diffusers 0.32.2__py3-none-any.whl → 0.33.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (389) hide show
  1. diffusers/__init__.py +186 -3
  2. diffusers/configuration_utils.py +40 -12
  3. diffusers/dependency_versions_table.py +9 -2
  4. diffusers/hooks/__init__.py +9 -0
  5. diffusers/hooks/faster_cache.py +653 -0
  6. diffusers/hooks/group_offloading.py +793 -0
  7. diffusers/hooks/hooks.py +236 -0
  8. diffusers/hooks/layerwise_casting.py +245 -0
  9. diffusers/hooks/pyramid_attention_broadcast.py +311 -0
  10. diffusers/loaders/__init__.py +6 -0
  11. diffusers/loaders/ip_adapter.py +38 -30
  12. diffusers/loaders/lora_base.py +121 -86
  13. diffusers/loaders/lora_conversion_utils.py +504 -44
  14. diffusers/loaders/lora_pipeline.py +1769 -181
  15. diffusers/loaders/peft.py +167 -57
  16. diffusers/loaders/single_file.py +17 -2
  17. diffusers/loaders/single_file_model.py +53 -5
  18. diffusers/loaders/single_file_utils.py +646 -72
  19. diffusers/loaders/textual_inversion.py +9 -9
  20. diffusers/loaders/transformer_flux.py +8 -9
  21. diffusers/loaders/transformer_sd3.py +120 -39
  22. diffusers/loaders/unet.py +20 -7
  23. diffusers/models/__init__.py +22 -0
  24. diffusers/models/activations.py +9 -9
  25. diffusers/models/attention.py +0 -1
  26. diffusers/models/attention_processor.py +163 -25
  27. diffusers/models/auto_model.py +169 -0
  28. diffusers/models/autoencoders/__init__.py +2 -0
  29. diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
  30. diffusers/models/autoencoders/autoencoder_dc.py +106 -4
  31. diffusers/models/autoencoders/autoencoder_kl.py +0 -4
  32. diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
  33. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
  34. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
  35. diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
  36. diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
  37. diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
  38. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
  39. diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
  40. diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
  41. diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
  42. diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
  43. diffusers/models/autoencoders/vae.py +31 -141
  44. diffusers/models/autoencoders/vq_model.py +3 -0
  45. diffusers/models/cache_utils.py +108 -0
  46. diffusers/models/controlnets/__init__.py +1 -0
  47. diffusers/models/controlnets/controlnet.py +3 -8
  48. diffusers/models/controlnets/controlnet_flux.py +14 -42
  49. diffusers/models/controlnets/controlnet_sd3.py +58 -34
  50. diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
  51. diffusers/models/controlnets/controlnet_union.py +27 -18
  52. diffusers/models/controlnets/controlnet_xs.py +7 -46
  53. diffusers/models/controlnets/multicontrolnet_union.py +196 -0
  54. diffusers/models/embeddings.py +18 -7
  55. diffusers/models/model_loading_utils.py +122 -80
  56. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  57. diffusers/models/modeling_flax_utils.py +1 -1
  58. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  59. diffusers/models/modeling_utils.py +617 -272
  60. diffusers/models/normalization.py +67 -14
  61. diffusers/models/resnet.py +1 -1
  62. diffusers/models/transformers/__init__.py +6 -0
  63. diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
  64. diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
  65. diffusers/models/transformers/consisid_transformer_3d.py +789 -0
  66. diffusers/models/transformers/dit_transformer_2d.py +5 -19
  67. diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
  68. diffusers/models/transformers/latte_transformer_3d.py +20 -15
  69. diffusers/models/transformers/lumina_nextdit2d.py +3 -1
  70. diffusers/models/transformers/pixart_transformer_2d.py +4 -19
  71. diffusers/models/transformers/prior_transformer.py +5 -1
  72. diffusers/models/transformers/sana_transformer.py +144 -40
  73. diffusers/models/transformers/stable_audio_transformer.py +5 -20
  74. diffusers/models/transformers/transformer_2d.py +7 -22
  75. diffusers/models/transformers/transformer_allegro.py +9 -17
  76. diffusers/models/transformers/transformer_cogview3plus.py +6 -17
  77. diffusers/models/transformers/transformer_cogview4.py +462 -0
  78. diffusers/models/transformers/transformer_easyanimate.py +527 -0
  79. diffusers/models/transformers/transformer_flux.py +68 -110
  80. diffusers/models/transformers/transformer_hunyuan_video.py +404 -46
  81. diffusers/models/transformers/transformer_ltx.py +53 -35
  82. diffusers/models/transformers/transformer_lumina2.py +548 -0
  83. diffusers/models/transformers/transformer_mochi.py +6 -17
  84. diffusers/models/transformers/transformer_omnigen.py +469 -0
  85. diffusers/models/transformers/transformer_sd3.py +56 -86
  86. diffusers/models/transformers/transformer_temporal.py +5 -11
  87. diffusers/models/transformers/transformer_wan.py +469 -0
  88. diffusers/models/unets/unet_1d.py +3 -1
  89. diffusers/models/unets/unet_2d.py +21 -20
  90. diffusers/models/unets/unet_2d_blocks.py +19 -243
  91. diffusers/models/unets/unet_2d_condition.py +4 -6
  92. diffusers/models/unets/unet_3d_blocks.py +14 -127
  93. diffusers/models/unets/unet_3d_condition.py +8 -12
  94. diffusers/models/unets/unet_i2vgen_xl.py +5 -13
  95. diffusers/models/unets/unet_kandinsky3.py +0 -4
  96. diffusers/models/unets/unet_motion_model.py +20 -114
  97. diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
  98. diffusers/models/unets/unet_stable_cascade.py +8 -35
  99. diffusers/models/unets/uvit_2d.py +1 -4
  100. diffusers/optimization.py +2 -2
  101. diffusers/pipelines/__init__.py +57 -8
  102. diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
  103. diffusers/pipelines/amused/pipeline_amused.py +15 -2
  104. diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
  105. diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
  106. diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
  107. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
  108. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
  109. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
  110. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
  111. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
  112. diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
  113. diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
  114. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
  115. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
  116. diffusers/pipelines/auto_pipeline.py +35 -14
  117. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  118. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
  119. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
  120. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
  121. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
  122. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
  123. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
  124. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
  125. diffusers/pipelines/cogview4/__init__.py +49 -0
