  111. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +7 -3
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +194 -92
  113. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +1 -1
  114. diffusers/pipelines/dit/pipeline_dit.py +3 -1
  115. diffusers/pipelines/flux/__init__.py +4 -0
  116. diffusers/pipelines/flux/pipeline_flux.py +34 -26
  117. diffusers/pipelines/flux/pipeline_flux_control.py +8 -8
  118. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +1 -1
  119. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1 -1
  120. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1 -1
  121. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +1 -1
  122. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1 -1
  123. diffusers/pipelines/flux/pipeline_flux_fill.py +1 -1
  124. diffusers/pipelines/flux/pipeline_flux_img2img.py +1 -1
  125. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1 -1
  126. diffusers/pipelines/flux/pipeline_flux_kontext.py +1134 -0
  127. diffusers/pipelines/flux/pipeline_flux_kontext_inpaint.py +1460 -0
  128. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
  129. diffusers/pipelines/flux/pipeline_output.py +6 -4
  130. diffusers/pipelines/hidream_image/pipeline_hidream_image.py +5 -5
  131. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +25 -24
  132. diffusers/pipelines/ltx/pipeline_ltx.py +13 -12
  133. diffusers/pipelines/ltx/pipeline_ltx_condition.py +10 -9
  134. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +13 -12
  135. diffusers/pipelines/mochi/pipeline_mochi.py +9 -8
  136. diffusers/pipelines/pipeline_flax_utils.py +2 -2
  137. diffusers/pipelines/pipeline_loading_utils.py +24 -2
  138. diffusers/pipelines/pipeline_utils.py +22 -15
  139. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +3 -1
  140. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +20 -0
  141. diffusers/pipelines/qwenimage/__init__.py +55 -0
  142. diffusers/pipelines/qwenimage/pipeline_output.py +21 -0
  143. diffusers/pipelines/qwenimage/pipeline_qwenimage.py +726 -0
  144. diffusers/pipelines/qwenimage/pipeline_qwenimage_edit.py +849 -0
  145. diffusers/pipelines/qwenimage/pipeline_qwenimage_img2img.py +829 -0
  146. diffusers/pipelines/qwenimage/pipeline_qwenimage_inpaint.py +1015 -0
  147. diffusers/pipelines/sana/pipeline_sana_sprint.py +5 -5
  148. diffusers/pipelines/skyreels_v2/__init__.py +59 -0
  149. diffusers/pipelines/skyreels_v2/pipeline_output.py +20 -0
  150. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2.py +610 -0
  151. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing.py +978 -0
  152. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_i2v.py +1059 -0
  153. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_v2v.py +1063 -0
  154. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_i2v.py +745 -0
  155. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -1
  156. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
  157. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
  158. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +2 -1
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +6 -5
  160. diffusers/pipelines/wan/pipeline_wan.py +78 -20
  161. diffusers/pipelines/wan/pipeline_wan_i2v.py +112 -32
  162. diffusers/pipelines/wan/pipeline_wan_vace.py +1 -2
  163. diffusers/quantizers/__init__.py +1 -177
  164. diffusers/quantizers/base.py +11 -0
  165. diffusers/quantizers/gguf/utils.py +92 -3
  166. diffusers/quantizers/pipe_quant_config.py +202 -0
  167. diffusers/quantizers/torchao/torchao_quantizer.py +26 -0
  168. diffusers/schedulers/scheduling_deis_multistep.py +8 -1
  169. diffusers/schedulers/scheduling_dpmsolver_multistep.py +6 -0
  170. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +6 -0
  171. diffusers/schedulers/scheduling_scm.py +0 -1
  172. diffusers/schedulers/scheduling_unipc_multistep.py +10 -1
  173. diffusers/schedulers/scheduling_utils.py +2 -2
  174. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  175. diffusers/training_utils.py +78 -0
  176. diffusers/utils/__init__.py +10 -0
  177. diffusers/utils/constants.py +4 -0
  178. diffusers/utils/dummy_pt_objects.py +312 -0
  179. diffusers/utils/dummy_torch_and_transformers_objects.py +255 -0
  180. diffusers/utils/dynamic_modules_utils.py +84 -25
  181. diffusers/utils/hub_utils.py +33 -17
  182. diffusers/utils/import_utils.py +70 -0
  183. diffusers/utils/peft_utils.py +11 -8
  184. diffusers/utils/testing_utils.py +136 -10
  185. diffusers/utils/torch_utils.py +18 -0
  186. {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/METADATA +6 -6
  187. {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/RECORD +191 -127
  188. {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/LICENSE +0 -0
  189. {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/WHEEL +0 -0
  190. {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/entry_points.txt +0 -0
  191. {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1015 @@
1
+ import inspect
2
