diffusers 0.34.0__py3-none-any.whl → 0.35.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +98 -1
- diffusers/callbacks.py +35 -0
- diffusers/commands/custom_blocks.py +134 -0
- diffusers/commands/diffusers_cli.py +2 -0
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/configuration_utils.py +11 -2
- diffusers/dependency_versions_table.py +3 -3
- diffusers/guiders/__init__.py +41 -0
- diffusers/guiders/adaptive_projected_guidance.py +188 -0
- diffusers/guiders/auto_guidance.py +190 -0
- diffusers/guiders/classifier_free_guidance.py +141 -0
- diffusers/guiders/classifier_free_zero_star_guidance.py +152 -0
- diffusers/guiders/frequency_decoupled_guidance.py +327 -0
- diffusers/guiders/guider_utils.py +309 -0
- diffusers/guiders/perturbed_attention_guidance.py +271 -0
- diffusers/guiders/skip_layer_guidance.py +262 -0
- diffusers/guiders/smoothed_energy_guidance.py +251 -0
- diffusers/guiders/tangential_classifier_free_guidance.py +143 -0
- diffusers/hooks/__init__.py +17 -0
- diffusers/hooks/_common.py +56 -0
- diffusers/hooks/_helpers.py +293 -0
- diffusers/hooks/faster_cache.py +7 -6
- diffusers/hooks/first_block_cache.py +259 -0
- diffusers/hooks/group_offloading.py +292 -286
- diffusers/hooks/hooks.py +56 -1
- diffusers/hooks/layer_skip.py +263 -0
- diffusers/hooks/layerwise_casting.py +2 -7
- diffusers/hooks/pyramid_attention_broadcast.py +14 -11
- diffusers/hooks/smoothed_energy_guidance_utils.py +167 -0
- diffusers/hooks/utils.py +43 -0
- diffusers/loaders/__init__.py +6 -0
- diffusers/loaders/ip_adapter.py +255 -4
- diffusers/loaders/lora_base.py +63 -30
- diffusers/loaders/lora_conversion_utils.py +434 -53
- diffusers/loaders/lora_pipeline.py +834 -37
- diffusers/loaders/peft.py +28 -5
- diffusers/loaders/single_file_model.py +44 -11
- diffusers/loaders/single_file_utils.py +170 -2
- diffusers/loaders/transformer_flux.py +9 -10
- diffusers/loaders/transformer_sd3.py +6 -1
- diffusers/loaders/unet.py +22 -5
- diffusers/loaders/unet_loader_utils.py +5 -2
- diffusers/models/__init__.py +8 -0
- diffusers/models/attention.py +484 -3
- diffusers/models/attention_dispatch.py +1218 -0
- diffusers/models/attention_processor.py +105 -663
- diffusers/models/auto_model.py +2 -2
- diffusers/models/autoencoders/__init__.py +1 -0
- diffusers/models/autoencoders/autoencoder_dc.py +14 -1
- diffusers/models/autoencoders/autoencoder_kl.py +1 -1
- diffusers/models/autoencoders/autoencoder_kl_cosmos.py +3 -1
- diffusers/models/autoencoders/autoencoder_kl_qwenimage.py +1070 -0
- diffusers/models/autoencoders/autoencoder_kl_wan.py +370 -40
- diffusers/models/cache_utils.py +31 -9
- diffusers/models/controlnets/controlnet_flux.py +5 -5
- diffusers/models/controlnets/controlnet_union.py +4 -4
- diffusers/models/embeddings.py +26 -34
- diffusers/models/model_loading_utils.py +233 -1
- diffusers/models/modeling_flax_utils.py +1 -2
- diffusers/models/modeling_utils.py +159 -94
- diffusers/models/transformers/__init__.py +2 -0
- diffusers/models/transformers/transformer_chroma.py +16 -117
- diffusers/models/transformers/transformer_cogview4.py +36 -2
- diffusers/models/transformers/transformer_cosmos.py +11 -4
- diffusers/models/transformers/transformer_flux.py +372 -132
- diffusers/models/transformers/transformer_hunyuan_video.py +6 -0
- diffusers/models/transformers/transformer_ltx.py +104 -23
- diffusers/models/transformers/transformer_qwenimage.py +645 -0
- diffusers/models/transformers/transformer_skyreels_v2.py +607 -0
- diffusers/models/transformers/transformer_wan.py +298 -85
- diffusers/models/transformers/transformer_wan_vace.py +15 -21
- diffusers/models/unets/unet_2d_condition.py +2 -1
- diffusers/modular_pipelines/__init__.py +83 -0
- diffusers/modular_pipelines/components_manager.py +1068 -0
- diffusers/modular_pipelines/flux/__init__.py +66 -0
- diffusers/modular_pipelines/flux/before_denoise.py +689 -0
- diffusers/modular_pipelines/flux/decoders.py +109 -0
- diffusers/modular_pipelines/flux/denoise.py +227 -0
- diffusers/modular_pipelines/flux/encoders.py +412 -0
- diffusers/modular_pipelines/flux/modular_blocks.py +181 -0
- diffusers/modular_pipelines/flux/modular_pipeline.py +59 -0
