diffusers 0.33.1__py3-none-any.whl → 0.35.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (551) hide show
  1. diffusers/__init__.py +145 -1
  2. diffusers/callbacks.py +35 -0
  3. diffusers/commands/__init__.py +1 -1
  4. diffusers/commands/custom_blocks.py +134 -0
  5. diffusers/commands/diffusers_cli.py +3 -1
  6. diffusers/commands/env.py +1 -1
  7. diffusers/commands/fp16_safetensors.py +2 -2
  8. diffusers/configuration_utils.py +11 -2
  9. diffusers/dependency_versions_check.py +1 -1
  10. diffusers/dependency_versions_table.py +3 -3
  11. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  12. diffusers/guiders/__init__.py +41 -0
  13. diffusers/guiders/adaptive_projected_guidance.py +188 -0
  14. diffusers/guiders/auto_guidance.py +190 -0
  15. diffusers/guiders/classifier_free_guidance.py +141 -0
  16. diffusers/guiders/classifier_free_zero_star_guidance.py +152 -0
  17. diffusers/guiders/frequency_decoupled_guidance.py +327 -0
  18. diffusers/guiders/guider_utils.py +309 -0
  19. diffusers/guiders/perturbed_attention_guidance.py +271 -0
  20. diffusers/guiders/skip_layer_guidance.py +262 -0
  21. diffusers/guiders/smoothed_energy_guidance.py +251 -0
  22. diffusers/guiders/tangential_classifier_free_guidance.py +143 -0
  23. diffusers/hooks/__init__.py +17 -0
  24. diffusers/hooks/_common.py +56 -0
  25. diffusers/hooks/_helpers.py +293 -0
  26. diffusers/hooks/faster_cache.py +9 -8
  27. diffusers/hooks/first_block_cache.py +259 -0
  28. diffusers/hooks/group_offloading.py +332 -227
  29. diffusers/hooks/hooks.py +58 -3
  30. diffusers/hooks/layer_skip.py +263 -0
  31. diffusers/hooks/layerwise_casting.py +5 -10
  32. diffusers/hooks/pyramid_attention_broadcast.py +15 -12
  33. diffusers/hooks/smoothed_energy_guidance_utils.py +167 -0
  34. diffusers/hooks/utils.py +43 -0
  35. diffusers/image_processor.py +7 -2
  36. diffusers/loaders/__init__.py +10 -0
  37. diffusers/loaders/ip_adapter.py +260 -18
  38. diffusers/loaders/lora_base.py +261 -127
  39. diffusers/loaders/lora_conversion_utils.py +657 -35
  40. diffusers/loaders/lora_pipeline.py +2778 -1246
  41. diffusers/loaders/peft.py +78 -112
  42. diffusers/loaders/single_file.py +2 -2
  43. diffusers/loaders/single_file_model.py +64 -15
  44. diffusers/loaders/single_file_utils.py +395 -7
  45. diffusers/loaders/textual_inversion.py +3 -2
  46. diffusers/loaders/transformer_flux.py +10 -11
  47. diffusers/loaders/transformer_sd3.py +8 -3
  48. diffusers/loaders/unet.py +24 -21
  49. diffusers/loaders/unet_loader_utils.py +6 -3
  50. diffusers/loaders/utils.py +1 -1
  51. diffusers/models/__init__.py +23 -1
  52. diffusers/models/activations.py +5 -5
  53. diffusers/models/adapter.py +2 -3
  54. diffusers/models/attention.py +488 -7
  55. diffusers/models/attention_dispatch.py +1218 -0
  56. diffusers/models/attention_flax.py +10 -10
  57. diffusers/models/attention_processor.py +113 -667
  58. diffusers/models/auto_model.py +49 -12
  59. diffusers/models/autoencoders/__init__.py +2 -0
  60. diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
  61. diffusers/models/autoencoders/autoencoder_dc.py +17 -4
  62. diffusers/models/autoencoders/autoencoder_kl.py +5 -5
  63. diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
  64. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
  65. diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1110 -0
  66. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
  67. diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
  68. diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
  69. diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
  70. diffusers/models/autoencoders/autoencoder_kl_qwenimage.py +1070 -0
  71. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
  72. diffusers/models/autoencoders/autoencoder_kl_wan.py +626 -62
  73. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
  74. diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
  75. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  76. diffusers/models/autoencoders/vae.py +13 -2
  77. diffusers/models/autoencoders/vq_model.py +2 -2
  78. diffusers/models/cache_utils.py +32 -10
  79. diffusers/models/controlnet.py +1 -1
  80. diffusers/models/controlnet_flux.py +1 -1
  81. diffusers/models/controlnet_sd3.py +1 -1
  82. diffusers/models/controlnet_sparsectrl.py +1 -1
  83. diffusers/models/controlnets/__init__.py +1 -0
  84. diffusers/models/controlnets/controlnet.py +3 -3
  85. diffusers/models/controlnets/controlnet_flax.py +1 -1
  86. diffusers/models/controlnets/controlnet_flux.py +21 -20
  87. diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
  88. diffusers/models/controlnets/controlnet_sana.py +290 -0
  89. diffusers/models/controlnets/controlnet_sd3.py +1 -1
  90. diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
  91. diffusers/models/controlnets/controlnet_union.py +5 -5
  92. diffusers/models/controlnets/controlnet_xs.py +7 -7
  93. diffusers/models/controlnets/multicontrolnet.py +4 -5
  94. diffusers/models/controlnets/multicontrolnet_union.py +5 -6
  95. diffusers/models/downsampling.py +2 -2
  96. diffusers/models/embeddings.py +36 -46
  97. diffusers/models/embeddings_flax.py +2 -2
  98. diffusers/models/lora.py +3 -3
  99. diffusers/models/model_loading_utils.py +233 -1
  100. diffusers/models/modeling_flax_utils.py +1 -2
  101. diffusers/models/modeling_utils.py +203 -108
  102. diffusers/models/normalization.py +4 -4
  103. diffusers/models/resnet.py +2 -2
  104. diffusers/models/resnet_flax.py +1 -1
  105. diffusers/models/transformers/__init__.py +7 -0
  106. diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
  107. diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
  108. diffusers/models/transformers/consisid_transformer_3d.py +1 -1
  109. diffusers/models/transformers/dit_transformer_2d.py +2 -2
  110. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  111. diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
  112. diffusers/models/transformers/latte_transformer_3d.py +4 -5
  113. diffusers/models/transformers/lumina_nextdit2d.py +2 -2
  114. diffusers/models/transformers/pixart_transformer_2d.py +3 -3
  115. diffusers/models/transformers/prior_transformer.py +1 -1
  116. diffusers/models/transformers/sana_transformer.py +8 -3
  117. diffusers/models/transformers/stable_audio_transformer.py +5 -9
  118. diffusers/models/transformers/t5_film_transformer.py +3 -3
  119. diffusers/models/transformers/transformer_2d.py +1 -1
  120. diffusers/models/transformers/transformer_allegro.py +1 -1
  121. diffusers/models/transformers/transformer_chroma.py +641 -0
  122. diffusers/models/transformers/transformer_cogview3plus.py +5 -10
  123. diffusers/models/transformers/transformer_cogview4.py +353 -27
  124. diffusers/models/transformers/transformer_cosmos.py +586 -0
  125. diffusers/models/transformers/transformer_flux.py +376 -138
  126. diffusers/models/transformers/transformer_hidream_image.py +942 -0
  127. diffusers/models/transformers/transformer_hunyuan_video.py +12 -8
  128. diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
  129. diffusers/models/transformers/transformer_ltx.py +105 -24
  130. diffusers/models/transformers/transformer_lumina2.py +1 -1
  131. diffusers/models/transformers/transformer_mochi.py +1 -1
  132. diffusers/models/transformers/transformer_omnigen.py +2 -2
  133. diffusers/models/transformers/transformer_qwenimage.py +645 -0
  134. diffusers/models/transformers/transformer_sd3.py +7 -7
  135. diffusers/models/transformers/transformer_skyreels_v2.py +607 -0
  136. diffusers/models/transformers/transformer_temporal.py +1 -1
  137. diffusers/models/transformers/transformer_wan.py +316 -87
  138. diffusers/models/transformers/transformer_wan_vace.py +387 -0
  139. diffusers/models/unets/unet_1d.py +1 -1
  140. diffusers/models/unets/unet_1d_blocks.py +1 -1
  141. diffusers/models/unets/unet_2d.py +1 -1
  142. diffusers/models/unets/unet_2d_blocks.py +1 -1
  143. diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
  144. diffusers/models/unets/unet_2d_condition.py +4 -3
  145. diffusers/models/unets/unet_2d_condition_flax.py +2 -2
  146. diffusers/models/unets/unet_3d_blocks.py +1 -1
  147. diffusers/models/unets/unet_3d_condition.py +3 -3
  148. diffusers/models/unets/unet_i2vgen_xl.py +3 -3
  149. diffusers/models/unets/unet_kandinsky3.py +1 -1