+ from typing import Any, Callable, Dict, List, Optional, Union
3
+
4
+ import numpy as np
5
+ import PIL.Image
6
+ import torch
7
+ from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
8
+
9
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
10
+ from ...loaders import QwenImageLoraLoaderMixin
11
+ from ...models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
12
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
13
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
14
+ from ...utils.torch_utils import randn_tensor
15
+ from ..pipeline_utils import DiffusionPipeline
16
+ from .pipeline_output import QwenImagePipelineOutput
17
+
18
+
19
+ if is_torch_xla_available():
20
+ import torch_xla.core.xla_model as xm
21
+
22
+ XLA_AVAILABLE = True
23
+ else:
24
+ XLA_AVAILABLE = False
25
+
26
+
27
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
28
+
29
+ EXAMPLE_DOC_STRING = """
30
+ Examples:
31
+ ```py
32
+ >>> import torch
33
+ >>> from diffusers import QwenImageInpaintPipeline
34
+ >>> from diffusers.utils import load_image
35
+
36
+ >>> pipe = QwenImageInpaintPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16)
37
+ >>> pipe.to("cuda")
38
+ >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
39
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
40
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
41
+ >>> source = load_image(img_url)
42
+ >>> mask = load_image(mask_url)
43
+ >>> image = pipe(prompt=prompt, negative_prompt=" ", image=source, mask_image=mask, strength=0.85).images[0]
44
+ >>> image.save("qwenimage_inpainting.png")
45
+ ```
46
+ """
47
+
48
+
49
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
50
+ def retrieve_latents(
51
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
52
+ ):
53
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
54
+ return encoder_output.latent_dist.sample(generator)
55
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
56
+ return encoder_output.latent_dist.mode()
57
+ elif hasattr(encoder_output, "latents"):
58
+ return encoder_output.latents
59
+ else:
60
+ raise AttributeError("Could not access latents of provided encoder_output")
61
+
62
+
63
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift
64
+ def calculate_shift(
65
+ image_seq_len,
66
+ base_seq_len: int = 256,
67
+ max_seq_len: int = 4096,
68
+ base_shift: float = 0.5,
69
+ max_shift: float = 1.15,
70
+ ):
71
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
72
+ b = base_shift - m * base_seq_len
73
+ mu = image_seq_len * m + b
74
+ return mu
75
+
76
+
77
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
78
+ def retrieve_timesteps(
79
+ scheduler,
80
+ num_inference_steps: Optional[int] = None,
81
+ device: Optional[Union[str, torch.device]] = None,
82
+ timesteps: Optional[List[int]] = None,
83
+ sigmas: Optional[List[float]] = None,
84
+ **kwargs,
85
+ ):
86
+ r"""
87
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
88
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
89
+
90
+ Args:
91
+ scheduler (`SchedulerMixin`):
92
+ The scheduler to get timesteps from.
93
+ num_inference_steps (`int`):
94
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
95
+ must be `None`.
96
+ device (`str` or `torch.device`, *optional*):
97
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
98
+ timesteps (`List[int]`, *optional*):
99
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
100
+ `num_inference_steps` and `sigmas` must be `None`.
101
+ sigmas (`List[float]`, *optional*):
102
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
103
+ `num_inference_steps` and `timesteps` must be `None`.
104
+
105
+ Returns:
106
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
107
+ second element is the number of inference steps.
108
+ """
109
+ if timesteps is not None and sigmas is not None:
110
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
111
+ if timesteps is not None:
112
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
113
+ if not accepts_timesteps:
114
+ raise ValueError(
115
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
116
+ f" timestep schedules. Please check whether you are using the correct scheduler."
117
+ )
118
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
119
+ timesteps = scheduler.timesteps
120
+ num_inference_steps = len(timesteps)
121
+ elif sigmas is not None:
122
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
123
+ if not accept_sigmas:
124
+ raise ValueError(
125
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
126
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
127
+ )
128
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
129
+ timesteps = scheduler.timesteps
130
+ num_inference_steps = len(timesteps)
131
+ else:
132
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
133
+ timesteps = scheduler.timesteps
134
+ return timesteps, num_inference_steps
135
+
136
+
137
+ class QwenImageInpaintPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
138
+ r"""
139
+ The QwenImage pipeline for text-to-image generation.
