diffusers 0.33.1__py3-none-any.whl → 0.35.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +145 -1
- diffusers/callbacks.py +35 -0
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/custom_blocks.py +134 -0
- diffusers/commands/diffusers_cli.py +3 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +2 -2
- diffusers/configuration_utils.py +11 -2
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +3 -3
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/guiders/__init__.py +41 -0
- diffusers/guiders/adaptive_projected_guidance.py +188 -0
- diffusers/guiders/auto_guidance.py +190 -0
- diffusers/guiders/classifier_free_guidance.py +141 -0
- diffusers/guiders/classifier_free_zero_star_guidance.py +152 -0
- diffusers/guiders/frequency_decoupled_guidance.py +327 -0
- diffusers/guiders/guider_utils.py +309 -0
- diffusers/guiders/perturbed_attention_guidance.py +271 -0
- diffusers/guiders/skip_layer_guidance.py +262 -0
- diffusers/guiders/smoothed_energy_guidance.py +251 -0
- diffusers/guiders/tangential_classifier_free_guidance.py +143 -0
- diffusers/hooks/__init__.py +17 -0
- diffusers/hooks/_common.py +56 -0
- diffusers/hooks/_helpers.py +293 -0
- diffusers/hooks/faster_cache.py +9 -8
- diffusers/hooks/first_block_cache.py +259 -0
- diffusers/hooks/group_offloading.py +332 -227
- diffusers/hooks/hooks.py +58 -3
- diffusers/hooks/layer_skip.py +263 -0
- diffusers/hooks/layerwise_casting.py +5 -10
- diffusers/hooks/pyramid_attention_broadcast.py +15 -12
- diffusers/hooks/smoothed_energy_guidance_utils.py +167 -0
- diffusers/hooks/utils.py +43 -0
- diffusers/image_processor.py +7 -2
- diffusers/loaders/__init__.py +10 -0
- diffusers/loaders/ip_adapter.py +260 -18
- diffusers/loaders/lora_base.py +261 -127
- diffusers/loaders/lora_conversion_utils.py +657 -35
- diffusers/loaders/lora_pipeline.py +2778 -1246
- diffusers/loaders/peft.py +78 -112
- diffusers/loaders/single_file.py +2 -2
- diffusers/loaders/single_file_model.py +64 -15
- diffusers/loaders/single_file_utils.py +395 -7
- diffusers/loaders/textual_inversion.py +3 -2
- diffusers/loaders/transformer_flux.py +10 -11
- diffusers/loaders/transformer_sd3.py +8 -3
- diffusers/loaders/unet.py +24 -21
- diffusers/loaders/unet_loader_utils.py +6 -3
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +23 -1
- diffusers/models/activations.py +5 -5
- diffusers/models/adapter.py +2 -3
- diffusers/models/attention.py +488 -7
- diffusers/models/attention_dispatch.py +1218 -0
- diffusers/models/attention_flax.py +10 -10
- diffusers/models/attention_processor.py +113 -667
- diffusers/models/auto_model.py +49 -12
- diffusers/models/autoencoders/__init__.py +2 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +4 -4
- diffusers/models/autoencoders/autoencoder_dc.py +17 -4
- diffusers/models/autoencoders/autoencoder_kl.py +5 -5
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +6 -6
- diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1110 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +2 -2
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl_magvit.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +3 -3
- diffusers/models/autoencoders/autoencoder_kl_qwenimage.py +1070 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -4
- diffusers/models/autoencoders/autoencoder_kl_wan.py +626 -62
- diffusers/models/autoencoders/autoencoder_oobleck.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +3 -3
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +13 -2
- diffusers/models/autoencoders/vq_model.py +2 -2
- diffusers/models/cache_utils.py +32 -10
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flux.py +1 -1
- diffusers/models/controlnet_sd3.py +1 -1
- diffusers/models/controlnet_sparsectrl.py +1 -1
- diffusers/models/controlnets/__init__.py +1 -0
- diffusers/models/controlnets/controlnet.py +3 -3
- diffusers/models/controlnets/controlnet_flax.py +1 -1
- diffusers/models/controlnets/controlnet_flux.py +21 -20
- diffusers/models/controlnets/controlnet_hunyuan.py +2 -2
- diffusers/models/controlnets/controlnet_sana.py +290 -0
- diffusers/models/controlnets/controlnet_sd3.py +1 -1
- diffusers/models/controlnets/controlnet_sparsectrl.py +2 -2
- diffusers/models/controlnets/controlnet_union.py +5 -5
- diffusers/models/controlnets/controlnet_xs.py +7 -7
- diffusers/models/controlnets/multicontrolnet.py +4 -5
- diffusers/models/controlnets/multicontrolnet_union.py +5 -6
- diffusers/models/downsampling.py +2 -2
- diffusers/models/embeddings.py +36 -46
- diffusers/models/embeddings_flax.py +2 -2
- diffusers/models/lora.py +3 -3
- diffusers/models/model_loading_utils.py +233 -1
- diffusers/models/modeling_flax_utils.py +1 -2
- diffusers/models/modeling_utils.py +203 -108
- diffusers/models/normalization.py +4 -4
- diffusers/models/resnet.py +2 -2
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/transformers/__init__.py +7 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +70 -24
- diffusers/models/transformers/cogvideox_transformer_3d.py +1 -1
- diffusers/models/transformers/consisid_transformer_3d.py +1 -1
- diffusers/models/transformers/dit_transformer_2d.py +2 -2
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/hunyuan_transformer_2d.py +2 -2
- diffusers/models/transformers/latte_transformer_3d.py +4 -5
- diffusers/models/transformers/lumina_nextdit2d.py +2 -2
- diffusers/models/transformers/pixart_transformer_2d.py +3 -3
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/sana_transformer.py +8 -3
- diffusers/models/transformers/stable_audio_transformer.py +5 -9
- diffusers/models/transformers/t5_film_transformer.py +3 -3
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +1 -1
- diffusers/models/transformers/transformer_chroma.py +641 -0
- diffusers/models/transformers/transformer_cogview3plus.py +5 -10
- diffusers/models/transformers/transformer_cogview4.py +353 -27
- diffusers/models/transformers/transformer_cosmos.py +586 -0
- diffusers/models/transformers/transformer_flux.py +376 -138
- diffusers/models/transformers/transformer_hidream_image.py +942 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +12 -8
- diffusers/models/transformers/transformer_hunyuan_video_framepack.py +416 -0
- diffusers/models/transformers/transformer_ltx.py +105 -24
- diffusers/models/transformers/transformer_lumina2.py +1 -1
- diffusers/models/transformers/transformer_mochi.py +1 -1
- diffusers/models/transformers/transformer_omnigen.py +2 -2
- diffusers/models/transformers/transformer_qwenimage.py +645 -0
- diffusers/models/transformers/transformer_sd3.py +7 -7
- diffusers/models/transformers/transformer_skyreels_v2.py +607 -0
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/transformers/transformer_wan.py +316 -87
- diffusers/models/transformers/transformer_wan_vace.py +387 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +1 -1
- diffusers/models/unets/unet_2d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_blocks_flax.py +8 -7
- diffusers/models/unets/unet_2d_condition.py +4 -3
- diffusers/models/unets/unet_2d_condition_flax.py +2 -2
- diffusers/models/unets/unet_3d_blocks.py +1 -1
- diffusers/models/unets/unet_3d_condition.py +3 -3
- diffusers/models/unets/unet_i2vgen_xl.py +3 -3
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +2 -2
- diffusers/models/unets/unet_stable_cascade.py +1 -1
- diffusers/models/upsampling.py +2 -2
- diffusers/models/vae_flax.py +2 -2
- diffusers/models/vq_model.py +1 -1
- diffusers/modular_pipelines/__init__.py +83 -0