  150. diffusers/models/unets/unet_motion_model.py +2 -2
  151. diffusers/models/unets/unet_stable_cascade.py +1 -1
  152. diffusers/models/upsampling.py +2 -2
  153. diffusers/models/vae_flax.py +2 -2
  154. diffusers/models/vq_model.py +1 -1
  155. diffusers/modular_pipelines/__init__.py +83 -0
  156. diffusers/modular_pipelines/components_manager.py +1068 -0
  157. diffusers/modular_pipelines/flux/__init__.py +66 -0
  158. diffusers/modular_pipelines/flux/before_denoise.py +689 -0
  159. diffusers/modular_pipelines/flux/decoders.py +109 -0
  160. diffusers/modular_pipelines/flux/denoise.py +227 -0
  161. diffusers/modular_pipelines/flux/encoders.py +412 -0
  162. diffusers/modular_pipelines/flux/modular_blocks.py +181 -0
  163. diffusers/modular_pipelines/flux/modular_pipeline.py +59 -0
  164. diffusers/modular_pipelines/modular_pipeline.py +2446 -0
  165. diffusers/modular_pipelines/modular_pipeline_utils.py +672 -0
  166. diffusers/modular_pipelines/node_utils.py +665 -0
  167. diffusers/modular_pipelines/stable_diffusion_xl/__init__.py +77 -0
  168. diffusers/modular_pipelines/stable_diffusion_xl/before_denoise.py +1874 -0
  169. diffusers/modular_pipelines/stable_diffusion_xl/decoders.py +208 -0
  170. diffusers/modular_pipelines/stable_diffusion_xl/denoise.py +771 -0
  171. diffusers/modular_pipelines/stable_diffusion_xl/encoders.py +887 -0
  172. diffusers/modular_pipelines/stable_diffusion_xl/modular_blocks.py +380 -0
  173. diffusers/modular_pipelines/stable_diffusion_xl/modular_pipeline.py +365 -0
  174. diffusers/modular_pipelines/wan/__init__.py +66 -0
  175. diffusers/modular_pipelines/wan/before_denoise.py +365 -0
  176. diffusers/modular_pipelines/wan/decoders.py +105 -0
  177. diffusers/modular_pipelines/wan/denoise.py +261 -0
  178. diffusers/modular_pipelines/wan/encoders.py +242 -0
  179. diffusers/modular_pipelines/wan/modular_blocks.py +144 -0
  180. diffusers/modular_pipelines/wan/modular_pipeline.py +90 -0
  181. diffusers/pipelines/__init__.py +68 -6
  182. diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
  183. diffusers/pipelines/amused/pipeline_amused.py +7 -6
  184. diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
  185. diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
  186. diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
  187. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
  188. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
  189. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
  190. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
  191. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
  192. diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
  193. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  194. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +22 -13
  195. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
  196. diffusers/pipelines/auto_pipeline.py +23 -20
  197. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  198. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  199. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
  200. diffusers/pipelines/chroma/__init__.py +49 -0
  201. diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
  202. diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
  203. diffusers/pipelines/chroma/pipeline_output.py +21 -0
  204. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +17 -16
  205. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +17 -16
  206. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +18 -17
  207. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +17 -16
  208. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
  209. diffusers/pipelines/cogview4/pipeline_cogview4.py +23 -22
  210. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
  211. diffusers/pipelines/consisid/consisid_utils.py +2 -2
  212. diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
  213. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  214. diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
  215. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +11 -10
  216. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
  217. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
  218. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
  219. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
  220. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
  221. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +226 -107
  222. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +12 -8
  223. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +207 -105
  224. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  225. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
  226. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
  227. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  228. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
  229. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
  230. diffusers/pipelines/cosmos/__init__.py +54 -0
  231. diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
  232. diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
  233. diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
  234. diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
  235. diffusers/pipelines/cosmos/pipeline_output.py +40 -0
  236. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
  237. diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
  238. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  239. diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
  240. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
  241. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
  242. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
  243. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
  244. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
  245. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
  246. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
  247. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  248. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
  249. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  250. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
  251. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
  252. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  253. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  254. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  255. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  256. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  257. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +8 -8
  258. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
  259. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
  260. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
  261. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
  262. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
  263. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  264. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
  265. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
  266. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
  267. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
  268. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
  269. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  270. diffusers/pipelines/dit/pipeline_dit.py +4 -2
  271. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
  272. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
  273. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
  274. diffusers/pipelines/flux/__init__.py +4 -0
  275. diffusers/pipelines/flux/modeling_flux.py +1 -1
  276. diffusers/pipelines/flux/pipeline_flux.py +37 -36
  277. diffusers/pipelines/flux/pipeline_flux_control.py +9 -9
  278. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +7 -7
  279. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +7 -7
  280. diffusers/pipelines/flux/pipeline_flux_controlnet.py +7 -7
  281. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +31 -23
  282. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +3 -2
  283. diffusers/pipelines/flux/pipeline_flux_fill.py +7 -7
  284. diffusers/pipelines/flux/pipeline_flux_img2img.py +40 -7
  285. diffusers/pipelines/flux/pipeline_flux_inpaint.py +12 -7
  286. diffusers/pipelines/flux/pipeline_flux_kontext.py +1134 -0