140
+
141
+ Args:
142
+ transformer ([`QwenImageTransformer2DModel`]):
143
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
144
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
145
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
146
+ vae ([`AutoencoderKL`]):
147
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
148
+ text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
149
+ [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
150
+ [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
151
+ tokenizer (`QwenTokenizer`):
152
+ Tokenizer of class
153
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
154
+ """
155
+
156
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
157
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
158
+
159
+ def __init__(
160
+ self,
161
+ scheduler: FlowMatchEulerDiscreteScheduler,
162
+ vae: AutoencoderKLQwenImage,
163
+ text_encoder: Qwen2_5_VLForConditionalGeneration,
164
+ tokenizer: Qwen2Tokenizer,
165
+ transformer: QwenImageTransformer2DModel,
166
+ ):
167
+ super().__init__()
168
+
169
+ self.register_modules(
170
+ vae=vae,
171
+ text_encoder=text_encoder,
172
+ tokenizer=tokenizer,
173
+ transformer=transformer,
174
+ scheduler=scheduler,
175
+ )
176
+ self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
177
+ # QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
178
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
179
+ self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
180
+ self.image_processor = VaeImageProcessor(
181
+ vae_scale_factor=self.vae_scale_factor * 2, vae_latent_channels=self.latent_channels
182
+ )
183
+ self.mask_processor = VaeImageProcessor(
184
+ vae_scale_factor=self.vae_scale_factor * 2,
185
+ vae_latent_channels=self.latent_channels,
186
+ do_normalize=False,
187
+ do_binarize=True,
188
+ do_convert_grayscale=True,
189
+ )
190
+ self.tokenizer_max_length = 1024
191
+ self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
192
+ self.prompt_template_encode_start_idx = 34
193
+ self.default_sample_size = 128
194
+
195
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._extract_masked_hidden
196
+ def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
197
+ bool_mask = mask.bool()
198
+ valid_lengths = bool_mask.sum(dim=1)
199
+ selected = hidden_states[bool_mask]
200
+ split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
201
+
202
+ return split_result
203
+
204
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._get_qwen_prompt_embeds
205
+ def _get_qwen_prompt_embeds(
206
+ self,
207
+ prompt: Union[str, List[str]] = None,
208
+ device: Optional[torch.device] = None,
209
+ dtype: Optional[torch.dtype] = None,
210
+ ):
211
+ device = device or self._execution_device
212
+ dtype = dtype or self.text_encoder.dtype
213
+
214
+ prompt = [prompt] if isinstance(prompt, str) else prompt
215
+
216
+ template = self.prompt_template_encode
217
+ drop_idx = self.prompt_template_encode_start_idx
218
+ txt = [template.format(e) for e in prompt]
219
+ txt_tokens = self.tokenizer(
220
+ txt, max_length=self.tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
221
+ ).to(device)
222
+ encoder_hidden_states = self.text_encoder(
223
+ input_ids=txt_tokens.input_ids,
224
+ attention_mask=txt_tokens.attention_mask,
225
+ output_hidden_states=True,
226
+ )
227
+ hidden_states = encoder_hidden_states.hidden_states[-1]
228
+ split_hidden_states = self._extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
229
+ split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
230
+ attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
231
+ max_seq_len = max([e.size(0) for e in split_hidden_states])
232
+ prompt_embeds = torch.stack(
233
+ [torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
234
+ )
235
+ encoder_attention_mask = torch.stack(
236
+ [torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
237
+ )
238
+
239
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
240
+
241
+ return prompt_embeds, encoder_attention_mask
242
+
243
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage_img2img.QwenImageImg2ImgPipeline._encode_vae_image
244
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
245
+ if isinstance(generator, list):
246
+ image_latents = [
247
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
248
+ for i in range(image.shape[0])
249
+ ]
250
+ image_latents = torch.cat(image_latents, dim=0)
251
+ else:
252
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
253
+
254
+ latents_mean = (
255
+ torch.tensor(self.vae.config.latents_mean)
256
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
257
+ .to(image_latents.device, image_latents.dtype)
258
+ )
259
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
260
+ image_latents.device, image_latents.dtype
261
+ )
262
+
263
+ image_latents = (image_latents - latents_mean) * latents_std
264
+
265
+ return image_latents
266
+
267
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
268
+ def get_timesteps(self, num_inference_steps, strength, device):
269
+ # get the original timestep using init_timestep
270
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
271
+
272
+ t_start = int(max(num_inference_steps - init_timestep, 0))
273
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
274
+ if hasattr(self.scheduler, "set_begin_index"):
275
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
276
+
277
+ return timesteps, num_inference_steps - t_start
278
+
279
+ # Copied fromCopied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline.encode_prompt
280
+ def encode_prompt(
281
+ self,
282
+ prompt: Union[str, List[str]],
283
+ device: Optional[torch.device] = None,
284
+ num_images_per_prompt: int = 1,
285
+ prompt_embeds: Optional[torch.Tensor] = None,
286
+ prompt_embeds_mask: Optional[torch.Tensor] = None,
287
+ max_sequence_length: int = 1024,
288
+ ):
289
+ r"""
290
+
291
+ Args:
292
+ prompt (`str` or `List[str]`, *optional*):
293
+ prompt to be encoded
294
+ device: (`torch.device`):
295
+ torch device
296
+ num_images_per_prompt (`int`):
297
+ number of images that should be generated per prompt
298
+ prompt_embeds (`torch.Tensor`, *optional*):
299
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
300
+ provided, text embeddings will be generated from `prompt` input argument.