- diffusers/modular_pipelines/components_manager.py +1068 -0
- diffusers/modular_pipelines/flux/__init__.py +66 -0
- diffusers/modular_pipelines/flux/before_denoise.py +689 -0
- diffusers/modular_pipelines/flux/decoders.py +109 -0
- diffusers/modular_pipelines/flux/denoise.py +227 -0
- diffusers/modular_pipelines/flux/encoders.py +412 -0
- diffusers/modular_pipelines/flux/modular_blocks.py +181 -0
- diffusers/modular_pipelines/flux/modular_pipeline.py +59 -0
- diffusers/modular_pipelines/modular_pipeline.py +2446 -0
- diffusers/modular_pipelines/modular_pipeline_utils.py +672 -0
- diffusers/modular_pipelines/node_utils.py +665 -0
- diffusers/modular_pipelines/stable_diffusion_xl/__init__.py +77 -0
- diffusers/modular_pipelines/stable_diffusion_xl/before_denoise.py +1874 -0
- diffusers/modular_pipelines/stable_diffusion_xl/decoders.py +208 -0
- diffusers/modular_pipelines/stable_diffusion_xl/denoise.py +771 -0
- diffusers/modular_pipelines/stable_diffusion_xl/encoders.py +887 -0
- diffusers/modular_pipelines/stable_diffusion_xl/modular_blocks.py +380 -0
- diffusers/modular_pipelines/stable_diffusion_xl/modular_pipeline.py +365 -0
- diffusers/modular_pipelines/wan/__init__.py +66 -0
- diffusers/modular_pipelines/wan/before_denoise.py +365 -0
- diffusers/modular_pipelines/wan/decoders.py +105 -0
- diffusers/modular_pipelines/wan/denoise.py +261 -0
- diffusers/modular_pipelines/wan/encoders.py +242 -0
- diffusers/modular_pipelines/wan/modular_blocks.py +144 -0
- diffusers/modular_pipelines/wan/modular_pipeline.py +90 -0
- diffusers/pipelines/__init__.py +68 -6
- diffusers/pipelines/allegro/pipeline_allegro.py +11 -11
- diffusers/pipelines/amused/pipeline_amused.py +7 -6
- diffusers/pipelines/amused/pipeline_amused_img2img.py +6 -5
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +6 -5
- diffusers/pipelines/animatediff/pipeline_animatediff.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +16 -15
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +6 -6
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +5 -5
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +5 -5
- diffusers/pipelines/audioldm/pipeline_audioldm.py +8 -7
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +22 -13
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +48 -11
- diffusers/pipelines/auto_pipeline.py +23 -20
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +11 -10
- diffusers/pipelines/chroma/__init__.py +49 -0
- diffusers/pipelines/chroma/pipeline_chroma.py +949 -0
- diffusers/pipelines/chroma/pipeline_chroma_img2img.py +1034 -0
- diffusers/pipelines/chroma/pipeline_output.py +21 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +17 -16
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +17 -16
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +18 -17
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +17 -16
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +9 -9
- diffusers/pipelines/cogview4/pipeline_cogview4.py +23 -22
- diffusers/pipelines/cogview4/pipeline_cogview4_control.py +7 -7
- diffusers/pipelines/consisid/consisid_utils.py +2 -2
- diffusers/pipelines/consisid/pipeline_consisid.py +8 -8
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +11 -10
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +7 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +14 -14
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +10 -6
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +13 -13
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +226 -107
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +12 -8
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +207 -105
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +1 -1
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +8 -8
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +7 -7
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +7 -7
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -10
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +9 -7
- diffusers/pipelines/cosmos/__init__.py +54 -0
- diffusers/pipelines/cosmos/pipeline_cosmos2_text2image.py +673 -0
- diffusers/pipelines/cosmos/pipeline_cosmos2_video2world.py +792 -0
- diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +664 -0
- diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +826 -0
- diffusers/pipelines/cosmos/pipeline_output.py +40 -0
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +5 -4
- diffusers/pipelines/ddim/pipeline_ddim.py +4 -4
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +10 -10
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +10 -10
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +8 -8
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +5 -5
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +3 -3
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +2 -2
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +4 -3
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +8 -8
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +9 -9
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -8
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -5
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +18 -18
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +2 -2
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +6 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +5 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +5 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +5 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +4 -2
- diffusers/pipelines/easyanimate/pipeline_easyanimate.py +4 -4
- diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +4 -4
- diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +7 -6
- diffusers/pipelines/flux/__init__.py +4 -0
- diffusers/pipelines/flux/modeling_flux.py +1 -1
- diffusers/pipelines/flux/pipeline_flux.py +37 -36
- diffusers/pipelines/flux/pipeline_flux_control.py +9 -9
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +7 -7
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +7 -7
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +7 -7
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +31 -23
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +3 -2
- diffusers/pipelines/flux/pipeline_flux_fill.py +7 -7
- diffusers/pipelines/flux/pipeline_flux_img2img.py +40 -7
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +12 -7
- diffusers/pipelines/flux/pipeline_flux_kontext.py +1134 -0
- diffusers/pipelines/flux/pipeline_flux_kontext_inpaint.py +1460 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +2 -2
- diffusers/pipelines/flux/pipeline_output.py +6 -4
- diffusers/pipelines/free_init_utils.py +2 -2
- diffusers/pipelines/free_noise_utils.py +3 -3
- diffusers/pipelines/hidream_image/__init__.py +47 -0
- diffusers/pipelines/hidream_image/pipeline_hidream_image.py +1026 -0
- diffusers/pipelines/hidream_image/pipeline_output.py +35 -0
- diffusers/pipelines/hunyuan_video/__init__.py +2 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +8 -8
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +26 -25
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_framepack.py +1114 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +71 -15
- diffusers/pipelines/hunyuan_video/pipeline_output.py +19 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +8 -8
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +10 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +6 -6