  126. diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
  127. diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
  128. diffusers/pipelines/cogview4/pipeline_output.py +21 -0
  129. diffusers/pipelines/consisid/__init__.py +49 -0
  130. diffusers/pipelines/consisid/consisid_utils.py +357 -0
  131. diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
  132. diffusers/pipelines/consisid/pipeline_output.py +20 -0
  133. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
  134. diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
  135. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
  136. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
  137. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
  138. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
  139. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
  140. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
  141. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
  142. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
  143. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
  144. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
  145. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
  146. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
  147. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
  148. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
  149. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
  150. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
  151. diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
  152. diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
  153. diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
  154. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
  155. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
  156. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
  157. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
  158. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
  159. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
  160. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
  161. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  162. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
  163. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
  164. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
  165. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
  166. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
  167. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
  168. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
  169. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
  170. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  171. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  172. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
  173. diffusers/pipelines/dit/pipeline_dit.py +15 -2
  174. diffusers/pipelines/easyanimate/__init__.py +52 -0
  175. diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
  176. diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
  177. diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
  178. diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
  179. diffusers/pipelines/flux/pipeline_flux.py +53 -21
  180. diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
  181. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
  182. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
  183. diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
  184. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
  185. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
  186. diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
  187. diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
  188. diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
  189. diffusers/pipelines/free_noise_utils.py +3 -3
  190. diffusers/pipelines/hunyuan_video/__init__.py +4 -0
  191. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
  192. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
  193. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
  194. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
  195. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
  196. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
  197. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  198. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
  199. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
  200. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
  201. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
  202. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
  203. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
  204. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
  205. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
  206. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
  207. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
  208. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
  209. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
  210. diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
  211. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
  212. diffusers/pipelines/kolors/text_encoder.py +7 -34
  213. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
  214. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
  215. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
  216. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
  217. diffusers/pipelines/latte/pipeline_latte.py +36 -7
  218. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
  219. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
  220. diffusers/pipelines/ltx/__init__.py +2 -0
  221. diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
  222. diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
  223. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
  224. diffusers/pipelines/lumina/__init__.py +2 -2
  225. diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
  226. diffusers/pipelines/lumina2/__init__.py +48 -0
  227. diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
  228. diffusers/pipelines/marigold/__init__.py +2 -0
  229. diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
  230. diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
  231. diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
  232. diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
  233. diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
  234. diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
  235. diffusers/pipelines/omnigen/__init__.py +50 -0
  236. diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
  237. diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
  238. diffusers/pipelines/onnx_utils.py +5 -3
  239. diffusers/pipelines/pag/pag_utils.py +1 -1
  240. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
  241. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
  242. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
  243. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
  244. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
  245. diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
  246. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
