diffusers 0.34.0__py3-none-any.whl → 0.35.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +98 -1
- diffusers/callbacks.py +35 -0
- diffusers/commands/custom_blocks.py +134 -0
- diffusers/commands/diffusers_cli.py +2 -0
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/configuration_utils.py +11 -2
- diffusers/dependency_versions_table.py +3 -3
- diffusers/guiders/__init__.py +41 -0
- diffusers/guiders/adaptive_projected_guidance.py +188 -0
- diffusers/guiders/auto_guidance.py +190 -0
- diffusers/guiders/classifier_free_guidance.py +141 -0
- diffusers/guiders/classifier_free_zero_star_guidance.py +152 -0
- diffusers/guiders/frequency_decoupled_guidance.py +327 -0
- diffusers/guiders/guider_utils.py +309 -0
- diffusers/guiders/perturbed_attention_guidance.py +271 -0
- diffusers/guiders/skip_layer_guidance.py +262 -0
- diffusers/guiders/smoothed_energy_guidance.py +251 -0
- diffusers/guiders/tangential_classifier_free_guidance.py +143 -0
- diffusers/hooks/__init__.py +17 -0
- diffusers/hooks/_common.py +56 -0
- diffusers/hooks/_helpers.py +293 -0
- diffusers/hooks/faster_cache.py +7 -6
- diffusers/hooks/first_block_cache.py +259 -0
- diffusers/hooks/group_offloading.py +292 -286
- diffusers/hooks/hooks.py +56 -1
- diffusers/hooks/layer_skip.py +263 -0
- diffusers/hooks/layerwise_casting.py +2 -7
- diffusers/hooks/pyramid_attention_broadcast.py +14 -11
- diffusers/hooks/smoothed_energy_guidance_utils.py +167 -0
- diffusers/hooks/utils.py +43 -0
- diffusers/loaders/__init__.py +6 -0
- diffusers/loaders/ip_adapter.py +255 -4
- diffusers/loaders/lora_base.py +63 -30
- diffusers/loaders/lora_conversion_utils.py +434 -53
- diffusers/loaders/lora_pipeline.py +834 -37
- diffusers/loaders/peft.py +28 -5
- diffusers/loaders/single_file_model.py +44 -11
- diffusers/loaders/single_file_utils.py +170 -2
- diffusers/loaders/transformer_flux.py +9 -10
- diffusers/loaders/transformer_sd3.py +6 -1
- diffusers/loaders/unet.py +22 -5
- diffusers/loaders/unet_loader_utils.py +5 -2
- diffusers/models/__init__.py +8 -0
- diffusers/models/attention.py +484 -3
- diffusers/models/attention_dispatch.py +1218 -0
- diffusers/models/attention_processor.py +105 -663
- diffusers/models/auto_model.py +2 -2
- diffusers/models/autoencoders/__init__.py +1 -0
- diffusers/models/autoencoders/autoencoder_dc.py +14 -1
- diffusers/models/autoencoders/autoencoder_kl.py +1 -1
- diffusers/models/autoencoders/autoencoder_kl_cosmos.py +3 -1
- diffusers/models/autoencoders/autoencoder_kl_qwenimage.py +1070 -0
- diffusers/models/autoencoders/autoencoder_kl_wan.py +370 -40
- diffusers/models/cache_utils.py +31 -9
- diffusers/models/controlnets/controlnet_flux.py +5 -5
- diffusers/models/controlnets/controlnet_union.py +4 -4
- diffusers/models/embeddings.py +26 -34
- diffusers/models/model_loading_utils.py +233 -1
- diffusers/models/modeling_flax_utils.py +1 -2
- diffusers/models/modeling_utils.py +159 -94
- diffusers/models/transformers/__init__.py +2 -0
- diffusers/models/transformers/transformer_chroma.py +16 -117
- diffusers/models/transformers/transformer_cogview4.py +36 -2
- diffusers/models/transformers/transformer_cosmos.py +11 -4
- diffusers/models/transformers/transformer_flux.py +372 -132
- diffusers/models/transformers/transformer_hunyuan_video.py +6 -0
- diffusers/models/transformers/transformer_ltx.py +104 -23
- diffusers/models/transformers/transformer_qwenimage.py +645 -0
- diffusers/models/transformers/transformer_skyreels_v2.py +607 -0
- diffusers/models/transformers/transformer_wan.py +298 -85
- diffusers/models/transformers/transformer_wan_vace.py +15 -21
- diffusers/models/unets/unet_2d_condition.py +2 -1
- diffusers/modular_pipelines/__init__.py +83 -0
- diffusers/modular_pipelines/components_manager.py +1068 -0
- diffusers/modular_pipelines/flux/__init__.py +66 -0
- diffusers/modular_pipelines/flux/before_denoise.py +689 -0
- diffusers/modular_pipelines/flux/decoders.py +109 -0
- diffusers/modular_pipelines/flux/denoise.py +227 -0
- diffusers/modular_pipelines/flux/encoders.py +412 -0
- diffusers/modular_pipelines/flux/modular_blocks.py +181 -0
- diffusers/modular_pipelines/flux/modular_pipeline.py +59 -0
- diffusers/modular_pipelines/modular_pipeline.py +2446 -0
- diffusers/modular_pipelines/modular_pipeline_utils.py +672 -0
- diffusers/modular_pipelines/node_utils.py +665 -0
- diffusers/modular_pipelines/stable_diffusion_xl/__init__.py +77 -0
- diffusers/modular_pipelines/stable_diffusion_xl/before_denoise.py +1874 -0
- diffusers/modular_pipelines/stable_diffusion_xl/decoders.py +208 -0
- diffusers/modular_pipelines/stable_diffusion_xl/denoise.py +771 -0
- diffusers/modular_pipelines/stable_diffusion_xl/encoders.py +887 -0
- diffusers/modular_pipelines/stable_diffusion_xl/modular_blocks.py +380 -0
- diffusers/modular_pipelines/stable_diffusion_xl/modular_pipeline.py +365 -0
- diffusers/modular_pipelines/wan/__init__.py +66 -0
- diffusers/modular_pipelines/wan/before_denoise.py +365 -0
- diffusers/modular_pipelines/wan/decoders.py +105 -0
- diffusers/modular_pipelines/wan/denoise.py +261 -0
- diffusers/modular_pipelines/wan/encoders.py +242 -0
- diffusers/modular_pipelines/wan/modular_blocks.py +144 -0
- diffusers/modular_pipelines/wan/modular_pipeline.py +90 -0
- diffusers/pipelines/__init__.py +31 -0
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +2 -3
- diffusers/pipelines/auto_pipeline.py +17 -13
- diffusers/pipelines/chroma/pipeline_chroma.py +5 -5
- diffusers/pipelines/chroma/pipeline_chroma_img2img.py +5 -5
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +9 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +9 -8