301
+ """
302
+ device = device or self._execution_device
303
+
304
+ prompt = [prompt] if isinstance(prompt, str) else prompt
305
+ batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
306
+
307
+ if prompt_embeds is None:
308
+ prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, device)
309
+
310
+ prompt_embeds = prompt_embeds[:, :max_sequence_length]
311
+ prompt_embeds_mask = prompt_embeds_mask[:, :max_sequence_length]
312
+
313
+ _, seq_len, _ = prompt_embeds.shape
314
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
315
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
316
+ prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
317
+ prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
318
+
319
+ return prompt_embeds, prompt_embeds_mask
320
+
321
+ def check_inputs(
322
+ self,
323
+ prompt,
324
+ image,
325
+ mask_image,
326
+ strength,
327
+ height,
328
+ width,
329
+ output_type,
330
+ negative_prompt=None,
331
+ prompt_embeds=None,
332
+ negative_prompt_embeds=None,
333
+ prompt_embeds_mask=None,
334
+ negative_prompt_embeds_mask=None,
335
+ callback_on_step_end_tensor_inputs=None,
336
+ padding_mask_crop=None,
337
+ max_sequence_length=None,
338
+ ):
339
+ if strength < 0 or strength > 1:
340
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
341
+
342
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
343
+ logger.warning(
344
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
345
+ )
346
+
347
+ if callback_on_step_end_tensor_inputs is not None and not all(
348
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
349
+ ):
350
+ raise ValueError(
351
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
352
+ )
353
+
354
+ if prompt is not None and prompt_embeds is not None:
355
+ raise ValueError(
356
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
357
+ " only forward one of the two."
358
+ )
359
+ elif prompt is None and prompt_embeds is None:
360
+ raise ValueError(
361
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
362
+ )
363
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
364
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
365
+
366
+ if negative_prompt is not None and negative_prompt_embeds is not None:
367
+ raise ValueError(
368
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
369
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
370
+ )
371
+
372
+ if prompt_embeds is not None and prompt_embeds_mask is None:
373
+ raise ValueError(
374
+ "If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
375
+ )
376
+ if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
377
+ raise ValueError(
378
+ "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
379
+ )
380
+ if padding_mask_crop is not None:
381
+ if not isinstance(image, PIL.Image.Image):
382
+ raise ValueError(
383
+ f"The image should be a PIL image when inpainting mask crop, but is of type {type(image)}."
384
+ )
385
+ if not isinstance(mask_image, PIL.Image.Image):
386
+ raise ValueError(
387
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
388
+ f" {type(mask_image)}."
389
+ )
390
+ if output_type != "pil":
391
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is {output_type}.")
392
+
393
+ if max_sequence_length is not None and max_sequence_length > 1024:
394
+ raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
395
+
396
+ @staticmethod
397
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents
398
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
399
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
400
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
401
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
402
+
403
+ return latents
404
+
405
+ @staticmethod
406
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents
407
+ def _unpack_latents(latents, height, width, vae_scale_factor):
408
+ batch_size, num_patches, channels = latents.shape
409
+
410
+ # VAE applies 8x compression on images but we must also account for packing which requires
411
+ # latent height and width to be divisible by 2.
412
+ height = 2 * (int(height) // (vae_scale_factor * 2))
413
+ width = 2 * (int(width) // (vae_scale_factor * 2))
414
+
415
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
416
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
417
+
418
+ latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
419
+
420
+ return latents
421
+
422
+ def enable_vae_slicing(self):
423
+ r"""
424
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
425
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
426
+ """
427
+ self.vae.enable_slicing()
428
+
429
+ def disable_vae_slicing(self):
430
+ r"""
431
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
432
+ computing decoding in one step.
433
+ """
434
+ self.vae.disable_slicing()
435
+
436
+ def enable_vae_tiling(self):
437
+ r"""
438
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
439
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
440
+ processing larger images.