- diffusers/modular_pipelines/modular_pipeline.py +2446 -0
- diffusers/modular_pipelines/modular_pipeline_utils.py +672 -0
- diffusers/modular_pipelines/node_utils.py +665 -0
- diffusers/modular_pipelines/stable_diffusion_xl/__init__.py +77 -0
- diffusers/modular_pipelines/stable_diffusion_xl/before_denoise.py +1874 -0
- diffusers/modular_pipelines/stable_diffusion_xl/decoders.py +208 -0
- diffusers/modular_pipelines/stable_diffusion_xl/denoise.py +771 -0
- diffusers/modular_pipelines/stable_diffusion_xl/encoders.py +887 -0
- diffusers/modular_pipelines/stable_diffusion_xl/modular_blocks.py +380 -0
- diffusers/modular_pipelines/stable_diffusion_xl/modular_pipeline.py +365 -0
- diffusers/modular_pipelines/wan/__init__.py +66 -0
- diffusers/modular_pipelines/wan/before_denoise.py +365 -0
- diffusers/modular_pipelines/wan/decoders.py +105 -0
- diffusers/modular_pipelines/wan/denoise.py +261 -0
- diffusers/modular_pipelines/wan/encoders.py +242 -0
- diffusers/modular_pipelines/wan/modular_blocks.py +144 -0
- diffusers/modular_pipelines/wan/modular_pipeline.py +90 -0
- diffusers/pipelines/__init__.py +31 -0
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +2 -3
- diffusers/pipelines/auto_pipeline.py +17 -13
- diffusers/pipelines/chroma/pipeline_chroma.py +5 -5
- diffusers/pipelines/chroma/pipeline_chroma_img2img.py +5 -5
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +9 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +9 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +10 -9
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +9 -8
- diffusers/pipelines/cogview4/pipeline_cogview4.py +16 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +3 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +212 -93
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +7 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +194 -92
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +3 -1
- diffusers/pipelines/flux/__init__.py +4 -0
- diffusers/pipelines/flux/pipeline_flux.py +34 -26
- diffusers/pipelines/flux/pipeline_flux_control.py +8 -8
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_fill.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_img2img.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_kontext.py +1134 -0
- diffusers/pipelines/flux/pipeline_flux_kontext_inpaint.py +1460 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
- diffusers/pipelines/flux/pipeline_output.py +6 -4
- diffusers/pipelines/hidream_image/pipeline_hidream_image.py +5 -5
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +25 -24
- diffusers/pipelines/ltx/pipeline_ltx.py +13 -12
- diffusers/pipelines/ltx/pipeline_ltx_condition.py +10 -9
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +13 -12
- diffusers/pipelines/mochi/pipeline_mochi.py +9 -8
- diffusers/pipelines/pipeline_flax_utils.py +2 -2
- diffusers/pipelines/pipeline_loading_utils.py +24 -2
- diffusers/pipelines/pipeline_utils.py +22 -15
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +3 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +20 -0
- diffusers/pipelines/qwenimage/__init__.py +55 -0
- diffusers/pipelines/qwenimage/pipeline_output.py +21 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage.py +726 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage_edit.py +849 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage_img2img.py +829 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage_inpaint.py +1015 -0
- diffusers/pipelines/sana/pipeline_sana_sprint.py +5 -5
- diffusers/pipelines/skyreels_v2/__init__.py +59 -0
- diffusers/pipelines/skyreels_v2/pipeline_output.py +20 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2.py +610 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing.py +978 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_i2v.py +1059 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_v2v.py +1063 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_i2v.py +745 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +2 -1
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +6 -5
- diffusers/pipelines/wan/pipeline_wan.py +78 -20
- diffusers/pipelines/wan/pipeline_wan_i2v.py +112 -32
- diffusers/pipelines/wan/pipeline_wan_vace.py +1 -2