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +10 -9
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +9 -8
- diffusers/pipelines/cogview4/pipeline_cogview4.py +16 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +3 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +212 -93
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +7 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +194 -92
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +3 -1
- diffusers/pipelines/flux/__init__.py +4 -0
- diffusers/pipelines/flux/pipeline_flux.py +34 -26
- diffusers/pipelines/flux/pipeline_flux_control.py +8 -8
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_fill.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_img2img.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1 -1
- diffusers/pipelines/flux/pipeline_flux_kontext.py +1134 -0
- diffusers/pipelines/flux/pipeline_flux_kontext_inpaint.py +1460 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +1 -1
- diffusers/pipelines/flux/pipeline_output.py +6 -4
- diffusers/pipelines/hidream_image/pipeline_hidream_image.py +5 -5
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +25 -24
- diffusers/pipelines/ltx/pipeline_ltx.py +13 -12
- diffusers/pipelines/ltx/pipeline_ltx_condition.py +10 -9
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +13 -12
- diffusers/pipelines/mochi/pipeline_mochi.py +9 -8
- diffusers/pipelines/pipeline_flax_utils.py +2 -2
- diffusers/pipelines/pipeline_loading_utils.py +24 -2
- diffusers/pipelines/pipeline_utils.py +22 -15
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +3 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +20 -0
- diffusers/pipelines/qwenimage/__init__.py +55 -0
- diffusers/pipelines/qwenimage/pipeline_output.py +21 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage.py +726 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage_edit.py +849 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage_img2img.py +829 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage_inpaint.py +1015 -0
- diffusers/pipelines/sana/pipeline_sana_sprint.py +5 -5
- diffusers/pipelines/skyreels_v2/__init__.py +59 -0
- diffusers/pipelines/skyreels_v2/pipeline_output.py +20 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2.py +610 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing.py +978 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_i2v.py +1059 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_v2v.py +1063 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_i2v.py +745 -0
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +2 -1
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +6 -5
- diffusers/pipelines/wan/pipeline_wan.py +78 -20
- diffusers/pipelines/wan/pipeline_wan_i2v.py +112 -32
- diffusers/pipelines/wan/pipeline_wan_vace.py +1 -2
- diffusers/quantizers/__init__.py +1 -177
- diffusers/quantizers/base.py +11 -0
- diffusers/quantizers/gguf/utils.py +92 -3
- diffusers/quantizers/pipe_quant_config.py +202 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +26 -0
- diffusers/schedulers/scheduling_deis_multistep.py +8 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +6 -0
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +6 -0
- diffusers/schedulers/scheduling_scm.py +0 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +10 -1
- diffusers/schedulers/scheduling_utils.py +2 -2
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/training_utils.py +78 -0
- diffusers/utils/__init__.py +10 -0
- diffusers/utils/constants.py +4 -0
- diffusers/utils/dummy_pt_objects.py +312 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +255 -0
- diffusers/utils/dynamic_modules_utils.py +84 -25
- diffusers/utils/hub_utils.py +33 -17
- diffusers/utils/import_utils.py +70 -0
- diffusers/utils/peft_utils.py +11 -8
- diffusers/utils/testing_utils.py +136 -10
- diffusers/utils/torch_utils.py +18 -0
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/METADATA +6 -6
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/RECORD +191 -127
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/LICENSE +0 -0
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/WHEEL +0 -0
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/entry_points.txt +0 -0
- {diffusers-0.34.0.dist-info → diffusers-0.35.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,271 @@
|
|
1
|
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import math
|
16
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
|
20
|
+
from ..configuration_utils import register_to_config
|
21
|
+
from ..hooks import HookRegistry, LayerSkipConfig
|
22
|
+
from ..hooks.layer_skip import _apply_layer_skip_hook
|
23
|
+
from ..utils import get_logger
|
24
|
+
from .guider_utils import BaseGuidance, rescale_noise_cfg
|
25
|
+
|
26
|
+
|
27
|
+
if TYPE_CHECKING:
|
28
|
+
from ..modular_pipelines.modular_pipeline import BlockState
|
29
|
+
|
30
|
+
|
31
|
+
logger = get_logger(__name__) # pylint: disable=invalid-name
|
32
|
+
|
33
|
+
|
34
|
+
class PerturbedAttentionGuidance(BaseGuidance):
|
35
|
+
"""
|
36
|
+
Perturbed Attention Guidance (PAG): https://huggingface.co/papers/2403.17377
|
37
|
+
|
38
|
+
The intution behind PAG can be thought of as moving the CFG predicted distribution estimates further away from
|
39
|
+
worse versions of the conditional distribution estimates. PAG was one of the first techniques to introduce the idea
|
40
|
+
of using a worse version of the trained model for better guiding itself in the denoising process. It perturbs the
|
41
|
+
attention scores of the latent stream by replacing the score matrix with an identity matrix for selectively chosen
|
42
|
+
layers.