441
+ """
442
+ self.vae.enable_tiling()
443
+
444
+ def disable_vae_tiling(self):
445
+ r"""
446
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
447
+ computing decoding in one step.
448
+ """
449
+ self.vae.disable_tiling()
450
+
451
+ def prepare_latents(
452
+ self,
453
+ image,
454
+ timestep,
455
+ batch_size,
456
+ num_channels_latents,
457
+ height,
458
+ width,
459
+ dtype,
460
+ device,
461
+ generator,
462
+ latents=None,
463
+ ):
464
+ if isinstance(generator, list) and len(generator) != batch_size:
465
+ raise ValueError(
466
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
467
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
468
+ )
469
+ # VAE applies 8x compression on images but we must also account for packing which requires
470
+ # latent height and width to be divisible by 2.
471
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
472
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
473
+
474
+ shape = (batch_size, 1, num_channels_latents, height, width)
475
+
476
+ # If image is [B,C,H,W] -> add T=1. If it's already [B,C,T,H,W], leave it.
477
+ if image.dim() == 4:
478
+ image = image.unsqueeze(2)
479
+ elif image.dim() != 5:
480
+ raise ValueError(f"Expected image dims 4 or 5, got {image.dim()}.")
481
+
482
+ if latents is not None:
483
+ return latents.to(device=device, dtype=dtype)
484
+
485
+ image = image.to(device=device, dtype=dtype)
486
+ if image.shape[1] != self.latent_channels:
487
+ image_latents = self._encode_vae_image(image=image, generator=generator) # [B,z,1,H',W']
488
+ else:
489
+ image_latents = image
490
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
491
+ # expand init_latents for batch_size
492
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
493
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
494
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
495
+ raise ValueError(
496
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
497
+ )
498
+ else:
499
+ image_latents = torch.cat([image_latents], dim=0)
500
+
501
+ image_latents = image_latents.transpose(1, 2) # [B,1,z,H',W']
502
+
503
+ if latents is None:
504
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
505
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
506
+ else:
507
+ noise = latents.to(device)
508
+ latents = noise
509
+
510
+ noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width)
511
+ image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width)
512
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
513
+
514
+ return latents, noise, image_latents
515
+
516
+ def prepare_mask_latents(
517
+ self,
518
+ mask,
519
+ masked_image,
520
+ batch_size,
521
+ num_channels_latents,
522
+ num_images_per_prompt,
523
+ height,
524
+ width,
525
+ dtype,
526
+ device,
527
+ generator,
528
+ ):
529
+ # VAE applies 8x compression on images but we must also account for packing which requires
530
+ # latent height and width to be divisible by 2.
531
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
532
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
533
+ # resize the mask to latents shape as we concatenate the mask to the latents
534
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
535
+ # and half precision
536
+ mask = torch.nn.functional.interpolate(mask, size=(height, width))
537
+ mask = mask.to(device=device, dtype=dtype)
538
+
539
+ batch_size = batch_size * num_images_per_prompt
540
+
541
+ if masked_image.dim() == 4:
542
+ masked_image = masked_image.unsqueeze(2)
543
+ elif masked_image.dim() != 5:
544
+ raise ValueError(f"Expected image dims 4 or 5, got {masked_image.dim()}.")
545
+
546
+ masked_image = masked_image.to(device=device, dtype=dtype)
547
+
548
+ if masked_image.shape[1] == self.latent_channels:
549
+ masked_image_latents = masked_image
550
+ else:
551
+ masked_image_latents = self._encode_vae_image(image=masked_image, generator=generator)
552
+
553
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
554
+ if mask.shape[0] < batch_size:
555
+ if not batch_size % mask.shape[0] == 0:
556
+ raise ValueError(
557
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
558
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
559
+ " of masks that you pass is divisible by the total requested batch size."