- diffusers/quantizers/__init__.py +1 -177
- diffusers/quantizers/base.py +11 -0
- diffusers/quantizers/gguf/utils.py +92 -3
- diffusers/quantizers/pipe_quant_config.py +202 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +26 -0
- diffusers/schedulers/scheduling_deis_multistep.py +8 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +6 -0
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +6 -0
- diffusers/schedulers/scheduling_scm.py +0 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +10 -1
- diffusers/schedulers/scheduling_utils.py +2 -2
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/training_utils.py +78 -0
- diffusers/utils/__init__.py +10 -0
- diffusers/utils/constants.py +4 -0
- diffusers/utils/dummy_pt_objects.py +312 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +255 -0
- diffusers/utils/dynamic_modules_utils.py +84 -25
- diffusers/utils/hub_utils.py +33 -17
- diffusers/utils/import_utils.py +70 -0
- diffusers/utils/peft_utils.py +11 -8
- diffusers/utils/testing_utils.py +136 -10
- diffusers/utils/torch_utils.py +18 -0
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/METADATA +6 -6
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/RECORD +191 -127
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/LICENSE +0 -0
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/WHEEL +0 -0
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/entry_points.txt +0 -0
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,251 @@
|
|
1
|
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import math
|
16
|
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
|
20
|
+
from ..configuration_utils import register_to_config
|
21
|
+
from ..hooks import HookRegistry
|
22
|
+
from ..hooks.smoothed_energy_guidance_utils import SmoothedEnergyGuidanceConfig, _apply_smoothed_energy_guidance_hook
|
23
|
+
from .guider_utils import BaseGuidance, rescale_noise_cfg
|
24
|
+
|
25
|
+
|
26
|
+
if TYPE_CHECKING:
|
27
|
+
from ..modular_pipelines.modular_pipeline import BlockState
|
28
|
+
|
29
|
+
|
30
|
+
class SmoothedEnergyGuidance(BaseGuidance):
|
31
|
+
"""
|
32
|
+
Smoothed Energy Guidance (SEG): https://huggingface.co/papers/2408.00760
|
33
|
+
|
34
|
+
SEG is only supported as an experimental prototype feature for now, so the implementation may be modified in the
|
35
|
+
future without warning or guarantee of reproducibility. This implementation assumes:
|
36
|
+
- Generated images are square (height == width)
|
37
|
+
- The model does not combine different modalities together (e.g., text and image latent streams are not combined
|
38
|
+
together such as Flux)
|
39
|
+
|
40
|
+
Args:
|
41
|
+
guidance_scale (`float`, defaults to `7.5`):
|
42
|
+
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
|
43
|
+
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
|
44
|
+
deterioration of image quality.
|
45
|
+
seg_guidance_scale (`float`, defaults to `3.0`):
|
46
|
+
The scale parameter for smoothed energy guidance. Anatomy and structure coherence may improve with higher
|
47
|
+
values, but it may also lead to overexposure and saturation.
|
48
|
+
seg_blur_sigma (`float`, defaults to `9999999.0`):
|
49
|
+
The amount by which we blur the attention weights. Setting this value greater than 9999.0 results in
|
50
|
+
infinite blur, which means uniform queries. Controlling it exponentially is empirically effective.
|
51
|
+
seg_blur_threshold_inf (`float`, defaults to `9999.0`):
|
52
|
+
The threshold above which the blur is considered infinite.
|
53
|
+
seg_guidance_start (`float`, defaults to `0.0`):
|
54
|
+
The fraction of the total number of denoising steps after which smoothed energy guidance starts.
|
55
|
+
seg_guidance_stop (`float`, defaults to `1.0`):
|
56
|
+
The fraction of the total number of denoising steps after which smoothed energy guidance stops.
|
57
|
+
seg_guidance_layers (`int` or `List[int]`, *optional*):
|
58
|
+
The layer indices to apply smoothed energy guidance to. Can be a single integer or a list of integers. If
|
59
|
+
not provided, `seg_guidance_config` must be provided. The recommended values are `[7, 8, 9]` for Stable
|
60
|
+
Diffusion 3.5 Medium.
