diffusers 0.33.1__py3-none-any.whl → 0.35.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (551) hide show
  1. diffusers/__init__.py +145 -1
  2. diffusers/callbacks.py +35 -0
  3. diffusers/commands/__init__.py +1 -1
  4. diffusers/commands/custom_blocks.py +134 -0
  5. diffusers/commands/diffusers_cli.py +3 -1
  6. diffusers/commands/env.py +1 -1
  7. diffusers/commands/fp16_safetensors.py +2 -2
  8. diffusers/configuration_utils.py +11 -2
  9. diffusers/dependency_versions_check.py +1 -1
  10. diffusers/dependency_versions_table.py +3 -3
  11. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  12. diffusers/guiders/__init__.py +41 -0
  13. diffusers/guiders/adaptive_projected_guidance.py +188 -0
  14. diffusers/guiders/auto_guidance.py +190 -0
  15. diffusers/guiders/classifier_free_guidance.py +141 -0
  16. diffusers/guiders/classifier_free_zero_star_guidance.py +152 -0
  17. diffusers/guiders/frequency_decoupled_guidance.py +327 -0
  18. diffusers/guiders/guider_utils.py +309 -0
  19. diffusers/guiders/perturbed_attention_guidance.py +271 -0
  20. diffusers/guiders/skip_layer_guidance.py +262 -0
  21. diffusers/guiders/smoothed_energy_guidance.py +251 -0
  22. diffusers/guiders/tangential_classifier_free_guidance.py +143 -0
  23. diffusers/hooks/__init__.py +17 -0
  24. diffusers/hooks/_common.py +56 -0
  25. diffusers/hooks/_helpers.py +293 -0
  26. diffusers/hooks/faster_cache.py +9 -8
  27. diffusers/hooks/first_block_cache.py +259 -0
  28. diffusers/hooks/group_offloading.py +332 -227
  29. diffusers/hooks/hooks.py +58 -3
  30. diffusers/hooks/layer_skip.py +263 -0
  31. diffusers/hooks/layerwise_casting.py +5 -10
  32. diffusers/hooks/pyramid_attention_broadcast.py +15 -12
  33. diffusers/hooks/smoothed_energy_guidance_utils.py +167 -0
  34. diffusers/hooks/utils.py +43 -0
  35. diffusers/image_processor.py +7 -2
  36. diffusers/loaders/__init__.py +10 -0
  37. diffusers/loaders/ip_adapter.py +260 -18
  38. diffusers/loaders/lora_base.py +261 -127
  39. diffusers/loaders/lora_conversion_utils.py +657 -35
  40. diffusers/loaders/lora_pipeline.py +2778 -1246
  41. diffusers/loaders/peft.py +78 -112
  42. diffusers/loaders/single_file.py +2 -2
  43. diffusers/loaders/single_file_model.py +64 -15
  44. diffusers/loaders/single_file_utils.py +395 -7
  45. diffusers/loaders/textual_inversion.py +3 -2
  46. diffusers/loaders/transformer_flux.py +10 -11
  47. diffusers/loaders/transformer_sd3.py +8 -3
  48. diffusers/loaders/unet.py +24 -21
  49. diffusers/loaders/unet_loader_utils.py +6 -3
  50. diffusers/loaders/utils.py +1 -1
  51. diffusers/models/__init__.py +23 -1
  52. diffusers/models/activations.py +5 -5
  53. diffusers/models/adapter.py +2 -3
  54. diffusers/models/attention.py +488 -7
  55. diffusers/models/attention_dispatch.py +1218 -0
  56. diffusers/models/attention_flax.py +10 -10
  57. diffusers/models/attention_processor.py +113 -667
  58. diffusers/models/auto_model.py +49 -12
  59. diffusers/models/autoencoders/__init__.py +2 -0
  60. diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
  61. diffusers/models/autoencoders/autoencoder_dc.py +17 -4
  62. diffusers/models/autoencoders/autoencoder_kl.py +5 -5
  63. diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
  64. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
  65. diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1110 -0
  66. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
  67. diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
  68. diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
  69. diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
  70. diffusers/models/autoencoders/autoencoder_kl_qwenimage.py +1070 -0
  71. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
  72. diffusers/models/autoencoders/autoencoder_kl_wan.py +626 -62
  73. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
  74. diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
  75. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  76. diffusers/models/autoencoders/vae.py +13 -2
  77. diffusers/models/autoencoders/vq_model.py +2 -2
  78. diffusers/models/cache_utils.py +32 -10
  79. diffusers/models/controlnet.py +1 -1
  80. diffusers/models/controlnet_flux.py +1 -1
  81. diffusers/models/controlnet_sd3.py +1 -1
  82. diffusers/models/controlnet_sparsectrl.py +1 -1
  83. diffusers/models/controlnets/__init__.py +1 -0
  84. diffusers/models/controlnets/controlnet.py +3 -3
  85. diffusers/models/controlnets/controlnet_flax.py +1 -1
  86. diffusers/models/controlnets/controlnet_flux.py +21 -20
  87. diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
  88. diffusers/models/controlnets/controlnet_sana.py +290 -0
  89. diffusers/models/controlnets/controlnet_sd3.py +1 -1
  90. diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
  91. diffusers/models/controlnets/controlnet_union.py +5 -5
  92. diffusers/models/controlnets/controlnet_xs.py +7 -7
  93. diffusers/models/controlnets/multicontrolnet.py +4 -5
  94. diffusers/models/controlnets/multicontrolnet_union.py +5 -6
  95. diffusers/models/downsampling.py +2 -2
  96. diffusers/models/embeddings.py +36 -46
  97. diffusers/models/embeddings_flax.py +2 -2
  98. diffusers/models/lora.py +3 -3
  99. diffusers/models/model_loading_utils.py +233 -1
  100. diffusers/models/modeling_flax_utils.py +1 -2
  101. diffusers/models/modeling_utils.py +203 -108
  102. diffusers/models/normalization.py +4 -4
  103. diffusers/models/resnet.py +2 -2
  104. diffusers/models/resnet_flax.py +1 -1
  105. diffusers/models/transformers/__init__.py +7 -0
  106. diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
  107. diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
  108. diffusers/models/transformers/consisid_transformer_3d.py +1 -1
  109. diffusers/models/transformers/dit_transformer_2d.py +2 -2
  110. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  111. diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
  112. diffusers/models/transformers/latte_transformer_3d.py +4 -5
  113. diffusers/models/transformers/lumina_nextdit2d.py +2 -2
  114. diffusers/models/transformers/pixart_transformer_2d.py +3 -3
  115. diffusers/models/transformers/prior_transformer.py +1 -1
  116. diffusers/models/transformers/sana_transformer.py +8 -3
  117. diffusers/models/transformers/stable_audio_transformer.py +5 -9
  118. diffusers/models/transformers/t5_film_transformer.py +3 -3
  119. diffusers/models/transformers/transformer_2d.py +1 -1
  120. diffusers/models/transformers/transformer_allegro.py +1 -1
  121. diffusers/models/transformers/transformer_chroma.py +641 -0
  122. diffusers/models/transformers/transformer_cogview3plus.py +5 -10
  123. diffusers/models/transformers/transformer_cogview4.py +353 -27
  124. diffusers/models/transformers/transformer_cosmos.py +586 -0
  125. diffusers/models/transformers/transformer_flux.py +376 -138
  126. diffusers/models/transformers/transformer_hidream_image.py +942 -0
  127. diffusers/models/transformers/transformer_hunyuan_video.py +12 -8
  128. diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
  129. diffusers/models/transformers/transformer_ltx.py +105 -24
  130. diffusers/models/transformers/transformer_lumina2.py +1 -1
  131. diffusers/models/transformers/transformer_mochi.py +1 -1
  132. diffusers/models/transformers/transformer_omnigen.py +2 -2
  133. diffusers/models/transformers/transformer_qwenimage.py +645 -0
  134. diffusers/models/transformers/transformer_sd3.py +7 -7
  135. diffusers/models/transformers/transformer_skyreels_v2.py +607 -0
  136. diffusers/models/transformers/transformer_temporal.py +1 -1
  137. diffusers/models/transformers/transformer_wan.py +316 -87
  138. diffusers/models/transformers/transformer_wan_vace.py +387 -0
  139. diffusers/models/unets/unet_1d.py +1 -1
  140. diffusers/models/unets/unet_1d_blocks.py +1 -1
  141. diffusers/models/unets/unet_2d.py +1 -1
  142. diffusers/models/unets/unet_2d_blocks.py +1 -1
  143. diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
  144. diffusers/models/unets/unet_2d_condition.py +4 -3
  145. diffusers/models/unets/unet_2d_condition_flax.py +2 -2
  146. diffusers/models/unets/unet_3d_blocks.py +1 -1
  147. diffusers/models/unets/unet_3d_condition.py +3 -3
  148. diffusers/models/unets/unet_i2vgen_xl.py +3 -3
  149. diffusers/models/unets/unet_kandinsky3.py +1 -1
  150. diffusers/models/unets/unet_motion_model.py +2 -2
  151. diffusers/models/unets/unet_stable_cascade.py +1 -1
  152. diffusers/models/upsampling.py +2 -2
  153. diffusers/models/vae_flax.py +2 -2
  154. diffusers/models/vq_model.py +1 -1
  155. diffusers/modular_pipelines/__init__.py +83 -0
  156. diffusers/modular_pipelines/components_manager.py +1068 -0
  157. diffusers/modular_pipelines/flux/__init__.py +66 -0
  158. diffusers/modular_pipelines/flux/before_denoise.py +689 -0