560
+ )
561
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
562
+ if masked_image_latents.shape[0] < batch_size:
563
+ if not batch_size % masked_image_latents.shape[0] == 0:
564
+ raise ValueError(
565
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
566
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
567
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
568
+ )
569
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1, 1)
570
+
571
+ # aligning device to prevent device errors when concating it with the latent model input
572
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
573
+
574
+ masked_image_latents = self._pack_latents(
575
+ masked_image_latents,
576
+ batch_size,
577
+ num_channels_latents,
578
+ height,
579
+ width,
580
+ )
581
+ mask = self._pack_latents(
582
+ mask.repeat(1, num_channels_latents, 1, 1),
583
+ batch_size,
584
+ num_channels_latents,
585
+ height,
586
+ width,
587
+ )
588
+
589
+ return mask, masked_image_latents
590
+
591
+ @property
592
+ def guidance_scale(self):
593
+ return self._guidance_scale
594
+
595
+ @property
596
+ def attention_kwargs(self):
597
+ return self._attention_kwargs
598
+
599
+ @property
600
+ def num_timesteps(self):
601
+ return self._num_timesteps
602
+
603
+ @property
604
+ def current_timestep(self):
605
+ return self._current_timestep
606
+
607
+ @property
608
+ def interrupt(self):
609
+ return self._interrupt
610
+
611
+ @torch.no_grad()
612
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
613
+ def __call__(
614
+ self,
615
+ prompt: Union[str, List[str]] = None,
616
+ negative_prompt: Union[str, List[str]] = None,
617
+ true_cfg_scale: float = 4.0,
618
+ image: PipelineImageInput = None,
619
+ mask_image: PipelineImageInput = None,
620
+ masked_image_latents: PipelineImageInput = None,
621
+ height: Optional[int] = None,
622
+ width: Optional[int] = None,
623
+ padding_mask_crop: Optional[int] = None,
624
+ strength: float = 0.6,
625
+ num_inference_steps: int = 50,
626
+ sigmas: Optional[List[float]] = None,
627
+ guidance_scale: float = 1.0,
628
+ num_images_per_prompt: int = 1,
629
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
630
+ latents: Optional[torch.Tensor] = None,
631
+ prompt_embeds: Optional[torch.Tensor] = None,
632
+ prompt_embeds_mask: Optional[torch.Tensor] = None,
633
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
634
+ negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
635
+ output_type: Optional[str] = "pil",
636
+ return_dict: bool = True,
637
+ attention_kwargs: Optional[Dict[str, Any]] = None,
638
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
639
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
640
+ max_sequence_length: int = 512,
641
+ ):
642
+ r"""
643
+ Function invoked when calling the pipeline for generation.
644
+
645
+ Args:
646
+ prompt (`str` or `List[str]`, *optional*):
647
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
648
+ instead.
649
+ negative_prompt (`str` or `List[str]`, *optional*):
650
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
651
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
652
+ not greater than `1`).
653
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
654
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
655
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
656
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
657
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
658
+ latents as `image`, but if passing latents directly it is not encoded again.
659
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
660
+ When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
661
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
662
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
663
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
664
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
665
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
666
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
667
+ 1)`, or `(H, W)`.
668
+ mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
669
+ `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
670
+ latents tensor will ge generated by `mask_image`.
671
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
672
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
673
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
674
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
675
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
676
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
677
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
678
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
679
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
680
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
681
+ the image is large and contain information irrelevant for inpainting, such as background.
682
+ strength (`float`, *optional*, defaults to 1.0):
683
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
684
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
685
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
686
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
687
+ essentially ignores `image`.
688
+ num_inference_steps (`int`, *optional*, defaults to 50):
689
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
690
+ expense of slower inference.
691
+ sigmas (`List[float]`, *optional*):
692
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
693
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
694
+ will be used.
695
+ guidance_scale (`float`, *optional*, defaults to 3.5):
696
+ Guidance scale as defined in [Classifier-Free Diffusion
697
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
698
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
699
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
700
+ the text `prompt`, usually at the expense of lower image quality.
701
+
702
+ This parameter in the pipeline is there to support future guidance-distilled models when they come up.
703
+ Note that passing `guidance_scale` to the pipeline is ineffective. To enable classifier-free guidance,
704
+ please pass `true_cfg_scale` and `negative_prompt` (even an empty negative prompt like " ") should
705
+ enable classifier-free guidance computations.
706
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
707
+ The number of images to generate per prompt.
708
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
709
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
710
+ to make generation deterministic.
711
+ latents (`torch.Tensor`, *optional*):
712
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
713
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
714
+ tensor will be generated by sampling using the supplied random `generator`.
715
+ prompt_embeds (`torch.Tensor`, *optional*):
716
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
717
+ provided, text embeddings will be generated from `prompt` input argument.
718
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
719
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
720
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
721
+ argument.
722
+ output_type (`str`, *optional*, defaults to `"pil"`):
723
+ The output format of the generate image. Choose between
724
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
725
+ return_dict (`bool`, *optional*, defaults to `True`):
726
+ Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
727
+ attention_kwargs (`dict`, *optional*):
728
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
729
+ `self.processor` in
730
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
731
+ callback_on_step_end (`Callable`, *optional*):
732
+ A function that calls at the end of each denoising steps during the inference. The function is called
733
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
734
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
735
+ `callback_on_step_end_tensor_inputs`.