|
61
|
+
seg_guidance_config (`SmoothedEnergyGuidanceConfig` or `List[SmoothedEnergyGuidanceConfig]`, *optional*):
|
62
|
+
The configuration for the smoothed energy layer guidance. Can be a single `SmoothedEnergyGuidanceConfig` or
|
63
|
+
a list of `SmoothedEnergyGuidanceConfig`. If not provided, `seg_guidance_layers` must be provided.
|
64
|
+
guidance_rescale (`float`, defaults to `0.0`):
|
65
|
+
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
|
66
|
+
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
67
|
+
Flawed](https://huggingface.co/papers/2305.08891).
|
68
|
+
use_original_formulation (`bool`, defaults to `False`):
|
69
|
+
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
|
70
|
+
we use the diffusers-native implementation that has been in the codebase for a long time. See
|
71
|
+
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
|
72
|
+
start (`float`, defaults to `0.01`):
|
73
|
+
The fraction of the total number of denoising steps after which guidance starts.
|
74
|
+
stop (`float`, defaults to `0.2`):
|
75
|
+
The fraction of the total number of denoising steps after which guidance stops.
|
76
|
+
"""
|
77
|
+
|
78
|
+
_input_predictions = ["pred_cond", "pred_uncond", "pred_cond_seg"]
|
79
|
+
|
80
|
+
@register_to_config
|
81
|
+
def __init__(
|
82
|
+
self,
|
83
|
+
guidance_scale: float = 7.5,
|
84
|
+
seg_guidance_scale: float = 2.8,
|
85
|
+
seg_blur_sigma: float = 9999999.0,
|
86
|
+
seg_blur_threshold_inf: float = 9999.0,
|
87
|
+
seg_guidance_start: float = 0.0,
|
88
|
+
seg_guidance_stop: float = 1.0,
|
89
|
+
seg_guidance_layers: Optional[Union[int, List[int]]] = None,
|
90
|
+
seg_guidance_config: Union[SmoothedEnergyGuidanceConfig, List[SmoothedEnergyGuidanceConfig]] = None,
|
91
|
+
guidance_rescale: float = 0.0,
|
92
|
+
use_original_formulation: bool = False,
|
93
|
+
start: float = 0.0,
|
94
|
+
stop: float = 1.0,
|
95
|
+
):
|
96
|
+
super().__init__(start, stop)
|
97
|
+
|
98
|
+
self.guidance_scale = guidance_scale
|
99
|
+
self.seg_guidance_scale = seg_guidance_scale
|
100
|
+
self.seg_blur_sigma = seg_blur_sigma
|
101
|
+
self.seg_blur_threshold_inf = seg_blur_threshold_inf
|
102
|
+
self.seg_guidance_start = seg_guidance_start
|
103
|
+
self.seg_guidance_stop = seg_guidance_stop
|
104
|
+
self.guidance_rescale = guidance_rescale
|
105
|
+
self.use_original_formulation = use_original_formulation
|
106
|
+
|
107
|
+
if not (0.0 <= seg_guidance_start < 1.0):
|
108
|
+
raise ValueError(f"Expected `seg_guidance_start` to be between 0.0 and 1.0, but got {seg_guidance_start}.")
|
109
|
+
if not (seg_guidance_start <= seg_guidance_stop <= 1.0):
|
110
|
+
raise ValueError(f"Expected `seg_guidance_stop` to be between 0.0 and 1.0, but got {seg_guidance_stop}.")
|
111
|
+
|
112
|
+
if seg_guidance_layers is None and seg_guidance_config is None:
|
113
|
+
raise ValueError(
|
114
|
+
"Either `seg_guidance_layers` or `seg_guidance_config` must be provided to enable Smoothed Energy Guidance."
|
115
|
+
)
|
116
|
+
if seg_guidance_layers is not None and seg_guidance_config is not None:
|
117
|
+
raise ValueError("Only one of `seg_guidance_layers` or `seg_guidance_config` can be provided.")
|
118
|
+
|
119
|
+
if seg_guidance_layers is not None:
|
120
|
+
if isinstance(seg_guidance_layers, int):
|
121
|
+
seg_guidance_layers = [seg_guidance_layers]
|
122
|
+
if not isinstance(seg_guidance_layers, list):
|
123
|
+
raise ValueError(
|
124
|
+
f"Expected `seg_guidance_layers` to be an int or a list of ints, but got {type(seg_guidance_layers)}."