  159. diffusers/modular_pipelines/flux/decoders.py +109 -0
  160. diffusers/modular_pipelines/flux/denoise.py +227 -0
  161. diffusers/modular_pipelines/flux/encoders.py +412 -0
  162. diffusers/modular_pipelines/flux/modular_blocks.py +181 -0
  163. diffusers/modular_pipelines/flux/modular_pipeline.py +59 -0
  164. diffusers/modular_pipelines/modular_pipeline.py +2446 -0
  165. diffusers/modular_pipelines/modular_pipeline_utils.py +672 -0
  166. diffusers/modular_pipelines/node_utils.py +665 -0
  167. diffusers/modular_pipelines/stable_diffusion_xl/__init__.py +77 -0
  168. diffusers/modular_pipelines/stable_diffusion_xl/before_denoise.py +1874 -0
  169. diffusers/modular_pipelines/stable_diffusion_xl/decoders.py +208 -0
  170. diffusers/modular_pipelines/stable_diffusion_xl/denoise.py +771 -0
  171. diffusers/modular_pipelines/stable_diffusion_xl/encoders.py +887 -0
  172. diffusers/modular_pipelines/stable_diffusion_xl/modular_blocks.py +380 -0
  173. diffusers/modular_pipelines/stable_diffusion_xl/modular_pipeline.py +365 -0
  174. diffusers/modular_pipelines/wan/__init__.py +66 -0
  175. diffusers/modular_pipelines/wan/before_denoise.py +365 -0
  176. diffusers/modular_pipelines/wan/decoders.py +105 -0
  177. diffusers/modular_pipelines/wan/denoise.py +261 -0
  178. diffusers/modular_pipelines/wan/encoders.py +242 -0
  179. diffusers/modular_pipelines/wan/modular_blocks.py +144 -0
  180. diffusers/modular_pipelines/wan/modular_pipeline.py +90 -0
  181. diffusers/pipelines/__init__.py +68 -6
  182. diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
  183. diffusers/pipelines/amused/pipeline_amused.py +7 -6
  184. diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
  185. diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
  186. diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
  187. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
  188. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
  189. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
  190. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
  191. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
  192. diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
  193. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  194. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +22 -13
  195. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
  196. diffusers/pipelines/auto_pipeline.py +23 -20
  197. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  198. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  199. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
  200. diffusers/pipelines/chroma/__init__.py +49 -0
  201. diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
  202. diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
  203. diffusers/pipelines/chroma/pipeline_output.py +21 -0
  204. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +17 -16
  205. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +17 -16
  206. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +18 -17
  207. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +17 -16
  208. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
  209. diffusers/pipelines/cogview4/pipeline_cogview4.py +23 -22
  210. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
  211. diffusers/pipelines/consisid/consisid_utils.py +2 -2
  212. diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
  213. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  214. diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
  215. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +11 -10
  216. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
  217. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
  218. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
  219. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
  220. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
  221. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +226 -107
  222. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +12 -8
  223. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +207 -105
  224. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
  225. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
  226. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
  227. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
  228. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
  229. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
  230. diffusers/pipelines/cosmos/__init__.py +54 -0
  231. diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
  232. diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
  233. diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
  234. diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
  235. diffusers/pipelines/cosmos/pipeline_output.py +40 -0
  236. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
  237. diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
  238. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  239. diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
  240. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
  241. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
  242. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
  243. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
  244. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
  245. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
  246. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
  247. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  248. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
  249. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  250. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
  251. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
  252. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  253. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  254. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  255. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  256. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  257. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +8 -8
  258. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
  259. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
  260. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
  261. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
  262. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
  263. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  264. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
  265. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
  266. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
  267. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
  268. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
  269. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  270. diffusers/pipelines/dit/pipeline_dit.py +4 -2
  271. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
  272. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
  273. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
  274. diffusers/pipelines/flux/__init__.py +4 -0
  275. diffusers/pipelines/flux/modeling_flux.py +1 -1
  276. diffusers/pipelines/flux/pipeline_flux.py +37 -36
  277. diffusers/pipelines/flux/pipeline_flux_control.py +9 -9
  278. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +7 -7
  279. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +7 -7
  280. diffusers/pipelines/flux/pipeline_flux_controlnet.py +7 -7
  281. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +31 -23
  282. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +3 -2
  283. diffusers/pipelines/flux/pipeline_flux_fill.py +7 -7
  284. diffusers/pipelines/flux/pipeline_flux_img2img.py +40 -7
  285. diffusers/pipelines/flux/pipeline_flux_inpaint.py +12 -7
  286. diffusers/pipelines/flux/pipeline_flux_kontext.py +1134 -0
  287. diffusers/pipelines/flux/pipeline_flux_kontext_inpaint.py +1460 -0
  288. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +2 -2
  289. diffusers/pipelines/flux/pipeline_output.py +6 -4
  290. diffusers/pipelines/free_init_utils.py +2 -2
  291. diffusers/pipelines/free_noise_utils.py +3 -3
  292. diffusers/pipelines/hidream_image/__init__.py +47 -0
  293. diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
  294. diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
  295. diffusers/pipelines/hunyuan_video/__init__.py +2 -0
  296. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
  297. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +26 -25
  298. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
  299. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
  300. diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
  301. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
  302. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
