diffusers 0.32.2__py3-none-any.whl → 0.33.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +121 -86
  13. diffusers/loaders/lora_conversion_utils.py +504 -44
  14. diffusers/loaders/lora_pipeline.py +1769 -181
  15. diffusers/loaders/peft.py +167 -57
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +646 -72
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +20 -7
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +404 -46
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +593 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +722 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +725 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +9 -1
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +2 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/METADATA +76 -44
  384. diffusers-0.33.0.dist-info/RECORD +608 -0
  385. {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.2.dist-info/RECORD +0 -550
  387. {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,593 @@
1
+ # Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import html
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import ftfy
19
+ import regex as re
20
+ import torch
21
+ from transformers import AutoTokenizer, UMT5EncoderModel
22
+
23
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
24
+ from ...loaders import WanLoraLoaderMixin
25
+ from ...models import AutoencoderKLWan, WanTransformer3DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
28
+ from ...utils.torch_utils import randn_tensor
29
+ from ...video_processor import VideoProcessor
30
+ from ..pipeline_utils import DiffusionPipeline
31
+ from .pipeline_output import WanPipelineOutput
32
+
33
+
34
+ if is_torch_xla_available():
35
+ import torch_xla.core.xla_model as xm
36
+
37
+ XLA_AVAILABLE = True
38
+ else:
39
+ XLA_AVAILABLE = False
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+
44
+ EXAMPLE_DOC_STRING = """
45
+ Examples:
46
+ ```python
47
+ >>> import torch
48
+ >>> from diffusers.utils import export_to_video
49
+ >>> from diffusers import AutoencoderKLWan, WanPipeline
50
+ >>> from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
51
+
52
+ >>> # Available models: Wan-AI/Wan2.1-T2V-14B-Diffusers, Wan-AI/Wan2.1-T2V-1.3B-Diffusers
53
+ >>> model_id = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
54
+ >>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
55
+ >>> pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
56
+ >>> flow_shift = 5.0 # 5.0 for 720P, 3.0 for 480P
57
+ >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
58
+ >>> pipe.to("cuda")
59
+
60
+ >>> prompt = "A cat and a dog baking a cake together in a kitchen. The cat is carefully measuring flour, while the dog is stirring the batter with a wooden spoon. The kitchen is cozy, with sunlight streaming through the window."
61
+ >>> negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
62
+
63
+ >>> output = pipe(
64
+ ... prompt=prompt,
65
+ ... negative_prompt=negative_prompt,
66
+ ... height=720,
67
+ ... width=1280,
68
+ ... num_frames=81,
69
+ ... guidance_scale=5.0,
70
+ ... ).frames[0]
71
+ >>> export_to_video(output, "output.mp4", fps=16)
72
+ ```
73
+ """
74
+
75
+
76
+ def basic_clean(text):
77
+ text = ftfy.fix_text(text)
78
+ text = html.unescape(html.unescape(text))
79
+ return text.strip()
80
+
81
+
82
+ def whitespace_clean(text):
83
+ text = re.sub(r"\s+", " ", text)
84
+ text = text.strip()
85
+ return text
86
+
87
+
88
+ def prompt_clean(text):
89
+ text = whitespace_clean(basic_clean(text))
90
+ return text
91
+
92
+
93
+ class WanPipeline(DiffusionPipeline, WanLoraLoaderMixin):
94
+ r"""
95
+ Pipeline for text-to-video generation using Wan.
96
+
97
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
98
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
99
+
100
+ Args:
101
+ tokenizer ([`T5Tokenizer`]):
102
+ Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
103
+ specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
104
+ text_encoder ([`T5EncoderModel`]):
105
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
106
+ the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
107
+ transformer ([`WanTransformer3DModel`]):
108
+ Conditional Transformer to denoise the input latents.