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +34 -34
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +19 -26
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +7 -7
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +11 -11
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +35 -35
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +17 -39
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +17 -45
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +10 -10
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +7 -7
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +17 -38
- diffusers/pipelines/kolors/pipeline_kolors.py +10 -10
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +12 -12
- diffusers/pipelines/kolors/text_encoder.py +3 -3
- diffusers/pipelines/kolors/tokenizer.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +2 -2
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +3 -3
- diffusers/pipelines/latte/pipeline_latte.py +12 -12
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +13 -13
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +17 -16
- diffusers/pipelines/ltx/__init__.py +4 -0
- diffusers/pipelines/ltx/modeling_latent_upsampler.py +188 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +64 -18
- diffusers/pipelines/ltx/pipeline_ltx_condition.py +117 -38
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +63 -18
- diffusers/pipelines/ltx/pipeline_ltx_latent_upsample.py +277 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +13 -13
- diffusers/pipelines/lumina2/pipeline_lumina2.py +10 -10
- diffusers/pipelines/marigold/marigold_image_processing.py +2 -2
- diffusers/pipelines/mochi/pipeline_mochi.py +15 -14
- diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -13
- diffusers/pipelines/omnigen/pipeline_omnigen.py +13 -11
- diffusers/pipelines/omnigen/processor_omnigen.py +8 -3
- diffusers/pipelines/onnx_utils.py +15 -2
- diffusers/pipelines/pag/pag_utils.py +2 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -8
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +10 -6
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +14 -14
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_kolors.py +10 -10
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +11 -11
- diffusers/pipelines/pag/pipeline_pag_sana.py +18 -12
- diffusers/pipelines/pag/pipeline_pag_sd.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +7 -7
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +6 -6
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +5 -5
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +8 -8
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +16 -15
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +18 -17
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +12 -12
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +8 -7
- diffusers/pipelines/pia/pipeline_pia.py +8 -6
- diffusers/pipelines/pipeline_flax_utils.py +5 -6
- diffusers/pipelines/pipeline_loading_utils.py +113 -15
- diffusers/pipelines/pipeline_utils.py +127 -48
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +14 -12
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +31 -11
- diffusers/pipelines/qwenimage/__init__.py +55 -0
- diffusers/pipelines/qwenimage/pipeline_output.py +21 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage.py +726 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage_edit.py +882 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage_img2img.py +829 -0
- diffusers/pipelines/qwenimage/pipeline_qwenimage_inpaint.py +1015 -0
- diffusers/pipelines/sana/__init__.py +4 -0
- diffusers/pipelines/sana/pipeline_sana.py +23 -21
- diffusers/pipelines/sana/pipeline_sana_controlnet.py +1106 -0
- diffusers/pipelines/sana/pipeline_sana_sprint.py +23 -19
- diffusers/pipelines/sana/pipeline_sana_sprint_img2img.py +981 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +7 -6
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +3 -3
- diffusers/pipelines/skyreels_v2/__init__.py +59 -0
- diffusers/pipelines/skyreels_v2/pipeline_output.py +20 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2.py +610 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing.py +978 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_i2v.py +1059 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_diffusion_forcing_v2v.py +1063 -0
- diffusers/pipelines/skyreels_v2/pipeline_skyreels_v2_i2v.py +745 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +1 -1
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +5 -5
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +8 -8
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +13 -13
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +9 -9
- diffusers/pipelines/stable_diffusion/__init__.py +0 -7
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +11 -4
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +12 -11
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +11 -11
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +10 -10
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +10 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +4 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -5
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +7 -7
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +5 -5
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +13 -12
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +7 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +7 -7
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +12 -8
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +15 -9
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +11 -9
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -9
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +18 -12
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +11 -8
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +11 -8
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -12
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +8 -6
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +15 -11
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -15
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +18 -17
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +12 -12
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +16 -15
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +3 -3
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +12 -12
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -17
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +12 -7
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +12 -7
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +15 -13
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +24 -21
- diffusers/pipelines/unclip/pipeline_unclip.py +4 -3
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +4 -3
- diffusers/pipelines/unclip/text_proj.py +2 -2
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +2 -2
- diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +8 -7
- diffusers/pipelines/visualcloze/__init__.py +52 -0
- diffusers/pipelines/visualcloze/pipeline_visualcloze_combined.py +444 -0
- diffusers/pipelines/visualcloze/pipeline_visualcloze_generation.py +952 -0
- diffusers/pipelines/visualcloze/visualcloze_utils.py +251 -0
- diffusers/pipelines/wan/__init__.py +2 -0
- diffusers/pipelines/wan/pipeline_wan.py +91 -30
- diffusers/pipelines/wan/pipeline_wan_i2v.py +145 -45