  303. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
  304. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
  305. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
  306. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
  307. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
  308. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  309. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
  310. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
  311. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
  312. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
  313. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
  314. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
  315. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
  316. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
  317. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
  318. diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
  319. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
  320. diffusers/pipelines/kolors/text_encoder.py +3 -3
  321. diffusers/pipelines/kolors/tokenizer.py +1 -1
  322. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
  323. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
  324. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  325. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
  326. diffusers/pipelines/latte/pipeline_latte.py +12 -12
  327. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
  328. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
  329. diffusers/pipelines/ltx/__init__.py +4 -0
  330. diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
  331. diffusers/pipelines/ltx/pipeline_ltx.py +64 -18
  332. diffusers/pipelines/ltx/pipeline_ltx_condition.py +117 -38
  333. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +63 -18
  334. diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
  335. diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
  336. diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
  337. diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
  338. diffusers/pipelines/mochi/pipeline_mochi.py +15 -14
  339. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
  340. diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
  341. diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
  342. diffusers/pipelines/onnx_utils.py +15 -2
  343. diffusers/pipelines/pag/pag_utils.py +2 -2
  344. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
  345. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
  346. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
  347. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
  348. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
  349. diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
  350. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
  351. diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
  352. diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
  353. diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
  354. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
  355. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
  356. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
  357. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
  358. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
  359. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
  360. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
  361. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  362. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
  363. diffusers/pipelines/pia/pipeline_pia.py +8 -6
  364. diffusers/pipelines/pipeline_flax_utils.py +5 -6
  365. diffusers/pipelines/pipeline_loading_utils.py +113 -15
  366. diffusers/pipelines/pipeline_utils.py +127 -48
  367. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +14 -12
  368. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +31 -11
  369. diffusers/pipelines/qwenimage/__init__.py +55 -0
  370. diffusers/pipelines/qwenimage/pipeline_output.py +21 -0
  371. diffusers/pipelines/qwenimage/pipeline_qwenimage.py +726 -0
  372. diffusers/pipelines/qwenimage/pipeline_qwenimage_edit.py +882 -0
  373. diffusers/pipelines/qwenimage/pipeline_qwenimage_img2img.py +829 -0
  374. diffusers/pipelines/qwenimage/pipeline_qwenimage_inpaint.py +1015 -0
  375. diffusers/pipelines/sana/__init__.py +4 -0
  376. diffusers/pipelines/sana/pipeline_sana.py +23 -21
  377. diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
  378. diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
  379. diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
  380. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
  381. diffusers/pipelines/shap_e/camera.py +1 -1
  382. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  383. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  384. diffusers/pipelines/shap_e/renderer.py +3 -3
  385. diffusers/pipelines/skyreels_v2/__init__.py +59 -0
  386. diffusers/pipelines/skyreels_v2/pipeline_output.py +20 -0
  387. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2.py +610 -0
  388. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing.py +978 -0
  389. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_i2v.py +1059 -0
  390. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_v2v.py +1063 -0
  391. diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_i2v.py +745 -0
  392. diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
  393. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
  394. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
  395. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
  396. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
  397. diffusers/pipelines/stable_diffusion/__init__.py +0 -7
  398. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  399. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
  400. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  401. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
  402. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  403. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +12 -11
  404. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
  405. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +11 -11
  406. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +10 -10
  407. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +10 -9
  408. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
  409. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
  410. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
  411. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
  412. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
  413. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
  414. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
  415. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
  416. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
  417. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  418. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  419. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  420. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +13 -12
  421. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
  422. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
  423. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
  424. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
  425. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
  426. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
  427. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
  428. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
  429. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
  430. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
  431. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
  432. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  433. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
  434. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  435. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
  436. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
  437. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
  438. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
  439. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
  440. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
  441. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
  442. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
  443. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
  444. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
  445. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
  446. diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
  447. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
  448. diffusers/pipelines/unclip/text_proj.py +2 -2