109
+ scheduler ([`UniPCMultistepScheduler`]):
110
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
111
+ vae ([`AutoencoderKLWan`]):
112
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
113
+ """
114
+
115
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
116
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
117
+
118
+ def __init__(
119
+ self,
120
+ tokenizer: AutoTokenizer,
121
+ text_encoder: UMT5EncoderModel,
122
+ transformer: WanTransformer3DModel,
123
+ vae: AutoencoderKLWan,
124
+ scheduler: FlowMatchEulerDiscreteScheduler,
125
+ ):
126
+ super().__init__()
127
+
128
+ self.register_modules(
129
+ vae=vae,
130
+ text_encoder=text_encoder,
131
+ tokenizer=tokenizer,
132
+ transformer=transformer,
133
+ scheduler=scheduler,
134
+ )
135
+
136
+ self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
137
+ self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
138
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
139
+
140
+ def _get_t5_prompt_embeds(
141
+ self,
142
+ prompt: Union[str, List[str]] = None,
143
+ num_videos_per_prompt: int = 1,
144
+ max_sequence_length: int = 226,
145
+ device: Optional[torch.device] = None,
146
+ dtype: Optional[torch.dtype] = None,
147
+ ):
148
+ device = device or self._execution_device
149
+ dtype = dtype or self.text_encoder.dtype
150
+
151
+ prompt = [prompt] if isinstance(prompt, str) else prompt
152
+ prompt = [prompt_clean(u) for u in prompt]
153
+ batch_size = len(prompt)
154
+
155
+ text_inputs = self.tokenizer(
156
+ prompt,
157
+ padding="max_length",
158
+ max_length=max_sequence_length,
159
+ truncation=True,
160
+ add_special_tokens=True,
161
+ return_attention_mask=True,
162
+ return_tensors="pt",
163
+ )
164
+ text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
165
+ seq_lens = mask.gt(0).sum(dim=1).long()
166
+
167
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
168
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
169
+ prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
170
+ prompt_embeds = torch.stack(
171
+ [torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
172
+ )
173
+
174
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
175
+ _, seq_len, _ = prompt_embeds.shape
176
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
177
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
178
+
179
+ return prompt_embeds
180
+
181
+ def encode_prompt(
182
+ self,
183
+ prompt: Union[str, List[str]],
184
+ negative_prompt: Optional[Union[str, List[str]]] = None,
185
+ do_classifier_free_guidance: bool = True,
186
+ num_videos_per_prompt: int = 1,
187
+ prompt_embeds: Optional[torch.Tensor] = None,
188
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
189
+ max_sequence_length: int = 226,
190
+ device: Optional[torch.device] = None,
191
+ dtype: Optional[torch.dtype] = None,
192
+ ):
193
+ r"""
194
+ Encodes the prompt into text encoder hidden states.
195
+
196
+ Args:
197
+ prompt (`str` or `List[str]`, *optional*):
198
+ prompt to be encoded
199
+ negative_prompt (`str` or `List[str]`, *optional*):
200
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
201
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
202
+ less than `1`).
203
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
204
+ Whether to use classifier free guidance or not.
205
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
206
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
207
+ prompt_embeds (`torch.Tensor`, *optional*):
208
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
209
+ provided, text embeddings will be generated from `prompt` input argument.
210
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
211
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
212
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
213
+ argument.
214
+ device: (`torch.device`, *optional*):
215
+ torch device
216
+ dtype: (`torch.dtype`, *optional*):
217
+ torch dtype
218
+ """
219
+ device = device or self._execution_device
220
+
221
+ prompt = [prompt] if isinstance(prompt, str) else prompt
222
+ if prompt is not None:
223
+ batch_size = len(prompt)
224
+ else:
225
+ batch_size = prompt_embeds.shape[0]
226
+
227
+ if prompt_embeds is None:
228
+ prompt_embeds = self._get_t5_prompt_embeds(
229
+ prompt=prompt,
230
+ num_videos_per_prompt=num_videos_per_prompt,
231
+ max_sequence_length=max_sequence_length,
232
+ device=device,
233
+ dtype=dtype,
234
+ )
235
+
236
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
237
+ negative_prompt = negative_prompt or ""
238
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
239
+
240
+ if prompt is not None and type(prompt) is not type(negative_prompt):
241
+ raise TypeError(
242
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
243
+ f" {type(prompt)}."
244
+ )
245
+ elif batch_size != len(negative_prompt):
246
+ raise ValueError(
247
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
248
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
249
+ " the batch size of `prompt`."
250
+ )
251
+
252
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
253
+ prompt=negative_prompt,
254
+ num_videos_per_prompt=num_videos_per_prompt,
255
+ max_sequence_length=max_sequence_length,
256
+ device=device,
257
+ dtype=dtype,
258
+ )
259
+
260
+ return prompt_embeds, negative_prompt_embeds
261
+
262
+ def check_inputs(
263
+ self,
264
+ prompt,
265
+ negative_prompt,
266
+ height,
267
+ width,
268
+ prompt_embeds=None,
269
+ negative_prompt_embeds=None,
270
+ callback_on_step_end_tensor_inputs=None,
271
+ ):
272
+ if height % 16 != 0 or width % 16 != 0:
273
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
274
+
275
+ if callback_on_step_end_tensor_inputs is not None and not all(
276
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
277
+ ):
278
+ raise ValueError(
279
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
280
+ )
281
+
282
+ if prompt is not None and prompt_embeds is not None:
283
+ raise ValueError(
284
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
285
+ " only forward one of the two."
286
+ )
287
+ elif negative_prompt is not None and negative_prompt_embeds is not None:
288
+ raise ValueError(
289
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
290
+ " only forward one of the two."