- diffusers/pipelines/wan/pipeline_wan_vace.py +975 -0
- diffusers/pipelines/wan/pipeline_wan_video2video.py +14 -16
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +16 -15
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +6 -6
- diffusers/quantizers/__init__.py +3 -1
- diffusers/quantizers/base.py +17 -1
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +4 -0
- diffusers/quantizers/bitsandbytes/utils.py +10 -7
- diffusers/quantizers/gguf/gguf_quantizer.py +13 -4
- diffusers/quantizers/gguf/utils.py +108 -16
- diffusers/quantizers/pipe_quant_config.py +202 -0
- diffusers/quantizers/quantization_config.py +18 -16
- diffusers/quantizers/quanto/quanto_quantizer.py +4 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +31 -1
- diffusers/schedulers/__init__.py +3 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +4 -3
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +1 -1
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +10 -5
- diffusers/schedulers/scheduling_ddim.py +8 -8
- diffusers/schedulers/scheduling_ddim_cogvideox.py +5 -5
- diffusers/schedulers/scheduling_ddim_flax.py +6 -6
- diffusers/schedulers/scheduling_ddim_inverse.py +6 -6
- diffusers/schedulers/scheduling_ddim_parallel.py +22 -22
- diffusers/schedulers/scheduling_ddpm.py +9 -9
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +18 -18
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +2 -2
- diffusers/schedulers/scheduling_deis_multistep.py +16 -9
- diffusers/schedulers/scheduling_dpm_cogvideox.py +5 -5
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +18 -12
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +22 -20
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +11 -11
- diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +19 -13
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +13 -8
- diffusers/schedulers/scheduling_edm_euler.py +20 -11
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +3 -3
- diffusers/schedulers/scheduling_euler_discrete.py +3 -3
- diffusers/schedulers/scheduling_euler_discrete_flax.py +3 -3
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +20 -5
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +1 -1
- diffusers/schedulers/scheduling_flow_match_lcm.py +561 -0
- diffusers/schedulers/scheduling_heun_discrete.py +2 -2
- diffusers/schedulers/scheduling_ipndm.py +2 -2
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +2 -2
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +2 -2
- diffusers/schedulers/scheduling_karras_ve_flax.py +5 -5
- diffusers/schedulers/scheduling_lcm.py +3 -3
- diffusers/schedulers/scheduling_lms_discrete.py +2 -2
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +4 -4
- diffusers/schedulers/scheduling_pndm_flax.py +4 -4
- diffusers/schedulers/scheduling_repaint.py +9 -9
- diffusers/schedulers/scheduling_sasolver.py +15 -15
- diffusers/schedulers/scheduling_scm.py +1 -2
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +2 -2
- diffusers/schedulers/scheduling_tcd.py +3 -3
- diffusers/schedulers/scheduling_unclip.py +5 -5
- diffusers/schedulers/scheduling_unipc_multistep.py +21 -12
- diffusers/schedulers/scheduling_utils.py +3 -3
- diffusers/schedulers/scheduling_utils_flax.py +2 -2
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +91 -5
- diffusers/utils/__init__.py +15 -0
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/constants.py +4 -0
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +432 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +480 -0
- diffusers/utils/dynamic_modules_utils.py +85 -8
- diffusers/utils/export_utils.py +1 -1
- diffusers/utils/hub_utils.py +33 -17
- diffusers/utils/import_utils.py +151 -18
- diffusers/utils/logging.py +1 -1
- diffusers/utils/outputs.py +2 -1
- diffusers/utils/peft_utils.py +96 -10
- diffusers/utils/state_dict_utils.py +20 -3
- diffusers/utils/testing_utils.py +195 -17
- diffusers/utils/torch_utils.py +43 -5
- diffusers/video_processor.py +2 -2
- {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/METADATA +72 -57
- diffusers-0.35.0.dist-info/RECORD +703 -0
- {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/WHEEL +1 -1
- diffusers-0.33.1.dist-info/RECORD +0 -608
- {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/LICENSE +0 -0
- {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.33.1.dist-info → diffusers-0.35.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,641 @@
|
|
1
|
+
# Copyright 2025 Black Forest Labs, The HuggingFace Team and loadstone-rock . All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
from typing import Any, Dict, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import numpy as np
|
19
|
+
import torch
|
20
|
+
import torch.nn as nn
|
21
|
+
|
22
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
23
|
+
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
|
24
|
+
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
25
|
+
from ...utils.import_utils import is_torch_npu_available
|
26
|
+
from ...utils.torch_utils import maybe_allow_in_graph
|
27
|
+
from ..attention import AttentionMixin, FeedForward
|
28
|
+
from ..cache_utils import CacheMixin
|
29
|
+
from ..embeddings import FluxPosEmbed, PixArtAlphaTextProjection, Timesteps, get_timestep_embedding
|
30
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
31
|
+
from ..modeling_utils import ModelMixin
|
32
|
+
from ..normalization import CombinedTimestepLabelEmbeddings, FP32LayerNorm, RMSNorm
|
33
|
+
from .transformer_flux import FluxAttention, FluxAttnProcessor
|
34
|
+
|
35
|
+
|
36
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
37
|
+
|
38
|
+
|
39
|
+
class ChromaAdaLayerNormZeroPruned(nn.Module):
|
40
|
+
r"""
|
41
|
+
Norm layer adaptive layer norm zero (adaLN-Zero).
|
42
|
+
|
43
|
+
Parameters:
|
44
|
+
embedding_dim (`int`): The size of each embedding vector.
|
45
|
+
num_embeddings (`int`): The size of the embeddings dictionary.
|
46
|
+
"""
|
47
|
+
|
48
|
+
def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
|
49
|
+
super().__init__()
|
50
|
+
if num_embeddings is not None:
|
51
|
+
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
|
52
|
+
else:
|
53
|
+
self.emb = None
|
54
|
+
|
55
|
+
if norm_type == "layer_norm":
|
56
|
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
57
|
+
elif norm_type == "fp32_layer_norm":
|
58
|
+
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
|
59
|
+
else:
|
60
|
+
raise ValueError(
|
61
|
+
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
62
|
+
)
|
63
|
+
|
64
|
+
def forward(
|
65
|
+
self,
|
66
|
+
x: torch.Tensor,
|
67
|
+
timestep: Optional[torch.Tensor] = None,
|
68
|
+
class_labels: Optional[torch.LongTensor] = None,
|
69
|
+
hidden_dtype: Optional[torch.dtype] = None,
|
70
|
+
emb: Optional[torch.Tensor] = None,
|
71
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
72
|
+
if self.emb is not None:
|
73
|
+
emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)
|
74
|
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.flatten(1, 2).chunk(6, dim=1)
|
75
|
+
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
76
|
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
77
|
+
|
78
|
+
|
79
|
+
class ChromaAdaLayerNormZeroSinglePruned(nn.Module):
|
80
|
+
r"""
|
81
|
+
Norm layer adaptive layer norm zero (adaLN-Zero).
|
82
|
+
|
83
|
+
Parameters:
|
84
|
+
embedding_dim (`int`): The size of each embedding vector.
|
85
|
+
num_embeddings (`int`): The size of the embeddings dictionary.