  449. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
  450. diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
  451. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
  452. diffusers/pipelines/visualcloze/__init__.py +52 -0
  453. diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
  454. diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
  455. diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
  456. diffusers/pipelines/wan/__init__.py +2 -0
  457. diffusers/pipelines/wan/pipeline_wan.py +91 -30
  458. diffusers/pipelines/wan/pipeline_wan_i2v.py +145 -45
  459. diffusers/pipelines/wan/pipeline_wan_vace.py +975 -0
  460. diffusers/pipelines/wan/pipeline_wan_video2video.py +14 -16
  461. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  462. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
  463. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  464. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  465. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
  466. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
  467. diffusers/quantizers/__init__.py +3 -1
  468. diffusers/quantizers/base.py +17 -1
  469. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
  470. diffusers/quantizers/bitsandbytes/utils.py +10 -7
  471. diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
  472. diffusers/quantizers/gguf/utils.py +108 -16
  473. diffusers/quantizers/pipe_quant_config.py +202 -0
  474. diffusers/quantizers/quantization_config.py +18 -16
  475. diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
  476. diffusers/quantizers/torchao/torchao_quantizer.py +31 -1
  477. diffusers/schedulers/__init__.py +3 -1
  478. diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
  479. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  480. diffusers/schedulers/scheduling_consistency_models.py +1 -1
  481. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
  482. diffusers/schedulers/scheduling_ddim.py +8 -8
  483. diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
  484. diffusers/schedulers/scheduling_ddim_flax.py +6 -6
  485. diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
  486. diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
  487. diffusers/schedulers/scheduling_ddpm.py +9 -9
  488. diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
  489. diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
  490. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
  491. diffusers/schedulers/scheduling_deis_multistep.py +16 -9
  492. diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
  493. diffusers/schedulers/scheduling_dpmsolver_multistep.py +18 -12
  494. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
  495. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
  496. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
  497. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +19 -13
  498. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
  499. diffusers/schedulers/scheduling_edm_euler.py +20 -11
  500. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
  501. diffusers/schedulers/scheduling_euler_discrete.py +3 -3
  502. diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
  503. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
  504. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
  505. diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
  506. diffusers/schedulers/scheduling_heun_discrete.py +2 -2
  507. diffusers/schedulers/scheduling_ipndm.py +2 -2
  508. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
  509. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
  510. diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
  511. diffusers/schedulers/scheduling_lcm.py +3 -3
  512. diffusers/schedulers/scheduling_lms_discrete.py +2 -2
  513. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  514. diffusers/schedulers/scheduling_pndm.py +4 -4
  515. diffusers/schedulers/scheduling_pndm_flax.py +4 -4
  516. diffusers/schedulers/scheduling_repaint.py +9 -9
  517. diffusers/schedulers/scheduling_sasolver.py +15 -15
  518. diffusers/schedulers/scheduling_scm.py +1 -2
  519. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  520. diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
  521. diffusers/schedulers/scheduling_tcd.py +3 -3
  522. diffusers/schedulers/scheduling_unclip.py +5 -5
  523. diffusers/schedulers/scheduling_unipc_multistep.py +21 -12
  524. diffusers/schedulers/scheduling_utils.py +3 -3
  525. diffusers/schedulers/scheduling_utils_flax.py +2 -2
  526. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  527. diffusers/training_utils.py +91 -5
  528. diffusers/utils/__init__.py +15 -0
  529. diffusers/utils/accelerate_utils.py +1 -1
  530. diffusers/utils/constants.py +4 -0
  531. diffusers/utils/doc_utils.py +1 -1
  532. diffusers/utils/dummy_pt_objects.py +432 -0
  533. diffusers/utils/dummy_torch_and_transformers_objects.py +480 -0
  534. diffusers/utils/dynamic_modules_utils.py +85 -8
  535. diffusers/utils/export_utils.py +1 -1
  536. diffusers/utils/hub_utils.py +33 -17
  537. diffusers/utils/import_utils.py +151 -18
  538. diffusers/utils/logging.py +1 -1
  539. diffusers/utils/outputs.py +2 -1
  540. diffusers/utils/peft_utils.py +96 -10
  541. diffusers/utils/state_dict_utils.py +20 -3
  542. diffusers/utils/testing_utils.py +195 -17
  543. diffusers/utils/torch_utils.py +43 -5
  544. diffusers/video_processor.py +2 -2
  545. {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/METADATA +72 -57
  546. diffusers-0.35.0.dist-info/RECORD +703 -0
  547. {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/WHEEL +1 -1
  548. diffusers-0.33.1.dist-info/RECORD +0 -608
  549. {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/LICENSE +0 -0
  550. {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/entry_points.txt +0 -0
  551. {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,829 @@
1
+ import inspect
2
+ from typing import Any, Callable, Dict, List, Optional, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
7
+
8
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
9
+ from ...loaders import QwenImageLoraLoaderMixin
10
+ from ...models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
11
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
12
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
13
+ from ...utils.torch_utils import randn_tensor
14
+ from ..pipeline_utils import DiffusionPipeline
15
+ from .pipeline_output import QwenImagePipelineOutput
16
+
17
+
18
+ if is_torch_xla_available():
19
+ import torch_xla.core.xla_model as xm
20
+
21
+ XLA_AVAILABLE = True
22
+ else:
23
+ XLA_AVAILABLE = False
24
+
25
+
26
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
27
+
28
+ EXAMPLE_DOC_STRING = """
29
+ Examples:
30
+ ```py
31
+ >>> import torch
32
+ >>> from diffusers import QwenImageImg2ImgPipeline
33
+ >>> from diffusers.utils import load_image
34
+
35
+ >>> pipe = QwenImageImg2ImgPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16)
36
+ >>> pipe = pipe.to("cuda")
37
+ >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
38
+ >>> init_image = load_image(url).resize((1024, 1024))
39
+ >>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney"
40
+ >>> images = pipe(prompt=prompt, negative_prompt=" ", image=init_image, strength=0.95).images[0]
41
+ >>> images.save("qwenimage_img2img.png")
42
+ ```
43
+ """
44
+
45
+
46
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
47
+ def retrieve_latents(
48
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
49
+ ):
50
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
51
+ return encoder_output.latent_dist.sample(generator)
52
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
53
+ return encoder_output.latent_dist.mode()
54
+ elif hasattr(encoder_output, "latents"):
55
+ return encoder_output.latents
56
+ else:
57
+ raise AttributeError("Could not access latents of provided encoder_output")
58
+
59
+
60
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift
61
+ def calculate_shift(
62
+ image_seq_len,
63
+ base_seq_len: int = 256,
64
+ max_seq_len: int = 4096,
65
+ base_shift: float = 0.5,
66
+ max_shift: float = 1.15,
67
+ ):
68
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
69
+ b = base_shift - m * base_seq_len
70
+ mu = image_seq_len * m + b
71
+ return mu
72
+
73
+
74
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
75
+ def retrieve_timesteps(
76
+ scheduler,
77
+ num_inference_steps: Optional[int] = None,
78
+ device: Optional[Union[str, torch.device]] = None,
79
+ timesteps: Optional[List[int]] = None,
80
+ sigmas: Optional[List[float]] = None,
81
+ **kwargs,
82
+ ):
83
+ r"""
84
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
85
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
86
+
87
+ Args:
88
+ scheduler (`SchedulerMixin`):
89
+ The scheduler to get timesteps from.