|
125
|
+
)
|
126
|
+
seg_guidance_config = [SmoothedEnergyGuidanceConfig(layer, fqn="auto") for layer in seg_guidance_layers]
|
127
|
+
|
128
|
+
if isinstance(seg_guidance_config, dict):
|
129
|
+
seg_guidance_config = SmoothedEnergyGuidanceConfig.from_dict(seg_guidance_config)
|
130
|
+
|
131
|
+
if isinstance(seg_guidance_config, SmoothedEnergyGuidanceConfig):
|
132
|
+
seg_guidance_config = [seg_guidance_config]
|
133
|
+
|
134
|
+
if not isinstance(seg_guidance_config, list):
|
135
|
+
raise ValueError(
|
136
|
+
f"Expected `seg_guidance_config` to be a SmoothedEnergyGuidanceConfig or a list of SmoothedEnergyGuidanceConfig, but got {type(seg_guidance_config)}."
|
137
|
+
)
|
138
|
+
elif isinstance(next(iter(seg_guidance_config), None), dict):
|
139
|
+
seg_guidance_config = [SmoothedEnergyGuidanceConfig.from_dict(config) for config in seg_guidance_config]
|
140
|
+
|
141
|
+
self.seg_guidance_config = seg_guidance_config
|
142
|
+
self._seg_layer_hook_names = [f"SmoothedEnergyGuidance_{i}" for i in range(len(self.seg_guidance_config))]
|
143
|
+
|
144
|
+
def prepare_models(self, denoiser: torch.nn.Module) -> None:
|
145
|
+
if self._is_seg_enabled() and self.is_conditional and self._count_prepared > 1:
|
146
|
+
for name, config in zip(self._seg_layer_hook_names, self.seg_guidance_config):
|
147
|
+
_apply_smoothed_energy_guidance_hook(denoiser, config, self.seg_blur_sigma, name=name)
|
148
|
+
|
149
|
+
def cleanup_models(self, denoiser: torch.nn.Module):
|
150
|
+
if self._is_seg_enabled() and self.is_conditional and self._count_prepared > 1:
|
151
|
+
registry = HookRegistry.check_if_exists_or_initialize(denoiser)
|
152
|
+
# Remove the hooks after inference
|
153
|
+
for hook_name in self._seg_layer_hook_names:
|
154
|
+
registry.remove_hook(hook_name, recurse=True)
|
155
|
+
|
156
|
+
def prepare_inputs(
|
157
|
+
self, data: "BlockState", input_fields: Optional[Dict[str, Union[str, Tuple[str, str]]]] = None
|
158
|
+
) -> List["BlockState"]:
|
159
|
+
if input_fields is None:
|
160
|
+
input_fields = self._input_fields
|
161
|
+
|
162
|
+
if self.num_conditions == 1:
|
163
|
+
tuple_indices = [0]
|
164
|
+
input_predictions = ["pred_cond"]
|
165
|
+
elif self.num_conditions == 2:
|
166
|
+
tuple_indices = [0, 1]
|
167
|
+
input_predictions = (
|
168
|
+
["pred_cond", "pred_uncond"] if self._is_cfg_enabled() else ["pred_cond", "pred_cond_seg"]
|
169
|
+
)
|
170
|
+
else:
|
171
|
+
tuple_indices = [0, 1, 0]
|
172
|
+
input_predictions = ["pred_cond", "pred_uncond", "pred_cond_seg"]
|
173
|
+
data_batches = []
|
174
|
+
for i in range(self.num_conditions):
|
175
|
+
data_batch = self._prepare_batch(input_fields, data, tuple_indices[i], input_predictions[i])
|
176
|
+
data_batches.append(data_batch)
|
177
|
+
return data_batches
|
178
|
+
|
179
|
+
def forward(
|
180
|
+
self,
|
181
|
+
pred_cond: torch.Tensor,
|
182
|
+
pred_uncond: Optional[torch.Tensor] = None,
|
183
|
+
pred_cond_seg: Optional[torch.Tensor] = None,
|
184
|
+
) -> torch.Tensor:
|
185
|
+
pred = None
|
186
|
+
|
187
|
+
if not self._is_cfg_enabled() and not self._is_seg_enabled():
|
188
|
+
pred = pred_cond
|
189
|
+
elif not self._is_cfg_enabled():
|
190
|
+
shift = pred_cond - pred_cond_seg
|
191
|
+
pred = pred_cond if self.use_original_formulation else pred_cond_seg
|
192
|
+
pred = pred + self.seg_guidance_scale * shift
|
193
|
+
elif not self._is_seg_enabled():
|
194
|
+
shift = pred_cond - pred_uncond
|
195
|
+
pred = pred_cond if self.use_original_formulation else pred_uncond
|
196
|
+
pred = pred + self.guidance_scale * shift
|
197
|
+
else:
|