|
86
|
+
"""
|
87
|
+
|
88
|
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
89
|
+
super().__init__()
|
90
|
+
|
91
|
+
if norm_type == "layer_norm":
|
92
|
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
93
|
+
else:
|
94
|
+
raise ValueError(
|
95
|
+
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
96
|
+
)
|
97
|
+
|
98
|
+
def forward(
|
99
|
+
self,
|
100
|
+
x: torch.Tensor,
|
101
|
+
emb: Optional[torch.Tensor] = None,
|
102
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
103
|
+
shift_msa, scale_msa, gate_msa = emb.flatten(1, 2).chunk(3, dim=1)
|
104
|
+
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
105
|
+
return x, gate_msa
|
106
|
+
|
107
|
+
|
108
|
+
class ChromaAdaLayerNormContinuousPruned(nn.Module):
|
109
|
+
r"""
|
110
|
+
Adaptive normalization layer with a norm layer (layer_norm or rms_norm).
|
111
|
+
|
112
|
+
Args:
|
113
|
+
embedding_dim (`int`): Embedding dimension to use during projection.
|
114
|
+
conditioning_embedding_dim (`int`): Dimension of the input condition.
|
115
|
+
elementwise_affine (`bool`, defaults to `True`):
|
116
|
+
Boolean flag to denote if affine transformation should be applied.
|
117
|
+
eps (`float`, defaults to 1e-5): Epsilon factor.
|
118
|
+
bias (`bias`, defaults to `True`): Boolean flag to denote if bias should be use.
|
119
|
+
norm_type (`str`, defaults to `"layer_norm"`):
|
120
|
+
Normalization layer to use. Values supported: "layer_norm", "rms_norm".
|
121
|
+
"""
|
122
|
+
|
123
|
+
def __init__(
|
124
|
+
self,
|
125
|
+
embedding_dim: int,
|
126
|
+
conditioning_embedding_dim: int,
|
127
|
+
# NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
|
128
|
+
# because the output is immediately scaled and shifted by the projected conditioning embeddings.
|
129
|
+
# Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
|
130
|
+
# However, this is how it was implemented in the original code, and it's rather likely you should
|
131
|
+
# set `elementwise_affine` to False.
|
132
|
+
elementwise_affine=True,
|
133
|
+
eps=1e-5,
|
134
|
+
bias=True,
|
135
|
+
norm_type="layer_norm",
|
136
|
+
):
|
137
|
+
super().__init__()
|
138
|
+
if norm_type == "layer_norm":
|
139
|
+
self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
140
|
+
elif norm_type == "rms_norm":
|
141
|
+
self.norm = RMSNorm(embedding_dim, eps, elementwise_affine)
|
142
|
+
else:
|
143
|
+
raise ValueError(f"unknown norm_type {norm_type}")
|
144
|
+
|
145
|
+
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
146
|
+
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
|
147
|
+
shift, scale = torch.chunk(emb.flatten(1, 2).to(x.dtype), 2, dim=1)
|
148
|
+
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
149
|
+
return x
|
150
|
+
|
151
|
+
|
152
|
+
class ChromaCombinedTimestepTextProjEmbeddings(nn.Module):
|
153
|
+
def __init__(self, num_channels: int, out_dim: int):
|
154
|
+
super().__init__()
|
155
|
+
|
156
|
+
self.time_proj = Timesteps(num_channels=num_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
|
157
|
+
self.guidance_proj = Timesteps(num_channels=num_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
|
158
|
+
|
159
|
+
self.register_buffer(
|
160
|
+
"mod_proj",
|
161
|
+
get_timestep_embedding(
|
162
|
+
torch.arange(out_dim) * 1000, 2 * num_channels, flip_sin_to_cos=True, downscale_freq_shift=0
|
163
|
+
),
|
164
|
+
persistent=False,
|
165
|
+
)
|
166
|
+
|
167
|
+
def forward(self, timestep: torch.Tensor) -> torch.Tensor:
|
168
|
+
mod_index_length = self.mod_proj.shape[0]
|
169
|
+
batch_size = timestep.shape[0]
|
170
|
+
|
171
|
+
timesteps_proj = self.time_proj(timestep).to(dtype=timestep.dtype)
|
172
|
+
guidance_proj = self.guidance_proj(torch.tensor([0] * batch_size)).to(
|
173
|
+
dtype=timestep.dtype, device=timestep.device
|
174
|
+
)
|
175
|
+
|
176
|
+
mod_proj = self.mod_proj.to(dtype=timesteps_proj.dtype, device=timesteps_proj.device).repeat(batch_size, 1, 1)
|
177
|
+
timestep_guidance = (
|
178
|
+
torch.cat([timesteps_proj, guidance_proj], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1)
|
179
|
+
)
|
180
|
+
input_vec = torch.cat([timestep_guidance, mod_proj], dim=-1)
|
181
|
+
return input_vec.to(timestep.dtype)
|
182
|
+
|
183
|
+
|
184
|
+
class ChromaApproximator(nn.Module):
|
185
|
+
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers: int = 5):
|
186
|
+
super().__init__()
|
187
|
+
self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True)
|
188
|
+
self.layers = nn.ModuleList(
|
189
|
+
[PixArtAlphaTextProjection(hidden_dim, hidden_dim, act_fn="silu") for _ in range(n_layers)]
|
190
|
+
)
|
191
|
+
self.norms = nn.ModuleList([nn.RMSNorm(hidden_dim) for _ in range(n_layers)])
|
192
|
+
self.out_proj = nn.Linear(hidden_dim, out_dim)
|
193
|
+
|
194
|
+
def forward(self, x):
|
195
|
+
x = self.in_proj(x)
|
196
|
+
|
197
|
+
for layer, norms in zip(self.layers, self.norms):
|
198
|
+
x = x + layer(norms(x))
|
199
|
+
|
200
|
+
return self.out_proj(x)
|
201
|
+
|
202
|
+
|
203
|
+
@maybe_allow_in_graph
|
204
|
+
class ChromaSingleTransformerBlock(nn.Module):
|
205
|
+
def __init__(
|
206
|
+
self,
|
207
|
+
dim: int,
|
208
|
+
num_attention_heads: int,
|
209
|
+
attention_head_dim: int,
|
210
|
+
mlp_ratio: float = 4.0,
|
211
|
+
):
|
212
|
+
super().__init__()
|
213
|
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
214
|
+
self.norm = ChromaAdaLayerNormZeroSinglePruned(dim)
|
215
|
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
216
|
+
self.act_mlp = nn.GELU(approximate="tanh")
|
217
|
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
218
|
+
|
219
|
+
if is_torch_npu_available():
|
220
|
+
from ..attention_processor import FluxAttnProcessor2_0_NPU
|
221
|
+
|
222
|
+
deprecation_message = (
|
223
|
+
"Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors "
|
224
|
+
"should be set explicitly using the `set_attn_processor` method."