90
+ num_inference_steps (`int`):
91
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
92
+ must be `None`.
93
+ device (`str` or `torch.device`, *optional*):
94
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
95
+ timesteps (`List[int]`, *optional*):
96
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
97
+ `num_inference_steps` and `sigmas` must be `None`.
98
+ sigmas (`List[float]`, *optional*):
99
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
100
+ `num_inference_steps` and `timesteps` must be `None`.
101
+
102
+ Returns:
103
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
104
+ second element is the number of inference steps.
105
+ """
106
+ if timesteps is not None and sigmas is not None:
107
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
108
+ if timesteps is not None:
109
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
110
+ if not accepts_timesteps:
111
+ raise ValueError(
112
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
113
+ f" timestep schedules. Please check whether you are using the correct scheduler."
114
+ )
115
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
116
+ timesteps = scheduler.timesteps
117
+ num_inference_steps = len(timesteps)
118
+ elif sigmas is not None:
119
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
120
+ if not accept_sigmas:
121
+ raise ValueError(
122
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
123
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
124
+ )
125
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
126
+ timesteps = scheduler.timesteps
127
+ num_inference_steps = len(timesteps)
128
+ else:
129
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
130
+ timesteps = scheduler.timesteps
131
+ return timesteps, num_inference_steps
132
+
133
+
134
+ class QwenImageImg2ImgPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
135
+ r"""
136
+ The QwenImage pipeline for text-to-image generation.
137
+
138
+ Args:
139
+ transformer ([`QwenImageTransformer2DModel`]):
140
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
141
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
142
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
143
+ vae ([`AutoencoderKL`]):
144
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
145
+ text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
146
+ [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
147
+ [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
148
+ tokenizer (`QwenTokenizer`):
149
+ Tokenizer of class
150
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
151
+ """
152
+
153
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
154
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
155
+
156
+ def __init__(
157
+ self,
158
+ scheduler: FlowMatchEulerDiscreteScheduler,
159
+ vae: AutoencoderKLQwenImage,
160
+ text_encoder: Qwen2_5_VLForConditionalGeneration,
161
+ tokenizer: Qwen2Tokenizer,
162
+ transformer: QwenImageTransformer2DModel,
163
+ ):
164
+ super().__init__()
165
+
166
+ self.register_modules(
167
+ vae=vae,
168
+ text_encoder=text_encoder,
169
+ tokenizer=tokenizer,
170
+ transformer=transformer,
171
+ scheduler=scheduler,
172
+ )
173
+ self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
174
+ # QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
175
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
176
+ self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
177
+ self.image_processor = VaeImageProcessor(
178
+ vae_scale_factor=self.vae_scale_factor * 2, vae_latent_channels=self.latent_channels
179
+ )
180
+ self.tokenizer_max_length = 1024
181
+ self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
182
+ self.prompt_template_encode_start_idx = 34
183
+ self.default_sample_size = 128
184
+
185
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._extract_masked_hidden
186
+ def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
187
+ bool_mask = mask.bool()
188
+ valid_lengths = bool_mask.sum(dim=1)
189
+ selected = hidden_states[bool_mask]
190
+ split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
191
+
192
+ return split_result
193
+
194
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._get_qwen_prompt_embeds
195
+ def _get_qwen_prompt_embeds(
196
+ self,
197
+ prompt: Union[str, List[str]] = None,
198
+ device: Optional[torch.device] = None,
199
+ dtype: Optional[torch.dtype] = None,
200
+ ):
201
+ device = device or self._execution_device
202
+ dtype = dtype or self.text_encoder.dtype
203
+
204
+ prompt = [prompt] if isinstance(prompt, str) else prompt
205
+
206
+ template = self.prompt_template_encode
207
+ drop_idx = self.prompt_template_encode_start_idx
208
+ txt = [template.format(e) for e in prompt]
209
+ txt_tokens = self.tokenizer(
210
+ txt, max_length=self.tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
211
+ ).to(device)
212
+ encoder_hidden_states = self.text_encoder(
213
+ input_ids=txt_tokens.input_ids,
214
+ attention_mask=txt_tokens.attention_mask,
215
+ output_hidden_states=True,
216
+ )
217
+ hidden_states = encoder_hidden_states.hidden_states[-1]
218
+ split_hidden_states = self._extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
219
+ split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
220
+ attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
221
+ max_seq_len = max([e.size(0) for e in split_hidden_states])
222
+ prompt_embeds = torch.stack(
223
+ [torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
224
+ )
225
+ encoder_attention_mask = torch.stack(
226
+ [torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
227
+ )
228
+
229
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
230
+
231
+ return prompt_embeds, encoder_attention_mask
232
+
233
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
234
+ if isinstance(generator, list):
235
+ image_latents = [
236
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
237
+ for i in range(image.shape[0])
238
+ ]
239
+ image_latents = torch.cat(image_latents, dim=0)
240
+ else:
241
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
242
+
243
+ latents_mean = (
244
+ torch.tensor(self.vae.config.latents_mean)
245
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
246
+ .to(image_latents.device, image_latents.dtype)
247
+ )
248
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
249
+ image_latents.device, image_latents.dtype
250
+ )
251
+
252
+ image_latents = (image_latents - latents_mean) * latents_std
253
+
254
+ return image_latents
255
+
256
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
257
+ def get_timesteps(self, num_inference_steps, strength, device):
258
+ # get the original timestep using init_timestep
259
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
260
+
261
+ t_start = int(max(num_inference_steps - init_timestep, 0))
262
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
263
+ if hasattr(self.scheduler, "set_begin_index"):
264
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
265
+
266
+ return timesteps, num_inference_steps - t_start
267
+
268
+ # Copied fromCopied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline.encode_prompt
269
+ def encode_prompt(
270
+ self,
271
+ prompt: Union[str, List[str]],
272
+ device: Optional[torch.device] = None,
273
+ num_images_per_prompt: int = 1,
274
+ prompt_embeds: Optional[torch.Tensor] = None,
275
+ prompt_embeds_mask: Optional[torch.Tensor] = None,
276
+ max_sequence_length: int = 1024,
277
+ ):
278
+ r"""
279
+
280
+ Args:
281
+ prompt (`str` or `List[str]`, *optional*):
282
+ prompt to be encoded
283
+ device: (`torch.device`):
284
+ torch device
285
+ num_images_per_prompt (`int`):
286
+ number of images that should be generated per prompt
287
+ prompt_embeds (`torch.Tensor`, *optional*):
288
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
289
+ provided, text embeddings will be generated from `prompt` input argument.