291
+ )
292
+ elif prompt is None and prompt_embeds is None:
293
+ raise ValueError(
294
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
295
+ )
296
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
297
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
298
+ elif negative_prompt is not None and (
299
+ not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
300
+ ):
301
+ raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
302
+
303
+ def prepare_latents(
304
+ self,
305
+ batch_size: int,
306
+ num_channels_latents: int = 16,
307
+ height: int = 480,
308
+ width: int = 832,
309
+ num_frames: int = 81,
310
+ dtype: Optional[torch.dtype] = None,
311
+ device: Optional[torch.device] = None,
312
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
313
+ latents: Optional[torch.Tensor] = None,
314
+ ) -> torch.Tensor:
315
+ if latents is not None:
316
+ return latents.to(device=device, dtype=dtype)
317
+
318
+ num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
319
+ shape = (
320
+ batch_size,
321
+ num_channels_latents,
322
+ num_latent_frames,
323
+ int(height) // self.vae_scale_factor_spatial,
324
+ int(width) // self.vae_scale_factor_spatial,
325
+ )
326
+ if isinstance(generator, list) and len(generator) != batch_size:
327
+ raise ValueError(
328
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
329
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
330
+ )
331
+
332
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
333
+ return latents
334
+
335
+ @property
336
+ def guidance_scale(self):
337
+ return self._guidance_scale
338
+
339
+ @property
340
+ def do_classifier_free_guidance(self):
341
+ return self._guidance_scale > 1.0
342
+
343
+ @property
344
+ def num_timesteps(self):
345
+ return self._num_timesteps
346
+
347
+ @property
348
+ def current_timestep(self):
349
+ return self._current_timestep
350
+
351
+ @property
352
+ def interrupt(self):
353
+ return self._interrupt
354
+
355
+ @property
356
+ def attention_kwargs(self):
357
+ return self._attention_kwargs
358
+
359
+ @torch.no_grad()
360
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
361
+ def __call__(
362
+ self,
363
+ prompt: Union[str, List[str]] = None,
364
+ negative_prompt: Union[str, List[str]] = None,
365
+ height: int = 480,
366
+ width: int = 832,
367
+ num_frames: int = 81,
368
+ num_inference_steps: int = 50,
369
+ guidance_scale: float = 5.0,
370
+ num_videos_per_prompt: Optional[int] = 1,
371
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
372
+ latents: Optional[torch.Tensor] = None,
373
+ prompt_embeds: Optional[torch.Tensor] = None,
374
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
375
+ output_type: Optional[str] = "np",
376
+ return_dict: bool = True,
377
+ attention_kwargs: Optional[Dict[str, Any]] = None,
378
+ callback_on_step_end: Optional[
379
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
380
+ ] = None,
381
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
382
+ max_sequence_length: int = 512,
383
+ ):
384
+ r"""
385
+ The call function to the pipeline for generation.
386
+
387
+ Args:
388
+ prompt (`str` or `List[str]`, *optional*):
389
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
390
+ instead.
391
+ height (`int`, defaults to `480`):
392
+ The height in pixels of the generated image.
393
+ width (`int`, defaults to `832`):
394
+ The width in pixels of the generated image.
395
+ num_frames (`int`, defaults to `81`):
396
+ The number of frames in the generated video.
397
+ num_inference_steps (`int`, defaults to `50`):
398
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
399
+ expense of slower inference.
400
+ guidance_scale (`float`, defaults to `5.0`):
401
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
402
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
403
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
404
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
405
+ usually at the expense of lower image quality.
406
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
407
+ The number of images to generate per prompt.
408
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
409
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
410
+ generation deterministic.
411
+ latents (`torch.Tensor`, *optional*):
412
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
413
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
414
+ tensor is generated by sampling using the supplied random `generator`.
415
+ prompt_embeds (`torch.Tensor`, *optional*):
416
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
417
+ provided, text embeddings are generated from the `prompt` input argument.
418
+ output_type (`str`, *optional*, defaults to `"pil"`):
419
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
420
+ return_dict (`bool`, *optional*, defaults to `True`):
421
+ Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
422
+ attention_kwargs (`dict`, *optional*):
423
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
424
+ `self.processor` in
425
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
426
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
427
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
428
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
429
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
430
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
431
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
432
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
433
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
434
+ `._callback_tensor_inputs` attribute of your pipeline class.
435
+ autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
436
+ The dtype to use for the torch.amp.autocast.