  287. diffusers/pipelines/flux/pipeline_flux_kontext_inpaint.py +1460 -0
  288. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +2 -2
  289. diffusers/pipelines/flux/pipeline_output.py +6 -4
  290. diffusers/pipelines/free_init_utils.py +2 -2
  291. diffusers/pipelines/free_noise_utils.py +3 -3
  292. diffusers/pipelines/hidream_image/__init__.py +47 -0
  293. diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
  294. diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
  295. diffusers/pipelines/hunyuan_video/__init__.py +2 -0
  296. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
  297. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +26 -25
  298. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
  299. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
  300. diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
  301. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
  302. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
  303. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
  304. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
  305. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
  306. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
  307. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
  308. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  309. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
  310. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
  311. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
  312. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
  313. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
  314. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
  315. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
  316. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
  317. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
  318. diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
  319. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
  320. diffusers/pipelines/kolors/text_encoder.py +3 -3
  321. diffusers/pipelines/kolors/tokenizer.py +1 -1
  322. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
  323. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
  324. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  325. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
  326. diffusers/pipelines/latte/pipeline_latte.py +12 -12
  327. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
  328. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
  329. diffusers/pipelines/ltx/__init__.py +4 -0
  330. diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
  331. diffusers/pipelines/ltx/pipeline_ltx.py +64 -18
  332. diffusers/pipelines/ltx/pipeline_ltx_condition.py +117 -38
  333. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +63 -18
  334. diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
  335. diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
  336. diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
  337. diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
  338. diffusers/pipelines/mochi/pipeline_mochi.py +15 -14
  339. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
  340. diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
  341. diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
  342. diffusers/pipelines/onnx_utils.py +15 -2
  343. diffusers/pipelines/pag/pag_utils.py +2 -2
  344. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
  345. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
  346. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
  347. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
  348. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
  349. diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
  350. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
  351. diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
  352. diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
  353. diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
  354. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
  355. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
  356. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
  357. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
  358. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
  359. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
  360. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
  361. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  362. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
  363. diffusers/pipelines/pia/pipeline_pia.py +8 -6
  364. diffusers/pipelines/pipeline_flax_utils.py +5 -6
  365. diffusers/pipelines/pipeline_loading_utils.py +113 -15
  366. diffusers/pipelines/pipeline_utils.py +127 -48
  367. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +14 -12
  368. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +31 -11
  369. diffusers/pipelines/qwenimage/__init__.py +55 -0
  370. diffusers/pipelines/qwenimage/pipeline_output.py +21 -0
  371. diffusers/pipelines/qwenimage/pipeline_qwenimage.py +726 -0
  372. diffusers/pipelines/qwenimage/pipeline_qwenimage_edit.py +882 -0
  373. diffusers/pipelines/qwenimage/pipeline_qwenimage_img2img.py +829 -0
  374. diffusers/pipelines/qwenimage/pipeline_qwenimage_inpaint.py +1015 -0
  375. diffusers/pipelines/sana/__init__.py +4 -0
  376. diffusers/pipelines/sana/pipeline_sana.py +23 -21
  377. diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
  378. diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
  379. diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
  380. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
  381. diffusers/pipelines/shap_e/camera.py +1 -1
  382. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  383. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  384. diffusers/pipelines/shap_e/renderer.py +3 -3
  385. diffusers/pipelines/skyreels_v2/__init__.py +59 -0
  386. diffusers/pipelines/skyreels_v2/pipeline_output.py +20 -0
  387. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2.py +610 -0
  388. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing.py +978 -0
  389. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_i2v.py +1059 -0
  390. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_v2v.py +1063 -0
  391. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_i2v.py +745 -0
  392. diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
  393. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
  394. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
  395. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
  396. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
  397. diffusers/pipelines/stable_diffusion/__init__.py +0 -7
  398. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  399. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
  400. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  401. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
  402. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  403. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +12 -11
  404. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
  405. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +11 -11
  406. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +10 -10
  407. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +10 -9
  408. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
  409. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
  410. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
  411. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
  412. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
  413. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
  414. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
  415. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
  416. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
  417. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  418. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  419. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  420. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +13 -12
  421. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
  422. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
  423. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
  424. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