|
43
|
+
|
44
|
+
Additional reading:
|
45
|
+
- [Guiding a Diffusion Model with a Bad Version of Itself](https://huggingface.co/papers/2406.02507)
|
46
|
+
|
47
|
+
PAG is implemented with similar implementation to SkipLayerGuidance due to overlap in the configuration parameters
|
48
|
+
and implementation details.
|
49
|
+
|
50
|
+
Args:
|
51
|
+
guidance_scale (`float`, defaults to `7.5`):
|
52
|
+
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
|
53
|
+
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
|
54
|
+
deterioration of image quality.
|
55
|
+
perturbed_guidance_scale (`float`, defaults to `2.8`):
|
56
|
+
The scale parameter for perturbed attention guidance.
|
57
|
+
perturbed_guidance_start (`float`, defaults to `0.01`):
|
58
|
+
The fraction of the total number of denoising steps after which perturbed attention guidance starts.
|
59
|
+
perturbed_guidance_stop (`float`, defaults to `0.2`):
|
60
|
+
The fraction of the total number of denoising steps after which perturbed attention guidance stops.
|
61
|
+
perturbed_guidance_layers (`int` or `List[int]`, *optional*):
|
62
|
+
The layer indices to apply perturbed attention guidance to. Can be a single integer or a list of integers.
|
63
|
+
If not provided, `perturbed_guidance_config` must be provided.
|
64
|
+
perturbed_guidance_config (`LayerSkipConfig` or `List[LayerSkipConfig]`, *optional*):
|
65
|
+
The configuration for the perturbed attention guidance. Can be a single `LayerSkipConfig` or a list of
|
66
|
+
`LayerSkipConfig`. If not provided, `perturbed_guidance_layers` must be provided.
|
67
|
+
guidance_rescale (`float`, defaults to `0.0`):
|
68
|
+
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
|
69
|
+
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
70
|
+
Flawed](https://huggingface.co/papers/2305.08891).
|
71
|
+
use_original_formulation (`bool`, defaults to `False`):
|
72
|
+
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
|
73
|
+
we use the diffusers-native implementation that has been in the codebase for a long time. See
|
74
|
+
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
|
75
|
+
start (`float`, defaults to `0.01`):
|
76
|
+
The fraction of the total number of denoising steps after which guidance starts.
|
77
|
+
stop (`float`, defaults to `0.2`):
|
78
|
+
The fraction of the total number of denoising steps after which guidance stops.
|
79
|
+
"""
|
80
|
+
|
81
|
+
# NOTE: The current implementation does not account for joint latent conditioning (text + image/video tokens in
|
82
|
+
# the same latent stream). It assumes the entire latent is a single stream of visual tokens. It would be very
|
83
|
+
# complex to support joint latent conditioning in a model-agnostic manner without specializing the implementation
|
84
|
+
# for each model architecture.
|
85
|
+
|
86
|
+
_input_predictions = ["pred_cond", "pred_uncond", "pred_cond_skip"]
|
87
|
+
|
88
|
+
@register_to_config
|
89
|
+
def __init__(
|
90
|
+
self,
|
91
|
+
guidance_scale: float = 7.5,
|
92
|
+
perturbed_guidance_scale: float = 2.8,
|
93
|
+
perturbed_guidance_start: float = 0.01,
|
94
|
+
perturbed_guidance_stop: float = 0.2,
|
95
|
+
perturbed_guidance_layers: Optional[Union[int, List[int]]] = None,
|
96
|
+
perturbed_guidance_config: Union[LayerSkipConfig, List[LayerSkipConfig], Dict[str, Any]] = None,
|
97
|
+
guidance_rescale: float = 0.0,
|
98
|
+
use_original_formulation: bool = False,
|
99
|
+
start: float = 0.0,
|
100
|
+
stop: float = 1.0,
|
101
|
+
):
|
102
|
+
super().__init__(start, stop)
|
103
|
+
|
104
|
+
self.guidance_scale = guidance_scale
|
105
|
+
self.skip_layer_guidance_scale = perturbed_guidance_scale
|
106
|
+
self.skip_layer_guidance_start = perturbed_guidance_start
|
107
|
+
self.skip_layer_guidance_stop = perturbed_guidance_stop
|
108
|
+
self.guidance_rescale = guidance_rescale
|
109
|
+
self.use_original_formulation = use_original_formulation
|
110
|
+
|
111
|
+
if perturbed_guidance_config is None:
|
112
|
+
if perturbed_guidance_layers is None:
|
113
|
+
raise ValueError(
|
114
|
+
"`perturbed_guidance_layers` must be provided if `perturbed_guidance_config` is not specified."