198
|
+
shift = pred_cond - pred_uncond
|
199
|
+
shift_seg = pred_cond - pred_cond_seg
|
200
|
+
pred = pred_cond if self.use_original_formulation else pred_uncond
|
201
|
+
pred = pred + self.guidance_scale * shift + self.seg_guidance_scale * shift_seg
|
202
|
+
|
203
|
+
if self.guidance_rescale > 0.0:
|
204
|
+
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
|
205
|
+
|
206
|
+
return pred, {}
|
207
|
+
|
208
|
+
@property
|
209
|
+
def is_conditional(self) -> bool:
|
210
|
+
return self._count_prepared == 1 or self._count_prepared == 3
|
211
|
+
|
212
|
+
@property
|
213
|
+
def num_conditions(self) -> int:
|
214
|
+
num_conditions = 1
|
215
|
+
if self._is_cfg_enabled():
|
216
|
+
num_conditions += 1
|
217
|
+
if self._is_seg_enabled():
|
218
|
+
num_conditions += 1
|
219
|
+
return num_conditions
|
220
|
+
|
221
|
+
def _is_cfg_enabled(self) -> bool:
|
222
|
+
if not self._enabled:
|
223
|
+
return False
|
224
|
+
|
225
|
+
is_within_range = True
|
226
|
+
if self._num_inference_steps is not None:
|
227
|
+
skip_start_step = int(self._start * self._num_inference_steps)
|
228
|
+
skip_stop_step = int(self._stop * self._num_inference_steps)
|
229
|
+
is_within_range = skip_start_step <= self._step < skip_stop_step
|
230
|
+
|
231
|
+
is_close = False
|
232
|
+
if self.use_original_formulation:
|
233
|
+
is_close = math.isclose(self.guidance_scale, 0.0)
|
234
|
+
else:
|
235
|
+
is_close = math.isclose(self.guidance_scale, 1.0)
|
236
|
+
|
237
|
+
return is_within_range and not is_close
|
238
|
+
|
239
|
+
def _is_seg_enabled(self) -> bool:
|
240
|
+
if not self._enabled:
|
241
|
+
return False
|
242
|
+
|
243
|
+
is_within_range = True
|
244
|
+
if self._num_inference_steps is not None:
|
245
|
+
skip_start_step = int(self.seg_guidance_start * self._num_inference_steps)
|
246
|
+
skip_stop_step = int(self.seg_guidance_stop * self._num_inference_steps)
|
247
|
+
is_within_range = skip_start_step < self._step < skip_stop_step
|
248
|
+
|
249
|
+
is_zero = math.isclose(self.seg_guidance_scale, 0.0)
|
250
|
+
|
251
|
+
return is_within_range and not is_zero
|
@@ -0,0 +1,143 @@
|
|
1
|
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import math
|
16
|
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
|
20
|
+
from ..configuration_utils import register_to_config
|
21
|
+
from .guider_utils import BaseGuidance, rescale_noise_cfg
|
22
|
+
|
23
|
+
|
24
|
+
if TYPE_CHECKING:
|
25
|
+
from ..modular_pipelines.modular_pipeline import BlockState
|
26
|
+
|
27
|
+
|
28
|
+
class TangentialClassifierFreeGuidance(BaseGuidance):
|
29
|
+
"""
|
30
|
+
Tangential Classifier Free Guidance (TCFG): https://huggingface.co/papers/2503.18137
|
31
|
+
|
32
|
+
Args:
|
33
|
+
guidance_scale (`float`, defaults to `7.5`):
|
34
|
+
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
|
35
|
+
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
|
36
|
+
deterioration of image quality.
|
37
|
+
guidance_rescale (`float`, defaults to `0.0`):
|
38
|
+
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
|
39
|
+
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
40
|
+
Flawed](https://huggingface.co/papers/2305.08891).
|
41
|
+
use_original_formulation (`bool`, defaults to `False`):
|
42
|
+
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
|
43
|
+
we use the diffusers-native implementation that has been in the codebase for a long time. See
|
44
|
+
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
|
45
|
+
start (`float`, defaults to `0.0`):
|
46
|
+
The fraction of the total number of denoising steps after which guidance starts.