  425. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
  426. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
  427. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
  428. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
  429. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
  430. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
  431. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
  432. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  433. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
  434. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  435. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
  436. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
  437. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
  438. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
  439. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
  440. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
  441. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
  442. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
  443. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
  444. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
  445. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
  446. diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
  447. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
  448. diffusers/pipelines/unclip/text_proj.py +2 -2
  449. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
  450. diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
  451. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
  452. diffusers/pipelines/visualcloze/__init__.py +52 -0
  453. diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
  454. diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
  455. diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
  456. diffusers/pipelines/wan/__init__.py +2 -0
  457. diffusers/pipelines/wan/pipeline_wan.py +91 -30
  458. diffusers/pipelines/wan/pipeline_wan_i2v.py +145 -45
  459. diffusers/pipelines/wan/pipeline_wan_vace.py +975 -0
  460. diffusers/pipelines/wan/pipeline_wan_video2video.py +14 -16
  461. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  462. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
  463. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  464. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  465. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
  466. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
  467. diffusers/quantizers/__init__.py +3 -1
  468. diffusers/quantizers/base.py +17 -1
  469. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
  470. diffusers/quantizers/bitsandbytes/utils.py +10 -7
  471. diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
  472. diffusers/quantizers/gguf/utils.py +108 -16
  473. diffusers/quantizers/pipe_quant_config.py +202 -0
  474. diffusers/quantizers/quantization_config.py +18 -16
  475. diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
  476. diffusers/quantizers/torchao/torchao_quantizer.py +31 -1
  477. diffusers/schedulers/__init__.py +3 -1
  478. diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
  479. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  480. diffusers/schedulers/scheduling_consistency_models.py +1 -1
  481. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
  482. diffusers/schedulers/scheduling_ddim.py +8 -8
  483. diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
  484. diffusers/schedulers/scheduling_ddim_flax.py +6 -6
  485. diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
  486. diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
  487. diffusers/schedulers/scheduling_ddpm.py +9 -9
  488. diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
  489. diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
  490. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
  491. diffusers/schedulers/scheduling_deis_multistep.py +16 -9
  492. diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
  493. diffusers/schedulers/scheduling_dpmsolver_multistep.py +18 -12
  494. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
  495. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
  496. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
  497. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +19 -13
  498. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
  499. diffusers/schedulers/scheduling_edm_euler.py +20 -11
  500. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
  501. diffusers/schedulers/scheduling_euler_discrete.py +3 -3
  502. diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
  503. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
  504. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
  505. diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
  506. diffusers/schedulers/scheduling_heun_discrete.py +2 -2
  507. diffusers/schedulers/scheduling_ipndm.py +2 -2
  508. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
  509. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
  510. diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
  511. diffusers/schedulers/scheduling_lcm.py +3 -3
  512. diffusers/schedulers/scheduling_lms_discrete.py +2 -2
  513. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  514. diffusers/schedulers/scheduling_pndm.py +4 -4
  515. diffusers/schedulers/scheduling_pndm_flax.py +4 -4
  516. diffusers/schedulers/scheduling_repaint.py +9 -9
  517. diffusers/schedulers/scheduling_sasolver.py +15 -15
  518. diffusers/schedulers/scheduling_scm.py +1 -2
  519. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  520. diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
  521. diffusers/schedulers/scheduling_tcd.py +3 -3
  522. diffusers/schedulers/scheduling_unclip.py +5 -5
  523. diffusers/schedulers/scheduling_unipc_multistep.py +21 -12
  524. diffusers/schedulers/scheduling_utils.py +3 -3
  525. diffusers/schedulers/scheduling_utils_flax.py +2 -2
  526. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  527. diffusers/training_utils.py +91 -5
  528. diffusers/utils/__init__.py +15 -0
  529. diffusers/utils/accelerate_utils.py +1 -1
  530. diffusers/utils/constants.py +4 -0
  531. diffusers/utils/doc_utils.py +1 -1
  532. diffusers/utils/dummy_pt_objects.py +432 -0
  533. diffusers/utils/dummy_torch_and_transformers_objects.py +480 -0
  534. diffusers/utils/dynamic_modules_utils.py +85 -8
  535. diffusers/utils/export_utils.py +1 -1
  536. diffusers/utils/hub_utils.py +33 -17
  537. diffusers/utils/import_utils.py +151 -18
  538. diffusers/utils/logging.py +1 -1
  539. diffusers/utils/outputs.py +2 -1
  540. diffusers/utils/peft_utils.py +96 -10
  541. diffusers/utils/state_dict_utils.py +20 -3
  542. diffusers/utils/testing_utils.py +195 -17
  543. diffusers/utils/torch_utils.py +43 -5
  544. diffusers/video_processor.py +2 -2
  545. {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/METADATA +72 -57
  546. diffusers-0.35.0.dist-info/RECORD +703 -0
  547. {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/WHEEL +1 -1
  548. diffusers-0.33.1.dist-info/RECORD +0 -608
  549. {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/LICENSE +0 -0
  550. {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/entry_points.txt +0 -0
  551. {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,689 @@
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+
21
+ from ...models import AutoencoderKL
22
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
23
+ from ...utils import logging
24
+ from ...utils.torch_utils import randn_tensor
25
+ from ..modular_pipeline import ModularPipelineBlocks, PipelineState
26
+ from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
27
+ from .modular_pipeline import FluxModularPipeline
28
+
29
+
30
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
31
+
32
+
33
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
34
+ def retrieve_timesteps(
35
+ scheduler,
36
+ num_inference_steps: Optional[int] = None,
37
+ device: Optional[Union[str, torch.device]] = None,
38
+ timesteps: Optional[List[int]] = None,
39
+ sigmas: Optional[List[float]] = None,
40
+ **kwargs,
41
+ ):
42
+ r"""
43
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
44
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
45
+
46
+ Args:
47
+ scheduler (`SchedulerMixin`):
48
+ The scheduler to get timesteps from.