|
225
|
+
)
|
226
|
+
deprecate("npu_processor", "0.34.0", deprecation_message)
|
227
|
+
processor = FluxAttnProcessor2_0_NPU()
|
228
|
+
else:
|
229
|
+
processor = FluxAttnProcessor()
|
230
|
+
|
231
|
+
self.attn = FluxAttention(
|
232
|
+
query_dim=dim,
|
233
|
+
dim_head=attention_head_dim,
|
234
|
+
heads=num_attention_heads,
|
235
|
+
out_dim=dim,
|
236
|
+
bias=True,
|
237
|
+
processor=processor,
|
238
|
+
eps=1e-6,
|
239
|
+
pre_only=True,
|
240
|
+
)
|
241
|
+
|
242
|
+
def forward(
|
243
|
+
self,
|
244
|
+
hidden_states: torch.Tensor,
|
245
|
+
temb: torch.Tensor,
|
246
|
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
247
|
+
attention_mask: Optional[torch.Tensor] = None,
|
248
|
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
249
|
+
) -> torch.Tensor:
|
250
|
+
residual = hidden_states
|
251
|
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
252
|
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
253
|
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
254
|
+
|
255
|
+
if attention_mask is not None:
|
256
|
+
attention_mask = attention_mask[:, None, None, :] * attention_mask[:, None, :, None]
|
257
|
+
|
258
|
+
attn_output = self.attn(
|
259
|
+
hidden_states=norm_hidden_states,
|
260
|
+
image_rotary_emb=image_rotary_emb,
|
261
|
+
attention_mask=attention_mask,
|
262
|
+
**joint_attention_kwargs,
|
263
|
+
)
|
264
|
+
|
265
|
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
266
|
+
gate = gate.unsqueeze(1)
|
267
|
+
hidden_states = gate * self.proj_out(hidden_states)
|
268
|
+
hidden_states = residual + hidden_states
|
269
|
+
if hidden_states.dtype == torch.float16:
|
270
|
+
hidden_states = hidden_states.clip(-65504, 65504)
|
271
|
+
|
272
|
+
return hidden_states
|
273
|
+
|
274
|
+
|
275
|
+
@maybe_allow_in_graph
|
276
|
+
class ChromaTransformerBlock(nn.Module):
|
277
|
+
def __init__(
|
278
|
+
self,
|
279
|
+
dim: int,
|
280
|
+
num_attention_heads: int,
|
281
|
+
attention_head_dim: int,
|
282
|
+
qk_norm: str = "rms_norm",
|
283
|
+
eps: float = 1e-6,
|
284
|
+
):
|
285
|
+
super().__init__()
|
286
|
+
self.norm1 = ChromaAdaLayerNormZeroPruned(dim)
|
287
|
+
self.norm1_context = ChromaAdaLayerNormZeroPruned(dim)
|
288
|
+
|
289
|
+
self.attn = FluxAttention(
|
290
|
+
query_dim=dim,
|
291
|
+
added_kv_proj_dim=dim,
|
292
|
+
dim_head=attention_head_dim,
|
293
|
+
heads=num_attention_heads,
|
294
|
+
out_dim=dim,
|
295
|
+
context_pre_only=False,
|
296
|
+
bias=True,
|
297
|
+
processor=FluxAttnProcessor(),
|
298
|
+
eps=eps,
|
299
|
+
)
|
300
|
+
|
301
|
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
302
|
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
303
|
+
|
304
|
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
305
|
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
306
|
+
|
307
|
+
def forward(
|
308
|
+
self,
|
309
|
+
hidden_states: torch.Tensor,
|
310
|
+
encoder_hidden_states: torch.Tensor,
|
311
|
+
temb: torch.Tensor,
|
312
|
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
313
|
+
attention_mask: Optional[torch.Tensor] = None,
|
314
|
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
315
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
316
|
+
temb_img, temb_txt = temb[:, :6], temb[:, 6:]
|
317
|
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb_img)
|
318
|
+
|
319
|
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
320
|
+
encoder_hidden_states, emb=temb_txt
|
321
|
+
)
|
322
|
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
323
|
+
if attention_mask is not None:
|
324
|
+
attention_mask = attention_mask[:, None, None, :] * attention_mask[:, None, :, None]
|
325
|
+
|
326
|
+
# Attention.
|
327
|
+
attention_outputs = self.attn(
|
328
|
+
hidden_states=norm_hidden_states,
|
329
|
+
encoder_hidden_states=norm_encoder_hidden_states,
|
330
|
+
image_rotary_emb=image_rotary_emb,
|
331
|
+
attention_mask=attention_mask,
|
332
|
+
**joint_attention_kwargs,
|
333
|
+
)
|
334
|
+
|
335
|
+
if len(attention_outputs) == 2:
|
336
|
+
attn_output, context_attn_output = attention_outputs
|
337
|
+
elif len(attention_outputs) == 3:
|
338
|
+
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
339
|
+
|
340
|
+
# Process attention outputs for the `hidden_states`.
|
341
|
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
342
|
+
hidden_states = hidden_states + attn_output
|
343
|
+
|
344
|
+
norm_hidden_states = self.norm2(hidden_states)
|
345
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
346
|
+
|
347
|
+
ff_output = self.ff(norm_hidden_states)
|
348
|
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
349
|
+
|
350
|
+
hidden_states = hidden_states + ff_output
|
351
|
+
if len(attention_outputs) == 3:
|
352
|
+
hidden_states = hidden_states + ip_attn_output
|
353
|
+
|
354
|
+
# Process attention outputs for the `encoder_hidden_states`.
|
355
|
+
|
356
|
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
357
|
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
358
|
+
|
359
|
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
360
|
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
361
|
+
|
362
|
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
363
|
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
364
|
+
if encoder_hidden_states.dtype == torch.float16:
|
365
|
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
366
|
+
|
367
|
+
return encoder_hidden_states, hidden_states
|
368
|
+
|
369
|
+
|
370
|
+
class ChromaTransformer2DModel(
|
371
|
+
ModelMixin,
|
372
|
+
ConfigMixin,
|
373
|
+
PeftAdapterMixin,
|
374
|
+
FromOriginalModelMixin,
|
375
|
+
FluxTransformer2DLoadersMixin,
|
376
|
+
CacheMixin,
|
377
|
+
AttentionMixin,
|
378
|
+
):
|
379
|
+
"""
|
380
|
+
The Transformer model introduced in Flux, modified for Chroma.