290
+ """
291
+ device = device or self._execution_device
292
+
293
+ prompt = [prompt] if isinstance(prompt, str) else prompt
294
+ batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
295
+
296
+ if prompt_embeds is None:
297
+ prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, device)
298
+
299
+ prompt_embeds = prompt_embeds[:, :max_sequence_length]
300
+ prompt_embeds_mask = prompt_embeds_mask[:, :max_sequence_length]
301
+
302
+ _, seq_len, _ = prompt_embeds.shape
303
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
304
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
305
+ prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
306
+ prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
307
+
308
+ return prompt_embeds, prompt_embeds_mask
309
+
310
+ def check_inputs(
311
+ self,
312
+ prompt,
313
+ strength,
314
+ height,
315
+ width,
316
+ negative_prompt=None,
317
+ prompt_embeds=None,
318
+ negative_prompt_embeds=None,
319
+ prompt_embeds_mask=None,
320
+ negative_prompt_embeds_mask=None,
321
+ callback_on_step_end_tensor_inputs=None,
322
+ max_sequence_length=None,
323
+ ):
324
+ if strength < 0 or strength > 1:
325
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
326
+
327
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
328
+ logger.warning(
329
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
330
+ )
331
+
332
+ if callback_on_step_end_tensor_inputs is not None and not all(
333
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
334
+ ):
335
+ raise ValueError(
336
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
337
+ )
338
+
339
+ if prompt is not None and prompt_embeds is not None:
340
+ raise ValueError(
341
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
342
+ " only forward one of the two."
343
+ )
344
+ elif prompt is None and prompt_embeds is None:
345
+ raise ValueError(
346
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
347
+ )
348
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
349
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
350
+
351
+ if negative_prompt is not None and negative_prompt_embeds is not None:
352
+ raise ValueError(
353
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
354
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
355
+ )
356
+
357
+ if prompt_embeds is not None and prompt_embeds_mask is None:
358
+ raise ValueError(
359
+ "If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
360
+ )
361
+ if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
362
+ raise ValueError(
363
+ "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
364
+ )
365
+
366
+ if max_sequence_length is not None and max_sequence_length > 1024:
367
+ raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
368
+
369
+ @staticmethod
370
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents
371
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
372
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
373
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
374
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
375
+
376
+ return latents
377
+
378
+ @staticmethod
379
+ # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents
380
+ def _unpack_latents(latents, height, width, vae_scale_factor):
381
+ batch_size, num_patches, channels = latents.shape
382
+
383
+ # VAE applies 8x compression on images but we must also account for packing which requires
384
+ # latent height and width to be divisible by 2.
385
+ height = 2 * (int(height) // (vae_scale_factor * 2))
386
+ width = 2 * (int(width) // (vae_scale_factor * 2))
387
+
388
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
389
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
390
+
391
+ latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
392
+
393
+ return latents
394
+
395
+ def enable_vae_slicing(self):
396
+ r"""
397
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
398
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
399
+ """
400
+ self.vae.enable_slicing()
401
+
402
+ def disable_vae_slicing(self):
403
+ r"""
404
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
405
+ computing decoding in one step.
406
+ """
407
+ self.vae.disable_slicing()
408
+
409
+ def enable_vae_tiling(self):
410
+ r"""
411
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
412
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
413
+ processing larger images.
414
+ """
415
+ self.vae.enable_tiling()
416
+
417
+ def disable_vae_tiling(self):
418
+ r"""
419
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
420
+ computing decoding in one step.
421
+ """
422
+ self.vae.disable_tiling()
423
+
424
+ def prepare_latents(
425
+ self,
426
+ image,
427
+ timestep,
428
+ batch_size,
429
+ num_channels_latents,
430
+ height,
431
+ width,
432
+ dtype,
433
+ device,
434
+ generator,
435
+ latents=None,
436
+ ):
437
+ if isinstance(generator, list) and len(generator) != batch_size:
438
+ raise ValueError(
439
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
440
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
441
+ )
442
+ # VAE applies 8x compression on images but we must also account for packing which requires
443
+ # latent height and width to be divisible by 2.
444
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
445
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
446
+
447
+ shape = (batch_size, 1, num_channels_latents, height, width)
448
+
449
+ # If image is [B,C,H,W] -> add T=1. If it's already [B,C,T,H,W], leave it.
450
+ if image.dim() == 4:
451
+ image = image.unsqueeze(2)
452
+ elif image.dim() != 5:
453
+ raise ValueError(f"Expected image dims 4 or 5, got {image.dim()}.")