|
47
|
+
stop (`float`, defaults to `1.0`):
|
48
|
+
The fraction of the total number of denoising steps after which guidance stops.
|
49
|
+
"""
|
50
|
+
|
51
|
+
_input_predictions = ["pred_cond", "pred_uncond"]
|
52
|
+
|
53
|
+
@register_to_config
|
54
|
+
def __init__(
|
55
|
+
self,
|
56
|
+
guidance_scale: float = 7.5,
|
57
|
+
guidance_rescale: float = 0.0,
|
58
|
+
use_original_formulation: bool = False,
|
59
|
+
start: float = 0.0,
|
60
|
+
stop: float = 1.0,
|
61
|
+
):
|
62
|
+
super().__init__(start, stop)
|
63
|
+
|
64
|
+
self.guidance_scale = guidance_scale
|
65
|
+
self.guidance_rescale = guidance_rescale
|
66
|
+
self.use_original_formulation = use_original_formulation
|
67
|
+
|
68
|
+
def prepare_inputs(
|
69
|
+
self, data: "BlockState", input_fields: Optional[Dict[str, Union[str, Tuple[str, str]]]] = None
|
70
|
+
) -> List["BlockState"]:
|
71
|
+
if input_fields is None:
|
72
|
+
input_fields = self._input_fields
|
73
|
+
|
74
|
+
tuple_indices = [0] if self.num_conditions == 1 else [0, 1]
|
75
|
+
data_batches = []
|
76
|
+
for i in range(self.num_conditions):
|
77
|
+
data_batch = self._prepare_batch(input_fields, data, tuple_indices[i], self._input_predictions[i])
|
78
|
+
data_batches.append(data_batch)
|
79
|
+
return data_batches
|
80
|
+
|
81
|
+
def forward(self, pred_cond: torch.Tensor, pred_uncond: Optional[torch.Tensor] = None) -> torch.Tensor:
|
82
|
+
pred = None
|
83
|
+
|
84
|
+
if not self._is_tcfg_enabled():
|
85
|
+
pred = pred_cond
|
86
|
+
else:
|
87
|
+
pred = normalized_guidance(pred_cond, pred_uncond, self.guidance_scale, self.use_original_formulation)
|
88
|
+
|
89
|
+
if self.guidance_rescale > 0.0:
|
90
|
+
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
|
91
|
+
|
92
|
+
return pred, {}
|
93
|
+
|
94
|
+
@property
|
95
|
+
def is_conditional(self) -> bool:
|
96
|
+
return self._num_outputs_prepared == 1
|
97
|
+
|
98
|
+
@property
|
99
|
+
def num_conditions(self) -> int:
|
100
|
+
num_conditions = 1
|
101
|
+
if self._is_tcfg_enabled():
|
102
|
+
num_conditions += 1
|
103
|
+
return num_conditions
|
104
|
+
|
105
|
+
def _is_tcfg_enabled(self) -> bool:
|
106
|
+
if not self._enabled:
|
107
|
+
return False
|
108
|
+
|
109
|
+
is_within_range = True
|
110
|
+
if self._num_inference_steps is not None:
|
111
|
+
skip_start_step = int(self._start * self._num_inference_steps)
|
112
|
+
skip_stop_step = int(self._stop * self._num_inference_steps)
|
113
|
+
is_within_range = skip_start_step <= self._step < skip_stop_step
|
114
|
+
|
115
|
+
is_close = False
|
116
|
+
if self.use_original_formulation:
|
117
|
+
is_close = math.isclose(self.guidance_scale, 0.0)
|
118
|
+
else:
|
119
|
+
is_close = math.isclose(self.guidance_scale, 1.0)
|
120
|
+
|
121
|
+
return is_within_range and not is_close
|
122
|
+
|
123
|
+
|
124
|
+
def normalized_guidance(
|
125
|
+
pred_cond: torch.Tensor, pred_uncond: torch.Tensor, guidance_scale: float, use_original_formulation: bool = False
|
126
|
+
) -> torch.Tensor:
|
127
|
+
cond_dtype = pred_cond.dtype
|
128
|
+
preds = torch.stack([pred_cond, pred_uncond], dim=1).float()
|
129
|
+
preds = preds.flatten(2)
|
130
|
+
U, S, Vh = torch.linalg.svd(preds, full_matrices=False)
|