49
+ num_inference_steps (`int`):
50
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
51
+ must be `None`.
52
+ device (`str` or `torch.device`, *optional*):
53
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
54
+ timesteps (`List[int]`, *optional*):
55
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
56
+ `num_inference_steps` and `sigmas` must be `None`.
57
+ sigmas (`List[float]`, *optional*):
58
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
59
+ `num_inference_steps` and `timesteps` must be `None`.
60
+
61
+ Returns:
62
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
63
+ second element is the number of inference steps.
64
+ """
65
+ if timesteps is not None and sigmas is not None:
66
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
67
+ if timesteps is not None:
68
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
69
+ if not accepts_timesteps:
70
+ raise ValueError(
71
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
72
+ f" timestep schedules. Please check whether you are using the correct scheduler."
73
+ )
74
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
75
+ timesteps = scheduler.timesteps
76
+ num_inference_steps = len(timesteps)
77
+ elif sigmas is not None:
78
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
79
+ if not accept_sigmas:
80
+ raise ValueError(
81
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
82
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
83
+ )
84
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
85
+ timesteps = scheduler.timesteps
86
+ num_inference_steps = len(timesteps)
87
+ else:
88
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
89
+ timesteps = scheduler.timesteps
90
+ return timesteps, num_inference_steps
91
+
92
+
93
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
94
+ def calculate_shift(
95
+ image_seq_len,
96
+ base_seq_len: int = 256,
97
+ max_seq_len: int = 4096,
98
+ base_shift: float = 0.5,
99
+ max_shift: float = 1.15,
100
+ ):
101
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
102
+ b = base_shift - m * base_seq_len
103
+ mu = image_seq_len * m + b
104
+ return mu
105
+
106
+
107
+ # Adapted from the original implementation.
108
+ def prepare_latents_img2img(
109
+ vae, scheduler, image, timestep, batch_size, num_channels_latents, height, width, dtype, device, generator
110
+ ):
111
+ if isinstance(generator, list) and len(generator) != batch_size:
112
+ raise ValueError(
113
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
114
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
115
+ )
116
+
117
+ vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
118
+ latent_channels = vae.config.latent_channels
119
+
120
+ # VAE applies 8x compression on images but we must also account for packing which requires
121
+ # latent height and width to be divisible by 2.
122
+ height = 2 * (int(height) // (vae_scale_factor * 2))
123
+ width = 2 * (int(width) // (vae_scale_factor * 2))
124
+ shape = (batch_size, num_channels_latents, height, width)
125
+ latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
126
+
127
+ image = image.to(device=device, dtype=dtype)
128
+ if image.shape[1] != latent_channels:
129
+ image_latents = _encode_vae_image(image=image, generator=generator)
130
+ else:
131
+ image_latents = image
132
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
133
+ # expand init_latents for batch_size
134
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
135
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
136
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
137
+ raise ValueError(
138
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
139
+ )
140
+ else:
141
+ image_latents = torch.cat([image_latents], dim=0)
142
+
143
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
144
+ latents = scheduler.scale_noise(image_latents, timestep, noise)
145
+ latents = _pack_latents(latents, batch_size, num_channels_latents, height, width)
146
+ return latents, latent_image_ids
147
+
148
+
149
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
150
+ def retrieve_latents(
151
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
152
+ ):
153
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
154
+ return encoder_output.latent_dist.sample(generator)
155
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
156
+ return encoder_output.latent_dist.mode()
157
+ elif hasattr(encoder_output, "latents"):
158
+ return encoder_output.latents
159
+ else:
160
+ raise AttributeError("Could not access latents of provided encoder_output")
161
+
162
+
163
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
164
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
165
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
166
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
167
+
168
+ return latents
169
+
170
+
171
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
172
+ latent_image_ids = torch.zeros(height, width, 3)
173
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
174
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
175
+
176
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
177
+
178
+ latent_image_ids = latent_image_ids.reshape(
179
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
180
+ )
181
+
182
+ return latent_image_ids.to(device=device, dtype=dtype)
183
+
184
+
185
+ # Cannot use "# Copied from" because it introduces weird indentation errors.
186
+ def _encode_vae_image(vae, image: torch.Tensor, generator: torch.Generator):
187
+ if isinstance(generator, list):
188
+ image_latents = [
189
+ retrieve_latents(vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(image.shape[0])
190
+ ]
191
+ image_latents = torch.cat(image_latents, dim=0)
192
+ else:
193
+ image_latents = retrieve_latents(vae.encode(image), generator=generator)
194
+
195
+ image_latents = (image_latents - vae.config.shift_factor) * vae.config.scaling_factor
196
+
197
+ return image_latents
198
+
199
+
200
+ def _get_initial_timesteps_and_optionals(
201
+ transformer,
202
+ scheduler,
203
+ batch_size,
204
+ height,
205
+ width,
206
+ vae_scale_factor,
207
+ num_inference_steps,
208
+ guidance_scale,
209
+ sigmas,
210
+ device,
211
+ ):
212
+ image_seq_len = (int(height) // vae_scale_factor // 2) * (int(width) // vae_scale_factor // 2)
213
+
214
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
215
+ if hasattr(scheduler.config, "use_flow_sigmas") and scheduler.config.use_flow_sigmas:
216
+ sigmas = None
217
+ mu = calculate_shift(
218
+ image_seq_len,
219
+ scheduler.config.get("base_image_seq_len", 256),
220
+ scheduler.config.get("max_image_seq_len", 4096),
221
+ scheduler.config.get("base_shift", 0.5),
222
+ scheduler.config.get("max_shift", 1.15),
223
+ )
224
+ timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps, device, sigmas=sigmas, mu=mu)
225
+ if transformer.config.guidance_embeds:
226
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
227
+ guidance = guidance.expand(batch_size)
228
+ else:
229
+ guidance = None
230
+
231
+ return timesteps, num_inference_steps, sigmas, guidance
232
+
233
+
234
+ class FluxInputStep(ModularPipelineBlocks):
235
+ model_name = "flux"
236
+
237
+ @property
238
+ def description(self) -> str:
239
+ return (
240
+ "Input processing step that:\n"
241
+ " 1. Determines `batch_size` and `dtype` based on `prompt_embeds`\n"
242
+ " 2. Adjusts input tensor shapes based on `batch_size` (number of prompts) and `num_images_per_prompt`\n\n"
243
+ "All input tensors are expected to have either batch_size=1 or match the batch_size\n"
244
+ "of prompt_embeds. The tensors will be duplicated across the batch dimension to\n"
245
+ "have a final batch_size of batch_size * num_images_per_prompt."