454
+
455
+ if latents is not None:
456
+ return latents.to(device=device, dtype=dtype)
457
+
458
+ image = image.to(device=device, dtype=dtype)
459
+ if image.shape[1] != self.latent_channels:
460
+ image_latents = self._encode_vae_image(image=image, generator=generator) # [B,z,1,H',W']
461
+ else:
462
+ image_latents = image
463
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
464
+ # expand init_latents for batch_size
465
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
466
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
467
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
468
+ raise ValueError(
469
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
470
+ )
471
+ else:
472
+ image_latents = torch.cat([image_latents], dim=0)
473
+
474
+ image_latents = image_latents.transpose(1, 2) # [B,1,z,H',W']
475
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
476
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
477
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
478
+
479
+ return latents
480
+
481
+ @property
482
+ def guidance_scale(self):
483
+ return self._guidance_scale
484
+
485
+ @property
486
+ def attention_kwargs(self):
487
+ return self._attention_kwargs
488
+
489
+ @property
490
+ def num_timesteps(self):
491
+ return self._num_timesteps
492
+
493
+ @property
494
+ def current_timestep(self):
495
+ return self._current_timestep
496
+
497
+ @property
498
+ def interrupt(self):
499
+ return self._interrupt
500
+
501
+ @torch.no_grad()
502
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
503
+ def __call__(
504
+ self,
505
+ prompt: Union[str, List[str]] = None,
506
+ negative_prompt: Union[str, List[str]] = None,
507
+ true_cfg_scale: float = 4.0,
508
+ image: PipelineImageInput = None,
509
+ height: Optional[int] = None,
510
+ width: Optional[int] = None,
511
+ strength: float = 0.6,
512
+ num_inference_steps: int = 50,
513
+ sigmas: Optional[List[float]] = None,
514
+ guidance_scale: float = 1.0,
515
+ num_images_per_prompt: int = 1,
516
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
517
+ latents: Optional[torch.Tensor] = None,
518
+ prompt_embeds: Optional[torch.Tensor] = None,
519
+ prompt_embeds_mask: Optional[torch.Tensor] = None,
520
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
521
+ negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
522
+ output_type: Optional[str] = "pil",
523
+ return_dict: bool = True,
524
+ attention_kwargs: Optional[Dict[str, Any]] = None,
525
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
526
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
527
+ max_sequence_length: int = 512,
528
+ ):
529
+ r"""
530
+ Function invoked when calling the pipeline for generation.
531
+
532
+ Args:
533
+ prompt (`str` or `List[str]`, *optional*):
534
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
535
+ instead.
536
+ negative_prompt (`str` or `List[str]`, *optional*):
537
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
538
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
539
+ not greater than `1`).
540
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
541
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
542
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
543
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
544
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
545
+ latents as `image`, but if passing latents directly it is not encoded again.
546
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
547
+ When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
548
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
549
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
550
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
551
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
552
+ strength (`float`, *optional*, defaults to 1.0):
553
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
554
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
555
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
556
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
557
+ essentially ignores `image`.
558
+ num_inference_steps (`int`, *optional*, defaults to 50):
559
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
560
+ expense of slower inference.
561
+ sigmas (`List[float]`, *optional*):
562
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
563
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
564
+ will be used.
565
+ guidance_scale (`float`, *optional*, defaults to 3.5):
566
+ Guidance scale as defined in [Classifier-Free Diffusion
567
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
568
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
569
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
570
+ the text `prompt`, usually at the expense of lower image quality.
571
+
572
+ This parameter in the pipeline is there to support future guidance-distilled models when they come up.
573
+ Note that passing `guidance_scale` to the pipeline is ineffective. To enable classifier-free guidance,
574
+ please pass `true_cfg_scale` and `negative_prompt` (even an empty negative prompt like " ") should
575
+ enable classifier-free guidance computations.
576
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
577
+ The number of images to generate per prompt.
578
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
579
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
580
+ to make generation deterministic.
581
+ latents (`torch.Tensor`, *optional*):
582
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
583
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
584
+ tensor will be generated by sampling using the supplied random `generator`.
585
+ prompt_embeds (`torch.Tensor`, *optional*):
586
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
587
+ provided, text embeddings will be generated from `prompt` input argument.
588
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
589
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
590
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
591
+ argument.
592
+ output_type (`str`, *optional*, defaults to `"pil"`):
593
+ The output format of the generate image. Choose between
594
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
595
+ return_dict (`bool`, *optional*, defaults to `True`):
596
+ Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
597
+ attention_kwargs (`dict`, *optional*):
598
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
599
+ `self.processor` in
600
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
601
+ callback_on_step_end (`Callable`, *optional*):
602
+ A function that calls at the end of each denoising steps during the inference. The function is called
603
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
604
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
605
+ `callback_on_step_end_tensor_inputs`.
606
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
607
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
608
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
609
+ `._callback_tensor_inputs` attribute of your pipeline class.
610
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
611
+
612
+ Examples:
613
+
614
+ Returns:
615
+ [`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
616
+ [`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
617
+ returning a tuple, the first element is a list with the generated images.