736
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
737
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
738
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
739
+ `._callback_tensor_inputs` attribute of your pipeline class.
740
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
741
+
742
+ Examples:
743
+
744
+ Returns:
745
+ [`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
746
+ [`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
747
+ returning a tuple, the first element is a list with the generated images.
748
+ """
749
+
750
+ height = height or self.default_sample_size * self.vae_scale_factor
751
+ width = width or self.default_sample_size * self.vae_scale_factor
752
+
753
+ # 1. Check inputs. Raise error if not correct
754
+ self.check_inputs(
755
+ prompt,
756
+ image,
757
+ mask_image,
758
+ strength,
759
+ height,
760
+ width,
761
+ output_type=output_type,
762
+ negative_prompt=negative_prompt,
763
+ prompt_embeds=prompt_embeds,
764
+ negative_prompt_embeds=negative_prompt_embeds,
765
+ prompt_embeds_mask=prompt_embeds_mask,
766
+ negative_prompt_embeds_mask=negative_prompt_embeds_mask,
767
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
768
+ padding_mask_crop=padding_mask_crop,
769
+ max_sequence_length=max_sequence_length,
770
+ )
771
+
772
+ self._guidance_scale = guidance_scale
773
+ self._attention_kwargs = attention_kwargs
774
+ self._current_timestep = None
775
+ self._interrupt = False
776
+
777
+ # 2. Preprocess image
778
+ if padding_mask_crop is not None:
779
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
780
+ resize_mode = "fill"
781
+ else:
782
+ crops_coords = None
783
+ resize_mode = "default"
784
+
785
+ original_image = image
786
+ init_image = self.image_processor.preprocess(
787
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
788
+ )
789
+ init_image = init_image.to(dtype=torch.float32)
790
+
791
+ # 3. Define call parameters
792
+ if prompt is not None and isinstance(prompt, str):
793
+ batch_size = 1
794
+ elif prompt is not None and isinstance(prompt, list):
795
+ batch_size = len(prompt)
796
+ else:
797
+ batch_size = prompt_embeds.shape[0]
798
+
799
+ device = self._execution_device
800
+
801
+ has_neg_prompt = negative_prompt is not None or (
802
+ negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
803
+ )
804
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
805
+ prompt_embeds, prompt_embeds_mask = self.encode_prompt(
806
+ prompt=prompt,
807
+ prompt_embeds=prompt_embeds,
808
+ prompt_embeds_mask=prompt_embeds_mask,
809
+ device=device,
810
+ num_images_per_prompt=num_images_per_prompt,
811
+ max_sequence_length=max_sequence_length,
812
+ )
813
+ if do_true_cfg:
814
+ negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
815
+ prompt=negative_prompt,
816
+ prompt_embeds=negative_prompt_embeds,
817
+ prompt_embeds_mask=negative_prompt_embeds_mask,
818
+ device=device,
819
+ num_images_per_prompt=num_images_per_prompt,
820
+ max_sequence_length=max_sequence_length,
821
+ )
822
+
823
+ # 4. Prepare timesteps
824
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
825
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
826
+ mu = calculate_shift(
827
+ image_seq_len,
828
+ self.scheduler.config.get("base_image_seq_len", 256),
829
+ self.scheduler.config.get("max_image_seq_len", 4096),
830
+ self.scheduler.config.get("base_shift", 0.5),
831
+ self.scheduler.config.get("max_shift", 1.15),
832
+ )
833
+ timesteps, num_inference_steps = retrieve_timesteps(
834
+ self.scheduler,
835
+ num_inference_steps,
836
+ device,
837
+ sigmas=sigmas,
838
+ mu=mu,
839
+ )
840
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
841
+
842
+ if num_inference_steps < 1:
843
+ raise ValueError(
844
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
845
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
846
+ )
847
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
848
+
849
+ # 5. Prepare latent variables
850
+ num_channels_latents = self.transformer.config.in_channels // 4
851
+
852
+ latents, noise, image_latents = self.prepare_latents(
853
+ init_image,
854
+ latent_timestep,
855
+ batch_size * num_images_per_prompt,
856
+ num_channels_latents,
857
+ height,
858
+ width,
859
+ prompt_embeds.dtype,
860
+ device,
861
+ generator,
862
+ latents,
863
+ )
864
+
865
+ mask_condition = self.mask_processor.preprocess(
866
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
867
+ )
868
+
869
+ if masked_image_latents is None:
870
+ masked_image = init_image * (mask_condition < 0.5)
871
+ else:
872
+ masked_image = masked_image_latents
873
+
874
+ mask, masked_image_latents = self.prepare_mask_latents(
875