|
115
|
+
)
|
116
|
+
perturbed_guidance_config = LayerSkipConfig(
|
117
|
+
indices=perturbed_guidance_layers,
|
118
|
+
fqn="auto",
|
119
|
+
skip_attention=False,
|
120
|
+
skip_attention_scores=True,
|
121
|
+
skip_ff=False,
|
122
|
+
)
|
123
|
+
else:
|
124
|
+
if perturbed_guidance_layers is not None:
|
125
|
+
raise ValueError(
|
126
|
+
"`perturbed_guidance_layers` should not be provided if `perturbed_guidance_config` is specified."
|
127
|
+
)
|
128
|
+
|
129
|
+
if isinstance(perturbed_guidance_config, dict):
|
130
|
+
perturbed_guidance_config = LayerSkipConfig.from_dict(perturbed_guidance_config)
|
131
|
+
|
132
|
+
if isinstance(perturbed_guidance_config, LayerSkipConfig):
|
133
|
+
perturbed_guidance_config = [perturbed_guidance_config]
|
134
|
+
|
135
|
+
if not isinstance(perturbed_guidance_config, list):
|
136
|
+
raise ValueError(
|
137
|
+
"`perturbed_guidance_config` must be a `LayerSkipConfig`, a list of `LayerSkipConfig`, or a dict that can be converted to a `LayerSkipConfig`."
|
138
|
+
)
|
139
|
+
elif isinstance(next(iter(perturbed_guidance_config), None), dict):
|
140
|
+
perturbed_guidance_config = [LayerSkipConfig.from_dict(config) for config in perturbed_guidance_config]
|
141
|
+
|
142
|
+
for config in perturbed_guidance_config:
|
143
|
+
if config.skip_attention or not config.skip_attention_scores or config.skip_ff:
|
144
|
+
logger.warning(
|
145
|
+
"Perturbed Attention Guidance is designed to perturb attention scores, so `skip_attention` should be False, `skip_attention_scores` should be True, and `skip_ff` should be False. "
|
146
|
+
"Please check your configuration. Modifying the config to match the expected values."
|
147
|
+
)
|
148
|
+
config.skip_attention = False
|
149
|
+
config.skip_attention_scores = True
|
150
|
+
config.skip_ff = False
|
151
|
+
|
152
|
+
self.skip_layer_config = perturbed_guidance_config
|
153
|
+
self._skip_layer_hook_names = [f"SkipLayerGuidance_{i}" for i in range(len(self.skip_layer_config))]
|
154
|
+
|
155
|
+
# Copied from diffusers.guiders.skip_layer_guidance.SkipLayerGuidance.prepare_models
|
156
|
+
def prepare_models(self, denoiser: torch.nn.Module) -> None:
|
157
|
+
self._count_prepared += 1
|
158
|
+
if self._is_slg_enabled() and self.is_conditional and self._count_prepared > 1:
|
159
|
+
for name, config in zip(self._skip_layer_hook_names, self.skip_layer_config):
|
160
|
+
_apply_layer_skip_hook(denoiser, config, name=name)
|
161
|
+
|
162
|
+
# Copied from diffusers.guiders.skip_layer_guidance.SkipLayerGuidance.cleanup_models
|
163
|
+
def cleanup_models(self, denoiser: torch.nn.Module) -> None:
|
164
|
+
if self._is_slg_enabled() and self.is_conditional and self._count_prepared > 1:
|
165
|
+
registry = HookRegistry.check_if_exists_or_initialize(denoiser)
|
166
|
+
# Remove the hooks after inference
|
167
|
+
for hook_name in self._skip_layer_hook_names:
|
168
|
+
registry.remove_hook(hook_name, recurse=True)
|
169
|
+
|
170
|
+
# Copied from diffusers.guiders.skip_layer_guidance.SkipLayerGuidance.prepare_inputs
|
171
|
+
def prepare_inputs(
|
172
|
+
self, data: "BlockState", input_fields: Optional[Dict[str, Union[str, Tuple[str, str]]]] = None
|
173
|
+
) -> List["BlockState"]:
|
174
|
+
if input_fields is None:
|
175
|
+
input_fields = self._input_fields
|
176
|
+
|
177
|
+
if self.num_conditions == 1:
|
178
|
+
tuple_indices = [0]
|
179
|
+
input_predictions = ["pred_cond"]
|
180
|
+
elif self.num_conditions == 2:
|
181
|
+
tuple_indices = [0, 1]
|
182
|
+
input_predictions = (
|
183
|
+
["pred_cond", "pred_uncond"] if self._is_cfg_enabled() else ["pred_cond", "pred_cond_skip"]
|
184
|
+
)
|
185
|
+
else:
|
186
|
+
tuple_indices = [0, 1, 0]
|
187
|
+
input_predictions = ["pred_cond", "pred_uncond", "pred_cond_skip"]
|
188
|
+
data_batches = []
|
189
|
+
for i in range(self.num_conditions):
|
190
|
+
data_batch = self._prepare_batch(input_fields, data, tuple_indices[i], input_predictions[i])
|
191
|
+
data_batches.append(data_batch)
|
192
|
+
return data_batches
|
193
|
+
|
194
|
+
# Copied from diffusers.guiders.skip_layer_guidance.SkipLayerGuidance.forward
|
195
|
+
def forward(
|
196
|
+
self,
|
197
|
+
pred_cond: torch.Tensor,
|
198
|
+
pred_uncond: Optional[torch.Tensor] = None,
|
199
|
+
pred_cond_skip: Optional[torch.Tensor] = None,
|
200
|
+
) -> torch.Tensor:
|
201
|
+
pred = None
|
202
|
+
|
203
|
+