437
+
438
+ Examples:
439
+
440
+ Returns:
441
+ [`~WanPipelineOutput`] or `tuple`:
442
+ If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
443
+ the first element is a list with the generated images and the second element is a list of `bool`s
444
+ indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
445
+ """
446
+
447
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
448
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
449
+
450
+ # 1. Check inputs. Raise error if not correct
451
+ self.check_inputs(
452
+ prompt,
453
+ negative_prompt,
454
+ height,
455
+ width,
456
+ prompt_embeds,
457
+ negative_prompt_embeds,
458
+ callback_on_step_end_tensor_inputs,
459
+ )
460
+
461
+ if num_frames % self.vae_scale_factor_temporal != 1:
462
+ logger.warning(
463
+ f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
464
+ )
465
+ num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
466
+ num_frames = max(num_frames, 1)
467
+
468
+ self._guidance_scale = guidance_scale
469
+ self._attention_kwargs = attention_kwargs
470
+ self._current_timestep = None
471
+ self._interrupt = False
472
+
473
+ device = self._execution_device
474
+
475
+ # 2. Define call parameters
476
+ if prompt is not None and isinstance(prompt, str):
477
+ batch_size = 1
478
+ elif prompt is not None and isinstance(prompt, list):
479
+ batch_size = len(prompt)
480
+ else:
481
+ batch_size = prompt_embeds.shape[0]
482
+
483
+ # 3. Encode input prompt
484
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
485
+ prompt=prompt,
486
+ negative_prompt=negative_prompt,
487
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
488
+ num_videos_per_prompt=num_videos_per_prompt,
489
+ prompt_embeds=prompt_embeds,
490
+ negative_prompt_embeds=negative_prompt_embeds,
491
+ max_sequence_length=max_sequence_length,
492
+ device=device,
493
+ )
494
+
495
+ transformer_dtype = self.transformer.dtype
496
+ prompt_embeds = prompt_embeds.to(transformer_dtype)
497
+ if negative_prompt_embeds is not None:
498
+ negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
499
+
500
+ # 4. Prepare timesteps
501
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
502
+ timesteps = self.scheduler.timesteps
503
+
504
+ # 5. Prepare latent variables
505
+ num_channels_latents = self.transformer.config.in_channels
506
+ latents = self.prepare_latents(
507
+ batch_size * num_videos_per_prompt,
508
+ num_channels_latents,
509
+ height,
510
+ width,
511
+ num_frames,
512
+ torch.float32,
513
+ device,
514
+ generator,
515
+ latents,
516
+ )
517
+
518
+ # 6. Denoising loop
519
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
520
+ self._num_timesteps = len(timesteps)
521
+
522
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
523
+ for i, t in enumerate(timesteps):
524
+ if self.interrupt:
525
+ continue
526
+
527
+ self._current_timestep = t
528
+ latent_model_input = latents.to(transformer_dtype)
529
+ timestep = t.expand(latents.shape[0])
530
+
531
+ noise_pred = self.transformer(
532
+ hidden_states=latent_model_input,
533
+ timestep=timestep,
534
+ encoder_hidden_states=prompt_embeds,
535
+ attention_kwargs=attention_kwargs,
536
+ return_dict=False,
537
+ )[0]
538
+
539
+ if self.do_classifier_free_guidance:
540
+ noise_uncond = self.transformer(
541
+ hidden_states=latent_model_input,
542
+ timestep=timestep,
543
+ encoder_hidden_states=negative_prompt_embeds,
544
+ attention_kwargs=attention_kwargs,
545
+ return_dict=False,
546
+ )[0]
547
+ noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
548
+
549
+ # compute the previous noisy sample x_t -> x_t-1
550
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
551
+
552
+ if callback_on_step_end is not None:
553
+ callback_kwargs = {}
554
+ for k in callback_on_step_end_tensor_inputs:
555
+ callback_kwargs[k] = locals()[k]
556
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
557
+
558
+ latents = callback_outputs.pop("latents", latents)
559
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
560
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
561
+
562
+ # call the callback, if provided
563
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
564
+ progress_bar.update()
565
+
566
+ if XLA_AVAILABLE:
567
+ xm.mark_step()
568
+
569
+ self._current_timestep = None
570
+
571
+ if not output_type == "latent":
572
+ latents = latents.to(self.vae.dtype)
573
+ latents_mean = (
574
+ torch.tensor(self.vae.config.latents_mean)
575
+ .view(1, self.vae.config.z_dim, 1, 1, 1)
576
+ .to(latents.device, latents.dtype)
577
+ )
578
+ latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
579
+ latents.device, latents.dtype
580
+ )
581
+ latents = latents / latents_std + latents_mean
582
+ video = self.vae.decode(latents, return_dict=False)[0]
583
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
584
+ else:
585
+ video = latents
586
+
587
+ # Offload all models
588
+ self.maybe_free_model_hooks()
589
+
590
+ if not return_dict:
591
+ return (video,)
592
+
593
+ return WanPipelineOutput(frames=video)