+ mask_condition,
876
+ masked_image,
877
+ batch_size,
878
+ num_channels_latents,
879
+ num_images_per_prompt,
880
+ height,
881
+ width,
882
+ prompt_embeds.dtype,
883
+ device,
884
+ generator,
885
+ )
886
+
887
+ img_shapes = [[(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)]] * batch_size
888
+
889
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
890
+ self._num_timesteps = len(timesteps)
891
+
892
+ # handle guidance
893
+ if self.transformer.config.guidance_embeds:
894
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
895
+ guidance = guidance.expand(latents.shape[0])
896
+ else:
897
+ guidance = None
898
+
899
+ if self.attention_kwargs is None:
900
+ self._attention_kwargs = {}
901
+
902
+ txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None
903
+ negative_txt_seq_lens = (
904
+ negative_prompt_embeds_mask.sum(dim=1).tolist() if negative_prompt_embeds_mask is not None else None
905
+ )
906
+
907
+ # 6. Denoising loop
908
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
909
+ for i, t in enumerate(timesteps):
910
+ if self.interrupt:
911
+ continue
912
+
913
+ self._current_timestep = t
914
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
915
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
916
+ with self.transformer.cache_context("cond"):
917
+ noise_pred = self.transformer(
918
+ hidden_states=latents,
919
+ timestep=timestep / 1000,
920
+ guidance=guidance,
921
+ encoder_hidden_states_mask=prompt_embeds_mask,
922
+ encoder_hidden_states=prompt_embeds,
923
+ img_shapes=img_shapes,
924
+ txt_seq_lens=txt_seq_lens,
925
+ attention_kwargs=self.attention_kwargs,
926
+ return_dict=False,
927
+ )[0]
928
+
929
+ if do_true_cfg:
930
+ with self.transformer.cache_context("uncond"):
931
+ neg_noise_pred = self.transformer(
932
+ hidden_states=latents,
933
+ timestep=timestep / 1000,
934
+ guidance=guidance,
935
+ encoder_hidden_states_mask=negative_prompt_embeds_mask,
936
+ encoder_hidden_states=negative_prompt_embeds,
937
+ img_shapes=img_shapes,
938
+ txt_seq_lens=negative_txt_seq_lens,
939
+ attention_kwargs=self.attention_kwargs,
940
+ return_dict=False,
941
+ )[0]
942
+ comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
943
+
944
+ cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
945
+ noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
946
+ noise_pred = comb_pred * (cond_norm / noise_norm)
947
+
948
+ # compute the previous noisy sample x_t -> x_t-1
949
+ latents_dtype = latents.dtype
950
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
951
+
952
+ # for 64 channel transformer only.
953
+ init_latents_proper = image_latents
954
+ init_mask = mask
955
+
956
+ if i < len(timesteps) - 1:
957
+ noise_timestep = timesteps[i + 1]
958
+ init_latents_proper = self.scheduler.scale_noise(
959
+ init_latents_proper, torch.tensor([noise_timestep]), noise
960
+ )
961
+
962
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
963
+
964
+ if latents.dtype != latents_dtype:
965
+ if torch.backends.mps.is_available():
966
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
967
+ latents = latents.to(latents_dtype)
968
+
969
+ if callback_on_step_end is not None:
970
+ callback_kwargs = {}
971
+ for k in callback_on_step_end_tensor_inputs:
972
+ callback_kwargs[k] = locals()[k]
973
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
974
+
975
+ latents = callback_outputs.pop("latents", latents)
976
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
977
+
978
+ # call the callback, if provided
979
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
980
+ progress_bar.update()
981
+
982
+ if XLA_AVAILABLE:
983
+ xm.mark_step()
984
+
985
+ self._current_timestep = None
986
+ if output_type == "latent":
987
+ image = latents
988
+ else:
989
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
990
+ latents = latents.to(self.vae.dtype)
991
+ latents_mean = (
992
+ torch.tensor(self.vae.config.latents_mean)
993
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
994
+ .to(latents.device, latents.dtype)
995
+ )
996
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
997
+ latents.device, latents.dtype
998
+ )
999
+
1000
+ latents = latents / latents_std + latents_mean
1001
+ image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
1002
+ image = self.image_processor.postprocess(image, output_type=output_type)
1003
+
1004
+ if padding_mask_crop is not None:
1005
+ image = [
1006
+ self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image
1007
+ ]
1008
+
1009
+ # Offload all models
1010
+ self.maybe_free_model_hooks()
1011
+
1012
+ if not return_dict:
1013
+ return (image,)
1014
+
1015
+ return QwenImagePipelineOutput(images=image)