if not self._is_cfg_enabled() and not self._is_slg_enabled():
|
204
|
+
pred = pred_cond
|
205
|
+
elif not self._is_cfg_enabled():
|
206
|
+
shift = pred_cond - pred_cond_skip
|
207
|
+
pred = pred_cond if self.use_original_formulation else pred_cond_skip
|
208
|
+
pred = pred + self.skip_layer_guidance_scale * shift
|
209
|
+
elif not self._is_slg_enabled():
|
210
|
+
shift = pred_cond - pred_uncond
|
211
|
+
pred = pred_cond if self.use_original_formulation else pred_uncond
|
212
|
+
pred = pred + self.guidance_scale * shift
|
213
|
+
else:
|
214
|
+
shift = pred_cond - pred_uncond
|
215
|
+
shift_skip = pred_cond - pred_cond_skip
|
216
|
+
pred = pred_cond if self.use_original_formulation else pred_uncond
|
217
|
+
pred = pred + self.guidance_scale * shift + self.skip_layer_guidance_scale * shift_skip
|
218
|
+
|
219
|
+
if self.guidance_rescale > 0.0:
|
220
|
+
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
|
221
|
+
|
222
|
+
return pred, {}
|
223
|
+
|
224
|
+
@property
|
225
|
+
# Copied from diffusers.guiders.skip_layer_guidance.SkipLayerGuidance.is_conditional
|
226
|
+
def is_conditional(self) -> bool:
|
227
|
+
return self._count_prepared == 1 or self._count_prepared == 3
|
228
|
+
|
229
|
+
@property
|
230
|
+
# Copied from diffusers.guiders.skip_layer_guidance.SkipLayerGuidance.num_conditions
|
231
|
+
def num_conditions(self) -> int:
|
232
|
+
num_conditions = 1
|
233
|
+
if self._is_cfg_enabled():
|
234
|
+
num_conditions += 1
|
235
|
+
if self._is_slg_enabled():
|
236
|
+
num_conditions += 1
|
237
|
+
return num_conditions
|
238
|
+
|
239
|
+
# Copied from diffusers.guiders.skip_layer_guidance.SkipLayerGuidance._is_cfg_enabled
|
240
|
+
def _is_cfg_enabled(self) -> bool:
|
241
|
+
if not self._enabled:
|
242
|
+
return False
|
243
|
+
|
244
|
+
is_within_range = True
|
245
|
+
if self._num_inference_steps is not None:
|
246
|
+
skip_start_step = int(self._start * self._num_inference_steps)
|
247
|
+
skip_stop_step = int(self._stop * self._num_inference_steps)
|
248
|
+
is_within_range = skip_start_step <= self._step < skip_stop_step
|
249
|
+
|
250
|
+
is_close = False
|
251
|
+
if self.use_original_formulation:
|
252
|
+
is_close = math.isclose(self.guidance_scale, 0.0)
|
253
|
+
else:
|
254
|
+
is_close = math.isclose(self.guidance_scale, 1.0)
|
255
|
+
|
256
|
+
return is_within_range and not is_close
|
257
|
+
|
258
|
+
# Copied from diffusers.guiders.skip_layer_guidance.SkipLayerGuidance._is_slg_enabled
|
259
|
+
def _is_slg_enabled(self) -> bool:
|
260
|
+
if not self._enabled:
|
261
|
+
return False
|
262
|
+
|
263
|
+
is_within_range = True
|
264
|
+
if self._num_inference_steps is not None:
|
265
|
+
skip_start_step = int(self.skip_layer_guidance_start * self._num_inference_steps)
|
266
|
+
skip_stop_step = int(self.skip_layer_guidance_stop * self._num_inference_steps)
|
267
|
+
is_within_range = skip_start_step < self._step < skip_stop_step
|
268
|
+
|
269
|
+
is_zero = math.isclose(self.skip_layer_guidance_scale, 0.0)
|
270
|
+
|
271
|
+
return is_within_range and not is_zero
|
@@ -0,0 +1,262 @@
|
|
1
|
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import math
|
16
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
|
20
|
+
from ..configuration_utils import register_to_config
|
21
|
+
from ..hooks import HookRegistry, LayerSkipConfig
|
22
|
+
from ..hooks.layer_skip import _apply_layer_skip_hook
|
23
|
+
from .guider_utils import BaseGuidance, rescale_noise_cfg
|
24
|
+
|
25
|
+
|
26
|
+
if TYPE_CHECKING:
|
27
|
+
from ..modular_pipelines.modular_pipeline import BlockState
|
28
|
+
|
29
|
+
|
30
|
+
class SkipLayerGuidance(BaseGuidance):
|
31
|
+
"""
|
32
|
+
Skip Layer Guidance (SLG): https://github.com/Stability-AI/sd3.5
|
33
|
+
|
34
|
+
Spatio-Temporal Guidance (STG): https://huggingface.co/papers/2411.18664
|
35
|
+
|
36
|
+
SLG was introduced by StabilityAI for improving structure and anotomy coherence in generated images. It works by
|
37
|
+
skipping the forward pass of specified transformer blocks during the denoising process on an additional conditional
|
38
|
+
batch of data, apart from the conditional and unconditional batches already used in CFG
|
39
|
+
([~guiders.classifier_free_guidance.ClassifierFreeGuidance]), and then scaling and shifting the CFG predictions
|
40
|
+
based on the difference between conditional without skipping and conditional with skipping predictions.