246
+ )
247
+
248
+ @property
249
+ def inputs(self) -> List[InputParam]:
250
+ return [
251
+ InputParam("num_images_per_prompt", default=1),
252
+ InputParam(
253
+ "prompt_embeds",
254
+ required=True,
255
+ type_hint=torch.Tensor,
256
+ description="Pre-generated text embeddings. Can be generated from text_encoder step.",
257
+ ),
258
+ InputParam(
259
+ "pooled_prompt_embeds",
260
+ type_hint=torch.Tensor,
261
+ description="Pre-generated pooled text embeddings. Can be generated from text_encoder step.",
262
+ ),
263
+ # TODO: support negative embeddings?
264
+ ]
265
+
266
+ @property
267
+ def intermediate_outputs(self) -> List[str]:
268
+ return [
269
+ OutputParam(
270
+ "batch_size",
271
+ type_hint=int,
272
+ description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt",
273
+ ),
274
+ OutputParam(
275
+ "dtype",
276
+ type_hint=torch.dtype,
277
+ description="Data type of model tensor inputs (determined by `prompt_embeds`)",
278
+ ),
279
+ OutputParam(
280
+ "prompt_embeds",
281
+ type_hint=torch.Tensor,
282
+ description="text embeddings used to guide the image generation",
283
+ ),
284
+ OutputParam(
285
+ "pooled_prompt_embeds",
286
+ type_hint=torch.Tensor,
287
+ description="pooled text embeddings used to guide the image generation",
288
+ ),
289
+ # TODO: support negative embeddings?
290
+ ]
291
+
292
+ def check_inputs(self, components, block_state):
293
+ if block_state.prompt_embeds is not None and block_state.pooled_prompt_embeds is not None:
294
+ if block_state.prompt_embeds.shape[0] != block_state.pooled_prompt_embeds.shape[0]:
295
+ raise ValueError(
296
+ "`prompt_embeds` and `pooled_prompt_embeds` must have the same batch size when passed directly, but"
297
+ f" got: `prompt_embeds` {block_state.prompt_embeds.shape} != `pooled_prompt_embeds`"
298
+ f" {block_state.pooled_prompt_embeds.shape}."
299
+ )
300
+
301
+ @torch.no_grad()
302
+ def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
303
+ # TODO: consider adding negative embeddings?
304
+ block_state = self.get_block_state(state)
305
+ self.check_inputs(components, block_state)
306
+
307
+ block_state.batch_size = block_state.prompt_embeds.shape[0]
308
+ block_state.dtype = block_state.prompt_embeds.dtype
309
+
310
+ _, seq_len, _ = block_state.prompt_embeds.shape
311
+ block_state.prompt_embeds = block_state.prompt_embeds.repeat(1, block_state.num_images_per_prompt, 1)
312
+ block_state.prompt_embeds = block_state.prompt_embeds.view(
313
+ block_state.batch_size * block_state.num_images_per_prompt, seq_len, -1
314
+ )
315
+ self.set_block_state(state, block_state)
316
+
317
+ return components, state
318
+
319
+
320
+ class FluxSetTimestepsStep(ModularPipelineBlocks):
321
+ model_name = "flux"
322
+
323
+ @property
324
+ def expected_components(self) -> List[ComponentSpec]:
325
+ return [ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler)]
326
+
327
+ @property
328
+ def description(self) -> str:
329
+ return "Step that sets the scheduler's timesteps for inference"
330
+
331
+ @property
332
+ def inputs(self) -> List[InputParam]:
333
+ return [
334
+ InputParam("num_inference_steps", default=50),
335
+ InputParam("timesteps"),
336
+ InputParam("sigmas"),
337
+ InputParam("guidance_scale", default=3.5),
338
+ InputParam("latents", type_hint=torch.Tensor),
339
+ InputParam("num_images_per_prompt", default=1),
340
+ InputParam("height", type_hint=int),
341
+ InputParam("width", type_hint=int),
342
+ InputParam(
343
+ "batch_size",
344
+ required=True,
345
+ type_hint=int,
346
+ description="Number of prompts, the final batch size of model inputs should be `batch_size * num_images_per_prompt`. Can be generated in input step.",
347
+ ),
348
+ ]
349
+
350
+ @property
351
+ def intermediate_outputs(self) -> List[OutputParam]:
352
+ return [
353
+ OutputParam("timesteps", type_hint=torch.Tensor, description="The timesteps to use for inference"),
354
+ OutputParam(
355
+ "num_inference_steps",
356
+ type_hint=int,
357
+ description="The number of denoising steps to perform at inference time",
358
+ ),
359
+ OutputParam("guidance", type_hint=torch.Tensor, description="Optional guidance to be used."),
360
+ ]
361
+
362
+ @torch.no_grad()
363
+ def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
364
+ block_state = self.get_block_state(state)
365
+ block_state.device = components._execution_device
366
+
367
+ scheduler = components.scheduler
368
+ transformer = components.transformer
369
+
370
+ batch_size = block_state.batch_size * block_state.num_images_per_prompt
371
+ timesteps, num_inference_steps, sigmas, guidance = _get_initial_timesteps_and_optionals(
372
+ transformer,
373
+ scheduler,
374
+ batch_size,
375
+ block_state.height,
376
+ block_state.width,
377
+ components.vae_scale_factor,
378
+ block_state.num_inference_steps,
379
+ block_state.guidance_scale,
380
+ block_state.sigmas,
381
+ block_state.device,
382
+ )
383
+ block_state.timesteps = timesteps
384
+ block_state.num_inference_steps = num_inference_steps
385
+ block_state.sigmas = sigmas
386
+ block_state.guidance = guidance
387
+
388
+ self.set_block_state(state, block_state)
389
+ return components, state
390
+
391
+
392
+ class FluxImg2ImgSetTimestepsStep(ModularPipelineBlocks):
393
+ model_name = "flux"
394
+
395
+ @property
396