|
381
|
+
|
382
|
+
Reference: https://huggingface.co/lodestones/Chroma
|
383
|
+
|
384
|
+
Args:
|
385
|
+
patch_size (`int`, defaults to `1`):
|
386
|
+
Patch size to turn the input data into small patches.
|
387
|
+
in_channels (`int`, defaults to `64`):
|
388
|
+
The number of channels in the input.
|
389
|
+
out_channels (`int`, *optional*, defaults to `None`):
|
390
|
+
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
391
|
+
num_layers (`int`, defaults to `19`):
|
392
|
+
The number of layers of dual stream DiT blocks to use.
|
393
|
+
num_single_layers (`int`, defaults to `38`):
|
394
|
+
The number of layers of single stream DiT blocks to use.
|
395
|
+
attention_head_dim (`int`, defaults to `128`):
|
396
|
+
The number of dimensions to use for each attention head.
|
397
|
+
num_attention_heads (`int`, defaults to `24`):
|
398
|
+
The number of attention heads to use.
|
399
|
+
joint_attention_dim (`int`, defaults to `4096`):
|
400
|
+
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
401
|
+
`encoder_hidden_states`).
|
402
|
+
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
403
|
+
The dimensions to use for the rotary positional embeddings.
|
404
|
+
"""
|
405
|
+
|
406
|
+
_supports_gradient_checkpointing = True
|
407
|
+
_no_split_modules = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"]
|
408
|
+
_repeated_blocks = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"]
|
409
|
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
410
|
+
|
411
|
+
@register_to_config
|
412
|
+
def __init__(
|
413
|
+
self,
|
414
|
+
patch_size: int = 1,
|
415
|
+
in_channels: int = 64,
|
416
|
+
out_channels: Optional[int] = None,
|
417
|
+
num_layers: int = 19,
|
418
|
+
num_single_layers: int = 38,
|
419
|
+
attention_head_dim: int = 128,
|
420
|
+
num_attention_heads: int = 24,
|
421
|
+
joint_attention_dim: int = 4096,
|
422
|
+
axes_dims_rope: Tuple[int, ...] = (16, 56, 56),
|
423
|
+
approximator_num_channels: int = 64,
|
424
|
+
approximator_hidden_dim: int = 5120,
|
425
|
+
approximator_layers: int = 5,
|
426
|
+
):
|
427
|
+
super().__init__()
|
428
|
+
self.out_channels = out_channels or in_channels
|
429
|
+
self.inner_dim = num_attention_heads * attention_head_dim
|
430
|
+
|
431
|
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
432
|
+
|
433
|
+
self.time_text_embed = ChromaCombinedTimestepTextProjEmbeddings(
|
434
|
+
num_channels=approximator_num_channels // 4,
|
435
|
+
out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2,
|
436
|
+
)
|
437
|
+
self.distilled_guidance_layer = ChromaApproximator(
|
438
|
+
in_dim=approximator_num_channels,
|
439
|
+
out_dim=self.inner_dim,
|
440
|
+
hidden_dim=approximator_hidden_dim,
|
441
|
+
n_layers=approximator_layers,
|
442
|
+
)
|
443
|
+
|
444
|
+
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
445
|
+
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
446
|
+
|
447
|
+
self.transformer_blocks = nn.ModuleList(
|
448
|
+
[
|
449
|
+
ChromaTransformerBlock(
|
450
|
+
dim=self.inner_dim,
|
451
|
+
num_attention_heads=num_attention_heads,
|
452
|
+
attention_head_dim=attention_head_dim,
|
453
|
+
)
|
454
|
+
for _ in range(num_layers)
|
455
|
+
]
|
456
|
+
)
|
457
|
+
|
458
|
+
self.single_transformer_blocks = nn.ModuleList(
|
459
|
+
[
|
460
|
+
ChromaSingleTransformerBlock(
|
461
|
+
dim=self.inner_dim,
|
462
|
+
num_attention_heads=num_attention_heads,
|
463
|
+
attention_head_dim=attention_head_dim,
|
464
|
+
)
|
465
|
+
for _ in range(num_single_layers)
|
466
|
+
]
|
467
|
+
)
|
468
|
+
|
469
|
+
self.norm_out = ChromaAdaLayerNormContinuousPruned(
|
470
|
+
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
471
|
+
)
|
472
|
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
473
|
+
|
474
|
+
self.gradient_checkpointing = False
|
475
|
+
|
476
|
+
def forward(
|
477
|
+
self,
|
478
|
+
hidden_states: torch.Tensor,
|
479
|
+
encoder_hidden_states: torch.Tensor = None,
|
480
|
+
timestep: torch.LongTensor = None,
|
481
|
+
img_ids: torch.Tensor = None,
|
482
|
+
txt_ids: torch.Tensor = None,
|
483
|
+
attention_mask: torch.Tensor = None,
|
484
|
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
485
|
+
controlnet_block_samples=None,
|
486
|
+
controlnet_single_block_samples=None,
|
487
|
+
return_dict: bool = True,
|
488
|
+
controlnet_blocks_repeat: bool = False,
|
489
|
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
490
|
+
"""
|
491
|
+
The [`FluxTransformer2DModel`] forward method.
|
492
|
+
|
493
|
+
Args:
|
494
|
+
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
495
|
+
Input `hidden_states`.
|
496
|
+
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
497
|
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
498
|
+
timestep ( `torch.LongTensor`):
|
499
|
+
Used to indicate denoising step.
|
500
|
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
501
|
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
502
|
+
joint_attention_kwargs (`dict`, *optional*):
|
503
|
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
504
|
+
`self.processor` in
|
505
|
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
506
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
507
|
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
508
|
+
tuple.
|
509
|
+
|
510
|
+
Returns:
|
511
|
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
512
|
+
`tuple` where the first element is the sample tensor.