|
41
|
+
|
42
|
+
The intution behind SLG can be thought of as moving the CFG predicted distribution estimates further away from
|
43
|
+
worse versions of the conditional distribution estimates (because skipping layers is equivalent to using a worse
|
44
|
+
version of the model for the conditional prediction).
|
45
|
+
|
46
|
+
STG is an improvement and follow-up work combining ideas from SLG, PAG and similar techniques for improving
|
47
|
+
generation quality in video diffusion models.
|
48
|
+
|
49
|
+
Additional reading:
|
50
|
+
- [Guiding a Diffusion Model with a Bad Version of Itself](https://huggingface.co/papers/2406.02507)
|
51
|
+
|
52
|
+
The values for `skip_layer_guidance_scale`, `skip_layer_guidance_start`, and `skip_layer_guidance_stop` are
|
53
|
+
defaulted to the recommendations by StabilityAI for Stable Diffusion 3.5 Medium.
|
54
|
+
|
55
|
+
Args:
|
56
|
+
guidance_scale (`float`, defaults to `7.5`):
|
57
|
+
The scale parameter for classifier-free guidance. Higher values result in stronger conditioning on the text
|
58
|
+
prompt, while lower values allow for more freedom in generation. Higher values may lead to saturation and
|
59
|
+
deterioration of image quality.
|
60
|
+
skip_layer_guidance_scale (`float`, defaults to `2.8`):
|
61
|
+
The scale parameter for skip layer guidance. Anatomy and structure coherence may improve with higher
|
62
|
+
values, but it may also lead to overexposure and saturation.
|
63
|
+
skip_layer_guidance_start (`float`, defaults to `0.01`):
|
64
|
+
The fraction of the total number of denoising steps after which skip layer guidance starts.
|
65
|
+
skip_layer_guidance_stop (`float`, defaults to `0.2`):
|
66
|
+
The fraction of the total number of denoising steps after which skip layer guidance stops.
|
67
|
+
skip_layer_guidance_layers (`int` or `List[int]`, *optional*):
|
68
|
+
The layer indices to apply skip layer guidance to. Can be a single integer or a list of integers. If not
|
69
|
+
provided, `skip_layer_config` must be provided. The recommended values are `[7, 8, 9]` for Stable Diffusion
|
70
|
+
3.5 Medium.
|
71
|
+
skip_layer_config (`LayerSkipConfig` or `List[LayerSkipConfig]`, *optional*):
|
72
|
+
The configuration for the skip layer guidance. Can be a single `LayerSkipConfig` or a list of
|
73
|
+
`LayerSkipConfig`. If not provided, `skip_layer_guidance_layers` must be provided.
|
74
|
+
guidance_rescale (`float`, defaults to `0.0`):
|
75
|
+
The rescale factor applied to the noise predictions. This is used to improve image quality and fix
|
76
|
+
overexposure. Based on Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
77
|
+
Flawed](https://huggingface.co/papers/2305.08891).
|
78
|
+
use_original_formulation (`bool`, defaults to `False`):
|
79
|
+
Whether to use the original formulation of classifier-free guidance as proposed in the paper. By default,
|
80
|
+
we use the diffusers-native implementation that has been in the codebase for a long time. See
|
81
|
+
[~guiders.classifier_free_guidance.ClassifierFreeGuidance] for more details.
|
82
|
+
start (`float`, defaults to `0.01`):
|
83
|
+
The fraction of the total number of denoising steps after which guidance starts.
|
84
|
+
stop (`float`, defaults to `0.2`):
|
85
|
+
The fraction of the total number of denoising steps after which guidance stops.