+ def expected_components(self) -> List[ComponentSpec]:
397
+ return [ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler)]
398
+
399
+ @property
400
+ def description(self) -> str:
401
+ return "Step that sets the scheduler's timesteps for inference"
402
+
403
+ @property
404
+ def inputs(self) -> List[InputParam]:
405
+ return [
406
+ InputParam("num_inference_steps", default=50),
407
+ InputParam("timesteps"),
408
+ InputParam("sigmas"),
409
+ InputParam("strength", default=0.6),
410
+ InputParam("guidance_scale", default=3.5),
411
+ InputParam("num_images_per_prompt", default=1),
412
+ InputParam("height", type_hint=int),
413
+ InputParam("width", type_hint=int),
414
+ InputParam(
415
+ "batch_size",
416
+ required=True,
417
+ type_hint=int,
418
+ description="Number of prompts, the final batch size of model inputs should be `batch_size * num_images_per_prompt`. Can be generated in input step.",
419
+ ),
420
+ ]
421
+
422
+ @property
423
+ def intermediate_outputs(self) -> List[OutputParam]:
424
+ return [
425
+ OutputParam("timesteps", type_hint=torch.Tensor, description="The timesteps to use for inference"),
426
+ OutputParam(
427
+ "num_inference_steps",
428
+ type_hint=int,
429
+ description="The number of denoising steps to perform at inference time",
430
+ ),
431
+ OutputParam(
432
+ "latent_timestep",
433
+ type_hint=torch.Tensor,
434
+ description="The timestep that represents the initial noise level for image-to-image generation",
435
+ ),
436
+ OutputParam("guidance", type_hint=torch.Tensor, description="Optional guidance to be used."),
437
+ ]
438
+
439
+ @staticmethod
440
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps with self.scheduler->scheduler
441
+ def get_timesteps(scheduler, num_inference_steps, strength, device):
442
+ # get the original timestep using init_timestep
443
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
444
+
445
+ t_start = int(max(num_inference_steps - init_timestep, 0))
446
+ timesteps = scheduler.timesteps[t_start * scheduler.order :]
447
+ if hasattr(scheduler, "set_begin_index"):
448
+ scheduler.set_begin_index(t_start * scheduler.order)
449
+
450
+ return timesteps, num_inference_steps - t_start
451
+
452
+ @torch.no_grad()
453
+ def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
454
+ block_state = self.get_block_state(state)
455
+ block_state.device = components._execution_device
456
+
457
+ scheduler = components.scheduler
458
+ transformer = components.transformer
459
+ batch_size = block_state.batch_size * block_state.num_images_per_prompt
460
+ timesteps, num_inference_steps, sigmas, guidance = _get_initial_timesteps_and_optionals(
461
+ transformer,
462
+ scheduler,
463
+ batch_size,
464
+ block_state.height,
465
+ block_state.width,
466
+ components.vae_scale_factor,
467
+ block_state.num_inference_steps,
468
+ block_state.guidance_scale,
469
+ block_state.sigmas,
470
+ block_state.device,
471
+ )
472
+ timesteps, num_inference_steps = self.get_timesteps(
473
+ scheduler, num_inference_steps, block_state.strength, block_state.device
474
+ )
475
+ block_state.timesteps = timesteps
476
+ block_state.num_inference_steps = num_inference_steps
477
+ block_state.sigmas = sigmas
478
+ block_state.guidance = guidance
479
+
480
+ block_state.latent_timestep = timesteps[:1].repeat(batch_size)
481
+
482
+ self.set_block_state(state, block_state)
483
+ return components, state
484
+
485
+
486
+ class FluxPrepareLatentsStep(ModularPipelineBlocks):
487
+ model_name = "flux"
488
+
489
+ @property
490
+ def expected_components(self) -> List[ComponentSpec]:
491
+ return []
492
+
493
+ @property
494
+ def description(self) -> str:
495
+ return "Prepare latents step that prepares the latents for the text-to-image generation process"
496
+
497
+ @property
498
+ def inputs(self) -> List[InputParam]:
499
+ return [
500
+ InputParam("height", type_hint=int),
501
+ InputParam("width", type_hint=int),
502
+ InputParam("latents", type_hint=Optional[torch.Tensor]),
503
+ InputParam("num_images_per_prompt", type_hint=int, default=1),
504
+ InputParam("generator"),
505
+ InputParam(
506
+ "batch_size",
507
+ required=True,
508
+ type_hint=int,
509
+ description="Number of prompts, the final batch size of model inputs should be `batch_size * num_images_per_prompt`. Can be generated in input step.",
510
+ ),
511
+ InputParam("dtype", type_hint=torch.dtype, description="The dtype of the model inputs"),
512
+ ]
513
+
514
+ @property
515
+ def intermediate_outputs(self) -> List[OutputParam]:
516
+ return [
517
+ OutputParam(
518
+ "latents", type_hint=torch.Tensor, description="The initial latents to use for the denoising process"
519
+ ),
520
+ OutputParam(
521
+ "latent_image_ids",
522
+ type_hint=torch.Tensor,
523
+ description="IDs computed from the image sequence needed for RoPE",
524
+ ),
525
+ ]
526
+
527
+ @staticmethod
528
+ def check_inputs(components, block_state):
529
+ if (block_state.height is not None and block_state.height % (components.vae_scale_factor * 2) != 0) or (
530
+ block_state.width is not None and block_state.width % (components.vae_scale_factor * 2) != 0
531
+ ):
532
+ logger.warning(
533
+ f"`height` and `width` have to be divisible by {components.vae_scale_factor} but are {block_state.height} and {block_state.width}."