618
+ """
619
+
620
+ height = height or self.default_sample_size * self.vae_scale_factor
621
+ width = width or self.default_sample_size * self.vae_scale_factor
622
+
623
+ # 1. Check inputs. Raise error if not correct
624
+ self.check_inputs(
625
+ prompt,
626
+ strength,
627
+ height,
628
+ width,
629
+ negative_prompt=negative_prompt,
630
+ prompt_embeds=prompt_embeds,
631
+ negative_prompt_embeds=negative_prompt_embeds,
632
+ prompt_embeds_mask=prompt_embeds_mask,
633
+ negative_prompt_embeds_mask=negative_prompt_embeds_mask,
634
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
635
+ max_sequence_length=max_sequence_length,
636
+ )
637
+
638
+ self._guidance_scale = guidance_scale
639
+ self._attention_kwargs = attention_kwargs
640
+ self._current_timestep = None
641
+ self._interrupt = False
642
+
643
+ # 2. Preprocess image
644
+ init_image = self.image_processor.preprocess(image, height=height, width=width)
645
+ init_image = init_image.to(dtype=torch.float32)
646
+
647
+ # 3. Define call parameters
648
+ if prompt is not None and isinstance(prompt, str):
649
+ batch_size = 1
650
+ elif prompt is not None and isinstance(prompt, list):
651
+ batch_size = len(prompt)
652
+ else:
653
+ batch_size = prompt_embeds.shape[0]
654
+
655
+ device = self._execution_device
656
+
657
+ has_neg_prompt = negative_prompt is not None or (
658
+ negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
659
+ )
660
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
661
+ prompt_embeds, prompt_embeds_mask = self.encode_prompt(
662
+ prompt=prompt,
663
+ prompt_embeds=prompt_embeds,
664
+ prompt_embeds_mask=prompt_embeds_mask,
665
+ device=device,
666
+ num_images_per_prompt=num_images_per_prompt,
667
+ max_sequence_length=max_sequence_length,
668
+ )
669
+ if do_true_cfg:
670
+ negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
671
+ prompt=negative_prompt,
672
+ prompt_embeds=negative_prompt_embeds,
673
+ prompt_embeds_mask=negative_prompt_embeds_mask,
674
+ device=device,
675
+ num_images_per_prompt=num_images_per_prompt,
676
+ max_sequence_length=max_sequence_length,
677
+ )
678
+
679
+ # 4. Prepare timesteps
680
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
681
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
682
+ mu = calculate_shift(
683
+ image_seq_len,
684
+ self.scheduler.config.get("base_image_seq_len", 256),
685
+ self.scheduler.config.get("max_image_seq_len", 4096),
686
+ self.scheduler.config.get("base_shift", 0.5),
687
+ self.scheduler.config.get("max_shift", 1.15),
688
+ )
689
+ timesteps, num_inference_steps = retrieve_timesteps(
690
+ self.scheduler,
691
+ num_inference_steps,
692
+ device,
693
+ sigmas=sigmas,
694
+ mu=mu,
695
+ )
696
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
697
+ if num_inference_steps < 1:
698
+ raise ValueError(
699
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
700
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
701
+ )
702
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
703
+
704
+ # 5. Prepare latent variables
705
+ num_channels_latents = self.transformer.config.in_channels // 4
706
+ latents = self.prepare_latents(
707
+ init_image,
708
+ latent_timestep,
709
+ batch_size * num_images_per_prompt,
710
+ num_channels_latents,
711
+ height,
712
+ width,
713
+ prompt_embeds.dtype,
714
+ device,
715
+ generator,
716
+ latents,
717
+ )
718
+ img_shapes = [[(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)]] * batch_size
719
+
720
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
721
+ self._num_timesteps = len(timesteps)
722
+
723
+ # handle guidance
724
+ if self.transformer.config.guidance_embeds:
725
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
726
+ guidance = guidance.expand(latents.shape[0])
727
+ else:
728
+ guidance = None
729
+
730
+ if self.attention_kwargs is None:
731
+ self._attention_kwargs = {}
732
+
733
+ txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None
734
+ negative_txt_seq_lens = (
735
+ negative_prompt_embeds_mask.sum(dim=1).tolist() if negative_prompt_embeds_mask is not None else None
736
+ )
737
+
738
+ # 6. Denoising loop
739
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
740
+ for i, t in enumerate(timesteps):
741
+ if self.interrupt:
742
+ continue
743
+
744
+ self._current_timestep = t
745
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
746
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
747
+ with self.transformer.cache_context("cond"):
748
+ noise_pred = self.transformer(
749
+ hidden_states=latents,
750
+ timestep=timestep / 1000,
751
+ guidance=guidance,
752
+ encoder_hidden_states_mask=prompt_embeds_mask,
753
+ encoder_hidden_states=prompt_embeds,
754
+ img_shapes=img_shapes,
755
+ txt_seq_lens=txt_seq_lens,
756
+ attention_kwargs=self.attention_kwargs,
757
+ return_dict=False,
758
+ )[0]
759
+
760
+ if do_true_cfg:
761
+ with self.transformer.cache_context("uncond"):
762
+ neg_noise_pred = self.transformer(
763
+ hidden_states=latents,
764
+ timestep=timestep / 1000,
765
+ guidance=guidance,
766
+ encoder_hidden_states_mask=negative_prompt_embeds_mask,
767
+ encoder_hidden_states=negative_prompt_embeds,
768
+ img_shapes=img_shapes,
769
+ txt_seq_lens=negative_txt_seq_lens,
770
+ attention_kwargs=self.attention_kwargs,
771
+ return_dict=False,
772
+ )[0]
773
+ comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
774
+
775
+ cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
776
+ noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
777
+ noise_pred = comb_pred * (cond_norm / noise_norm)
778
+
779
+ # compute the previous noisy sample x_t -> x_t-1
780
+ latents_dtype = latents.dtype
781
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
782
+
783
+ if latents.dtype != latents_dtype:
784
+ if torch.backends.mps.is_available():
785
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
786
+ latents = latents.to(latents_dtype)
787
+
788
+ if callback_on_step_end is not None:
789
+ callback_kwargs = {}
790
+ for k in callback_on_step_end_tensor_inputs:
791
+ callback_kwargs[k] = locals()[k]
792
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
793
+
794
+ latents = callback_outputs.pop("latents", latents)
795
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
796
+
797
+ # call the callback, if provided
798
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
799
+ progress_bar.update()
800
+
801
+ if XLA_AVAILABLE:
802
+ xm.mark_step()
803
+
804
+ self._current_timestep = None
805
+ if output_type == "latent":
806
+ image = latents
807
+ else:
808
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
809
+ latents = latents.to(self.vae.dtype)
810
+ latents_mean = (
811
+ torch.tensor(self.vae.config.latents_mean)
812
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
813
+ .to(latents.device, latents.dtype)
814
+ )
815
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
816
+ latents.device, latents.dtype
817
+ )
818
+
819
+ latents = latents / latents_std + latents_mean
820
+ image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
821
+ image = self.image_processor.postprocess(image, output_type=output_type)
822
+
823
+ # Offload all models
824
+ self.maybe_free_model_hooks()
825
+
826
+ if not return_dict:
827
+ return (image,)
828
+
829
+ return QwenImagePipelineOutput(images=image)