|
86
|
+
"""
|
87
|
+
|
88
|
+
_input_predictions = ["pred_cond", "pred_uncond", "pred_cond_skip"]
|
89
|
+
|
90
|
+
@register_to_config
|
91
|
+
def __init__(
|
92
|
+
self,
|
93
|
+
guidance_scale: float = 7.5,
|
94
|
+
skip_layer_guidance_scale: float = 2.8,
|
95
|
+
skip_layer_guidance_start: float = 0.01,
|
96
|
+
skip_layer_guidance_stop: float = 0.2,
|
97
|
+
skip_layer_guidance_layers: Optional[Union[int, List[int]]] = None,
|
98
|
+
skip_layer_config: Union[LayerSkipConfig, List[LayerSkipConfig], Dict[str, Any]] = None,
|
99
|
+
guidance_rescale: float = 0.0,
|
100
|
+
use_original_formulation: bool = False,
|
101
|
+
start: float = 0.0,
|
102
|
+
stop: float = 1.0,
|
103
|
+
):
|
104
|
+
super().__init__(start, stop)
|
105
|
+
|
106
|
+
self.guidance_scale = guidance_scale
|
107
|
+
self.skip_layer_guidance_scale = skip_layer_guidance_scale
|
108
|
+
self.skip_layer_guidance_start = skip_layer_guidance_start
|
109
|
+
self.skip_layer_guidance_stop = skip_layer_guidance_stop
|
110
|
+
self.guidance_rescale = guidance_rescale
|
111
|
+
self.use_original_formulation = use_original_formulation
|
112
|
+
|
113
|
+
if not (0.0 <= skip_layer_guidance_start < 1.0):
|
114
|
+
raise ValueError(
|
115
|
+
f"Expected `skip_layer_guidance_start` to be between 0.0 and 1.0, but got {skip_layer_guidance_start}."
|
116
|
+
)
|
117
|
+
if not (skip_layer_guidance_start <= skip_layer_guidance_stop <= 1.0):
|
118
|
+
raise ValueError(
|
119
|
+
f"Expected `skip_layer_guidance_stop` to be between 0.0 and 1.0, but got {skip_layer_guidance_stop}."
|
120
|
+
)
|
121
|
+
|
122
|
+
if skip_layer_guidance_layers is None and skip_layer_config is None:
|
123
|
+
raise ValueError(
|
124
|
+
"Either `skip_layer_guidance_layers` or `skip_layer_config` must be provided to enable Skip Layer Guidance."
|
125
|
+
)
|
126
|
+
if skip_layer_guidance_layers is not None and skip_layer_config is not None:
|
127
|
+
raise ValueError("Only one of `skip_layer_guidance_layers` or `skip_layer_config` can be provided.")
|
128
|
+
|
129
|
+
if skip_layer_guidance_layers is not None:
|
130
|
+
if isinstance(skip_layer_guidance_layers, int):
|
131
|
+
skip_layer_guidance_layers = [skip_layer_guidance_layers]
|
132
|
+
if not isinstance(skip_layer_guidance_layers, list):
|
133
|
+
raise ValueError(
|
134
|
+
f"Expected `skip_layer_guidance_layers` to be an int or a list of ints, but got {type(skip_layer_guidance_layers)}."
|
135
|
+
)
|
136
|
+
skip_layer_config = [LayerSkipConfig(layer, fqn="auto") for layer in skip_layer_guidance_layers]
|
137
|
+
|
138
|
+
if isinstance(skip_layer_config, dict):
|
139
|
+
skip_layer_config = LayerSkipConfig.from_dict(skip_layer_config)
|
140
|
+
|
141
|
+
if isinstance(skip_layer_config, LayerSkipConfig):
|
142
|
+
skip_layer_config = [skip_layer_config]
|
143
|
+
|
144
|
+
if not isinstance(skip_layer_config, list):
|
145
|
+
raise ValueError(
|
146
|
+
f"Expected `skip_layer_config` to be a LayerSkipConfig or a list of LayerSkipConfig, but got {type(skip_layer_config)}."