131
|
+
Vh_modified = Vh.clone()
|
132
|
+
Vh_modified[:, 1] = 0
|
133
|
+
|
134
|
+
uncond_flat = pred_uncond.reshape(pred_uncond.size(0), 1, -1).float()
|
135
|
+
x_Vh = torch.matmul(uncond_flat, Vh.transpose(-2, -1))
|
136
|
+
x_Vh_V = torch.matmul(x_Vh, Vh_modified)
|
137
|
+
pred_uncond = x_Vh_V.reshape(pred_uncond.shape).to(cond_dtype)
|
138
|
+
|
139
|
+
pred = pred_cond if use_original_formulation else pred_uncond
|
140
|
+
shift = pred_cond - pred_uncond
|
141
|
+
pred = pred + guidance_scale * shift
|
142
|
+
|
143
|
+
return pred
|
diffusers/hooks/__init__.py
CHANGED
@@ -1,9 +1,26 @@
|
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
1
15
|
from ..utils import is_torch_available
|
2
16
|
|
3
17
|
|
4
18
|
if is_torch_available():
|
5
19
|
from .faster_cache import FasterCacheConfig, apply_faster_cache
|
20
|
+
from .first_block_cache import FirstBlockCacheConfig, apply_first_block_cache
|
6
21
|
from .group_offloading import apply_group_offloading
|
7
22
|
from .hooks import HookRegistry, ModelHook
|
23
|
+
from .layer_skip import LayerSkipConfig, apply_layer_skip
|
8
24
|
from .layerwise_casting import apply_layerwise_casting, apply_layerwise_casting_hook
|
9
25
|
from .pyramid_attention_broadcast import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast
|
26
|
+
from .smoothed_energy_guidance_utils import SmoothedEnergyGuidanceConfig
|
@@ -0,0 +1,56 @@
|
|
1
|
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Optional
|
16
|
+
|
17
|
+
import torch
|
18
|
+
|
19
|
+
from ..models.attention import AttentionModuleMixin, FeedForward, LuminaFeedForward
|
20
|
+
from ..models.attention_processor import Attention, MochiAttention
|
21
|
+
|
22
|
+
|
23
|
+
_ATTENTION_CLASSES = (Attention, MochiAttention, AttentionModuleMixin)
|
24
|
+
_FEEDFORWARD_CLASSES = (FeedForward, LuminaFeedForward)
|
25
|
+
|
26
|
+
_SPATIAL_TRANSFORMER_BLOCK_IDENTIFIERS = ("blocks", "transformer_blocks", "single_transformer_blocks", "layers")
|
27
|
+
_TEMPORAL_TRANSFORMER_BLOCK_IDENTIFIERS = ("temporal_transformer_blocks",)
|
28
|
+
_CROSS_TRANSFORMER_BLOCK_IDENTIFIERS = ("blocks", "transformer_blocks", "layers")
|
29
|
+
|
30
|
+
_ALL_TRANSFORMER_BLOCK_IDENTIFIERS = tuple(
|
31
|
+
{
|
32
|
+
*_SPATIAL_TRANSFORMER_BLOCK_IDENTIFIERS,
|
33
|
+
*_TEMPORAL_TRANSFORMER_BLOCK_IDENTIFIERS,
|
34
|
+
*_CROSS_TRANSFORMER_BLOCK_IDENTIFIERS,
|
35
|
+
}
|
36
|
+
)
|
37
|
+
|
38
|
+
# Layers supported for group offloading and layerwise casting
|
39
|
+
_GO_LC_SUPPORTED_PYTORCH_LAYERS = (
|
40
|
+
torch.nn.Conv1d,
|
41
|
+
torch.nn.Conv2d,
|
42
|
+
torch.nn.Conv3d,
|
43
|
+
torch.nn.ConvTranspose1d,
|
44
|
+
torch.nn.ConvTranspose2d,
|
45
|
+
torch.nn.ConvTranspose3d,
|
46
|
+
torch.nn.Linear,
|
47
|
+
# TODO(aryan): look into torch.nn.LayerNorm, torch.nn.GroupNorm later, seems to be causing some issues with CogVideoX
|
48
|
+
# because of double invocation of the same norm layer in CogVideoXLayerNorm
|
49
|
+
)
|
50
|
+
|
51
|
+
|
52
|
+
def _get_submodule_from_fqn(module: torch.nn.Module, fqn: str) -> Optional[torch.nn.Module]:
|
53
|
+
for submodule_name, submodule in module.named_modules():
|
54
|
+
if submodule_name == fqn:
|
55
|
+
return submodule
|
56
|
+
return None
|