534
+ )
535
+
536
+ @staticmethod
537
+ def prepare_latents(
538
+ comp,
539
+ batch_size,
540
+ num_channels_latents,
541
+ height,
542
+ width,
543
+ dtype,
544
+ device,
545
+ generator,
546
+ latents=None,
547
+ ):
548
+ # Couldn't use the `prepare_latents` method directly from Flux because I decided to copy over
549
+ # the packing methods here. So, for example, `comp._pack_latents()` won't work if we were
550
+ # to go with the "# Copied from ..." approach. Or maybe there's a way?
551
+
552
+ # VAE applies 8x compression on images but we must also account for packing which requires
553
+ # latent height and width to be divisible by 2.
554
+ height = 2 * (int(height) // (comp.vae_scale_factor * 2))
555
+ width = 2 * (int(width) // (comp.vae_scale_factor * 2))
556
+
557
+ shape = (batch_size, num_channels_latents, height, width)
558
+
559
+ if latents is not None:
560
+ latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
561
+ return latents.to(device=device, dtype=dtype), latent_image_ids
562
+
563
+ if isinstance(generator, list) and len(generator) != batch_size:
564
+ raise ValueError(
565
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
566
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
567
+ )
568
+
569
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
570
+ latents = _pack_latents(latents, batch_size, num_channels_latents, height, width)
571
+
572
+ latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
573
+
574
+ return latents, latent_image_ids
575
+
576
+ @torch.no_grad()
577
+ def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
578
+ block_state = self.get_block_state(state)
579
+
580
+ block_state.height = block_state.height or components.default_height
581
+ block_state.width = block_state.width or components.default_width
582
+ block_state.device = components._execution_device
583
+ block_state.dtype = torch.bfloat16 # TODO: okay to hardcode this?
584
+ block_state.num_channels_latents = components.num_channels_latents
585
+
586
+ self.check_inputs(components, block_state)
587
+ batch_size = block_state.batch_size * block_state.num_images_per_prompt
588
+ block_state.latents, block_state.latent_image_ids = self.prepare_latents(
589
+ components,
590
+ batch_size,
591
+ block_state.num_channels_latents,
592
+ block_state.height,
593
+ block_state.width,
594
+ block_state.dtype,
595
+ block_state.device,
596
+ block_state.generator,
597
+ block_state.latents,
598
+ )
599
+
600
+ self.set_block_state(state, block_state)
601
+
602
+ return components, state
603
+
604
+
605
+ class FluxImg2ImgPrepareLatentsStep(ModularPipelineBlocks):
606
+ model_name = "flux"
607
+
608
+ @property
609
+ def expected_components(self) -> List[ComponentSpec]:
610
+ return [ComponentSpec("vae", AutoencoderKL), ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler)]
611
+
612
+ @property
613
+ def description(self) -> str:
614
+ return "Step that prepares the latents for the image-to-image generation process"
615
+
616
+ @property
617
+ def inputs(self) -> List[Tuple[str, Any]]:
618
+ return [
619
+ InputParam("height", type_hint=int),
620
+ InputParam("width", type_hint=int),
621
+ InputParam("latents", type_hint=Optional[torch.Tensor]),
622
+ InputParam("num_images_per_prompt", type_hint=int, default=1),
623
+ InputParam("generator"),
624
+ InputParam(
625
+ "image_latents",
626
+ required=True,
627
+ type_hint=torch.Tensor,
628
+ description="The latents representing the reference image for image-to-image/inpainting generation. Can be generated in vae_encode step.",
629
+ ),
630
+ InputParam(
631
+ "latent_timestep",
632
+ required=True,
633
+ type_hint=torch.Tensor,
634
+ description="The timestep that represents the initial noise level for image-to-image/inpainting generation. Can be generated in set_timesteps step.",
635
+ ),
636
+ InputParam(
637
+ "batch_size",
638
+ required=True,
639
+ type_hint=int,
640
+ description="Number of prompts, the final batch size of model inputs should be batch_size * num_images_per_prompt. Can be generated in input step.",
641
+ ),
642
+ InputParam("dtype", required=True, type_hint=torch.dtype, description="The dtype of the model inputs"),
643
+ ]
644
+
645
+ @property
646
+ def intermediate_outputs(self) -> List[OutputParam]:
647
+ return [
648
+ OutputParam(
649
+ "latents", type_hint=torch.Tensor, description="The initial latents to use for the denoising process"
650
+ ),
651
+ OutputParam(
652
+ "latent_image_ids",
653
+ type_hint=torch.Tensor,
654
+ description="IDs computed from the image sequence needed for RoPE",
655
+ ),
656
+ ]
657
+
658
+ @torch.no_grad()
659
+ def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
660
+ block_state = self.get_block_state(state)
661
+
662
+ block_state.height = block_state.height or components.default_height
663
+ block_state.width = block_state.width or components.default_width
664
+ block_state.device = components._execution_device
665
+ block_state.dtype = torch.bfloat16 # TODO: okay to hardcode this?
666
+ block_state.num_channels_latents = components.num_channels_latents
667
+ block_state.dtype = block_state.dtype if block_state.dtype is not None else components.vae.dtype
668
+ block_state.device = components._execution_device
669
+
670
+ # TODO: implement `check_inputs`
671
+ batch_size = block_state.batch_size * block_state.num_images_per_prompt
672
+ if block_state.latents is None:
673
+ block_state.latents, block_state.latent_image_ids = prepare_latents_img2img(
674
+ components.vae,
675
+ components.scheduler,
676
+ block_state.image_latents,
677
+ block_state.latent_timestep,
678
+ batch_size,
679
+ block_state.num_channels_latents,
680
+ block_state.height,
681
+ block_state.width,
682
+ block_state.dtype,
683
+ block_state.device,
684
+ block_state.generator,
685
+ )
686
+
687
+ self.set_block_state(state, block_state)
688
+
689
+ return components, state