|
513
|
+
"""
|
514
|
+
if joint_attention_kwargs is not None:
|
515
|
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
516
|
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
517
|
+
else:
|
518
|
+
lora_scale = 1.0
|
519
|
+
|
520
|
+
if USE_PEFT_BACKEND:
|
521
|
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
522
|
+
scale_lora_layers(self, lora_scale)
|
523
|
+
else:
|
524
|
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
525
|
+
logger.warning(
|
526
|
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
527
|
+
)
|
528
|
+
|
529
|
+
hidden_states = self.x_embedder(hidden_states)
|
530
|
+
|
531
|
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
532
|
+
|
533
|
+
input_vec = self.time_text_embed(timestep)
|
534
|
+
pooled_temb = self.distilled_guidance_layer(input_vec)
|
535
|
+
|
536
|
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
537
|
+
|
538
|
+
if txt_ids.ndim == 3:
|
539
|
+
logger.warning(
|
540
|
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
541
|
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
542
|
+
)
|
543
|
+
txt_ids = txt_ids[0]
|
544
|
+
if img_ids.ndim == 3:
|
545
|
+
logger.warning(
|
546
|
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
547
|
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
548
|
+
)
|
549
|
+
img_ids = img_ids[0]
|
550
|
+
|
551
|
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
552
|
+
image_rotary_emb = self.pos_embed(ids)
|
553
|
+
|
554
|
+
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
555
|
+
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
556
|
+
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
557
|
+
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
558
|
+
|
559
|
+
for index_block, block in enumerate(self.transformer_blocks):
|
560
|
+
img_offset = 3 * len(self.single_transformer_blocks)
|
561
|
+
txt_offset = img_offset + 6 * len(self.transformer_blocks)
|
562
|
+
img_modulation = img_offset + 6 * index_block
|
563
|
+
text_modulation = txt_offset + 6 * index_block
|
564
|
+
temb = torch.cat(
|
565
|
+
(
|
566
|
+
pooled_temb[:, img_modulation : img_modulation + 6],
|
567
|
+
pooled_temb[:, text_modulation : text_modulation + 6],
|
568
|
+
),
|
569
|
+
dim=1,
|
570
|
+
)
|
571
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
572
|
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
573
|
+
block, hidden_states, encoder_hidden_states, temb, image_rotary_emb, attention_mask
|
574
|
+
)
|
575
|
+
|
576
|
+
else:
|
577
|
+
encoder_hidden_states, hidden_states = block(
|
578
|
+
hidden_states=hidden_states,
|
579
|
+
encoder_hidden_states=encoder_hidden_states,
|
580
|
+
temb=temb,
|
581
|
+
image_rotary_emb=image_rotary_emb,
|
582
|
+
attention_mask=attention_mask,
|
583
|
+
joint_attention_kwargs=joint_attention_kwargs,
|
584
|
+
)
|
585
|
+
|
586
|
+
# controlnet residual
|
587
|
+
if controlnet_block_samples is not None:
|
588
|
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
589
|
+
interval_control = int(np.ceil(interval_control))
|
590
|
+
# For Xlabs ControlNet.
|
591
|
+
if controlnet_blocks_repeat:
|
592
|
+
hidden_states = (
|
593
|
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
594
|
+
)
|
595
|
+
else:
|
596
|
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
597
|
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
598
|
+
|
599
|
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
600
|
+
start_idx = 3 * index_block
|
601
|
+
temb = pooled_temb[:, start_idx : start_idx + 3]
|
602
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
603
|
+
hidden_states = self._gradient_checkpointing_func(
|
604
|
+
block,
|
605
|
+
hidden_states,
|
606
|
+
temb,
|
607
|
+
image_rotary_emb,
|
608
|
+
)
|
609
|
+
|
610
|
+
else:
|
611
|
+
hidden_states = block(
|
612
|
+
hidden_states=hidden_states,
|
613
|
+
temb=temb,
|
614
|
+
image_rotary_emb=image_rotary_emb,
|
615
|
+
attention_mask=attention_mask,
|
616
|
+
joint_attention_kwargs=joint_attention_kwargs,
|
617
|
+
)
|
618
|
+
|
619
|
+
# controlnet residual
|
620
|
+
if controlnet_single_block_samples is not None:
|
621
|
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
622
|
+
interval_control = int(np.ceil(interval_control))
|
623
|
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
624
|
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
625
|
+
+ controlnet_single_block_samples[index_block // interval_control]
|
626
|
+
)
|
627
|
+
|
628
|
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
629
|
+
|
630
|
+
temb = pooled_temb[:, -2:]
|
631
|
+
hidden_states = self.norm_out(hidden_states, temb)
|
632
|
+
output = self.proj_out(hidden_states)
|
633
|
+
|
634
|
+
if USE_PEFT_BACKEND:
|
635
|
+
# remove `lora_scale` from each PEFT layer
|
636
|
+
unscale_lora_layers(self, lora_scale)
|
637
|
+
|
638
|
+
if not return_dict:
|
639
|
+
return (output,)
|
640
|
+
|
641
|
+
return Transformer2DModelOutput(sample=output)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2025 The CogView team, Tsinghua University & ZhipuAI and The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -19,18 +19,13 @@ import torch
|
|
19
19
|
import torch.nn as nn
|
20
20
|
|
21
21
|
from ...configuration_utils import ConfigMixin, register_to_config
|
22
|
-
from ...models.attention import FeedForward
|
23
|
-
from ...models.attention_processor import (
|
24
|
-
Attention,
|
25
|
-
AttentionProcessor,
|
26
|
-
CogVideoXAttnProcessor2_0,
|
27
|
-
)
|
28
|
-
from ...models.modeling_utils import ModelMixin
|
29
|
-
from ...models.normalization import AdaLayerNormContinuous
|
30
22
|
from ...utils import logging
|
23
|
+
from ..attention import FeedForward
|
24
|
+
from ..attention_processor import Attention, AttentionProcessor, CogVideoXAttnProcessor2_0
|
31
25
|
from ..embeddings import CogView3CombinedTimestepSizeEmbeddings, CogView3PlusPatchEmbed
|
32
26
|
from ..modeling_outputs import Transformer2DModelOutput
|
33
|
-
from ..
|
27
|
+
from ..modeling_utils import ModelMixin
|
28
|
+
from ..normalization import AdaLayerNormContinuous, CogView3PlusAdaLayerNormZeroTextImage
|
34
29
|
|
35
30
|
|
36
31
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|