|
147
|
+
)
|
148
|
+
elif isinstance(next(iter(skip_layer_config), None), dict):
|
149
|
+
skip_layer_config = [LayerSkipConfig.from_dict(config) for config in skip_layer_config]
|
150
|
+
|
151
|
+
self.skip_layer_config = skip_layer_config
|
152
|
+
self._skip_layer_hook_names = [f"SkipLayerGuidance_{i}" for i in range(len(self.skip_layer_config))]
|
153
|
+
|
154
|
+
def prepare_models(self, denoiser: torch.nn.Module) -> None:
|
155
|
+
self._count_prepared += 1
|
156
|
+
if self._is_slg_enabled() and self.is_conditional and self._count_prepared > 1:
|
157
|
+
for name, config in zip(self._skip_layer_hook_names, self.skip_layer_config):
|
158
|
+
_apply_layer_skip_hook(denoiser, config, name=name)
|
159
|
+
|
160
|
+
def cleanup_models(self, denoiser: torch.nn.Module) -> None:
|
161
|
+
if self._is_slg_enabled() and self.is_conditional and self._count_prepared > 1:
|
162
|
+
registry = HookRegistry.check_if_exists_or_initialize(denoiser)
|
163
|
+
# Remove the hooks after inference
|
164
|
+
for hook_name in self._skip_layer_hook_names:
|
165
|
+
registry.remove_hook(hook_name, recurse=True)
|
166
|
+
|
167
|
+
def prepare_inputs(
|
168
|
+
self, data: "BlockState", input_fields: Optional[Dict[str, Union[str, Tuple[str, str]]]] = None
|
169
|
+
) -> List["BlockState"]:
|
170
|
+
if input_fields is None:
|
171
|
+
input_fields = self._input_fields
|
172
|
+
|
173
|
+
if self.num_conditions == 1:
|
174
|
+
tuple_indices = [0]
|
175
|
+
input_predictions = ["pred_cond"]
|
176
|
+
elif self.num_conditions == 2:
|
177
|
+
tuple_indices = [0, 1]
|
178
|
+
input_predictions = (
|
179
|
+
["pred_cond", "pred_uncond"] if self._is_cfg_enabled() else ["pred_cond", "pred_cond_skip"]
|
180
|
+
)
|
181
|
+
else:
|
182
|
+
tuple_indices = [0, 1, 0]
|
183
|
+
input_predictions = ["pred_cond", "pred_uncond", "pred_cond_skip"]
|
184
|
+
data_batches = []
|
185
|
+
for i in range(self.num_conditions):
|
186
|
+
data_batch = self._prepare_batch(input_fields, data, tuple_indices[i], input_predictions[i])
|
187
|
+
data_batches.append(data_batch)
|
188
|
+
return data_batches
|
189
|
+
|
190
|
+
def forward(
|
191
|
+
self,
|
192
|
+
pred_cond: torch.Tensor,
|
193
|
+
pred_uncond: Optional[torch.Tensor] = None,
|
194
|
+
pred_cond_skip: Optional[torch.Tensor] = None,
|
195
|
+
) -> torch.Tensor:
|
196
|
+
pred = None
|
197
|
+
|
198
|
+
if not self._is_cfg_enabled() and not self._is_slg_enabled():
|
199
|
+
pred = pred_cond
|
200
|
+
elif not self._is_cfg_enabled():
|
201
|
+
shift = pred_cond - pred_cond_skip
|
202
|
+
pred = pred_cond if self.use_original_formulation else pred_cond_skip
|
203
|
+
pred = pred + self.skip_layer_guidance_scale * shift
|
204
|
+
elif not self._is_slg_enabled():
|
205
|
+
shift = pred_cond - pred_uncond
|
206
|
+
pred = pred_cond if self.use_original_formulation else pred_uncond
|
207
|
+
pred = pred + self.guidance_scale * shift
|
208
|
+
else:
|
209
|
+
shift = pred_cond - pred_uncond
|
210
|
+
shift_skip = pred_cond - pred_cond_skip
|
211
|
+
pred = pred_cond if self.use_original_formulation else pred_uncond
|
212
|
+
pred = pred + self.guidance_scale * shift + self.skip_layer_guidance_scale * shift_skip
|
213
|
+
|
214
|
+
if self.guidance_rescale > 0.0:
|
215
|
+
pred = rescale_noise_cfg(pred, pred_cond, self.guidance_rescale)
|
216
|
+
|
217
|
+
return pred, {}
|
218
|
+
|
219
|
+
@property
|
220
|
+
def is_conditional(self) -> bool:
|
221
|
+
return self._count_prepared == 1 or self._count_prepared == 3
|
222
|
+
|
223
|
+
@property
|
224
|
+
def num_conditions(self) -> int:
|
225
|
+
num_conditions = 1
|
226
|
+
if self._is_cfg_enabled():
|
227
|
+
num_conditions += 1
|
228
|
+
if self._is_slg_enabled():
|
229
|
+
num_conditions += 1
|
230
|
+
return num_conditions
|
231
|
+
|
232
|
+
def _is_cfg_enabled(self) -> bool:
|
233
|
+
if not self._enabled:
|
234
|
+
return False
|
235
|
+
|
236
|
+
is_within_range = True
|
237
|
+
if self._num_inference_steps is not None:
|
238
|
+
skip_start_step = int(self._start * self._num_inference_steps)
|
239
|
+
skip_stop_step = int(self._stop * self._num_inference_steps)
|
240
|
+
is_within_range = skip_start_step <= self._step < skip_stop_step
|
241
|
+
|
242
|
+
is_close = False
|
243
|
+
if self.use_original_formulation:
|
244
|
+
is_close = math.isclose(self.guidance_scale, 0.0)
|
245
|
+
else:
|
246
|
+
is_close = math.isclose(self.guidance_scale, 1.0)
|
247
|
+
|
248
|
+
return is_within_range and not is_close
|
249
|
+
|
250
|
+
def _is_slg_enabled(self) -> bool:
|
251
|
+
if not self._enabled:
|
252
|
+
return False
|
253
|
+
|
254
|
+
is_within_range = True
|
255
|
+
if self._num_inference_steps is not None:
|
256
|
+
skip_start_step = int(self.skip_layer_guidance_start * self._num_inference_steps)
|
257
|
+
skip_stop_step = int(self.skip_layer_guidance_stop * self._num_inference_steps)
|
258
|
+
is_within_range = skip_start_step < self._step < skip_stop_step
|
259
|
+
|
260
|
+
is_zero = math.isclose(self.skip_layer_guidance_scale, 0.0)
|
261
|
+
|
262
|
+
return is_within_range and not is_zero
|