  247. diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
  248. diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
  249. diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
  250. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
  251. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
  252. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
  253. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
  254. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
  255. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
  256. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
  257. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
  258. diffusers/pipelines/pia/pipeline_pia.py +13 -1
  259. diffusers/pipelines/pipeline_flax_utils.py +7 -7
  260. diffusers/pipelines/pipeline_loading_utils.py +193 -83
  261. diffusers/pipelines/pipeline_utils.py +221 -106
  262. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
  263. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
  264. diffusers/pipelines/sana/__init__.py +2 -0
  265. diffusers/pipelines/sana/pipeline_sana.py +183 -58
  266. diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
  267. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
  268. diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
  269. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
  270. diffusers/pipelines/shap_e/renderer.py +6 -6
  271. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
  272. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
  273. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
  274. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
  275. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
  276. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
  277. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
  278. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
  279. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  280. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
  281. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
  282. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
  283. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
  284. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
  285. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
  286. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
  287. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
  288. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
  289. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
  290. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
  291. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
  292. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
  293. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
  294. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
  295. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
  296. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
  297. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
  298. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
  299. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
  300. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
  301. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
  302. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
  303. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
  304. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
  305. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
  306. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  307. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
  308. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
  309. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
  310. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
  311. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
  312. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
  313. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
  314. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
  315. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
  316. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
  317. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
  318. diffusers/pipelines/transformers_loading_utils.py +121 -0
  319. diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
  320. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
  321. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
  322. diffusers/pipelines/wan/__init__.py +51 -0
  323. diffusers/pipelines/wan/pipeline_output.py +20 -0
  324. diffusers/pipelines/wan/pipeline_wan.py +593 -0
  325. diffusers/pipelines/wan/pipeline_wan_i2v.py +722 -0
  326. diffusers/pipelines/wan/pipeline_wan_video2video.py +725 -0
  327. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
  328. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
  329. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
  330. diffusers/quantizers/auto.py +5 -1
  331. diffusers/quantizers/base.py +5 -9
  332. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
  333. diffusers/quantizers/bitsandbytes/utils.py +30 -20
  334. diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
  335. diffusers/quantizers/gguf/utils.py +4 -2
  336. diffusers/quantizers/quantization_config.py +59 -4
  337. diffusers/quantizers/quanto/__init__.py +1 -0
  338. diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
  339. diffusers/quantizers/quanto/utils.py +60 -0
  340. diffusers/quantizers/torchao/__init__.py +1 -1
  341. diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
  342. diffusers/schedulers/__init__.py +2 -1
  343. diffusers/schedulers/scheduling_consistency_models.py +1 -2
  344. diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
  345. diffusers/schedulers/scheduling_ddpm.py +2 -3
  346. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
  347. diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
  348. diffusers/schedulers/scheduling_edm_euler.py +45 -10
  349. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
  350. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
  351. diffusers/schedulers/scheduling_heun_discrete.py +1 -1
  352. diffusers/schedulers/scheduling_lcm.py +1 -2
  353. diffusers/schedulers/scheduling_lms_discrete.py +1 -1
  354. diffusers/schedulers/scheduling_repaint.py +5 -1
  355. diffusers/schedulers/scheduling_scm.py +265 -0
  356. diffusers/schedulers/scheduling_tcd.py +1 -2
  357. diffusers/schedulers/scheduling_utils.py +2 -1
  358. diffusers/training_utils.py +14 -7
  359. diffusers/utils/__init__.py +9 -1
  360. diffusers/utils/constants.py +13 -1
  361. diffusers/utils/deprecation_utils.py +1 -1
  362. diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
  363. diffusers/utils/dummy_gguf_objects.py +17 -0
  364. diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
  365. diffusers/utils/dummy_pt_objects.py +233 -0
  366. diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
  367. diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
  368. diffusers/utils/dummy_torchao_objects.py +17 -0
  369. diffusers/utils/dynamic_modules_utils.py +1 -1
  370. diffusers/utils/export_utils.py +28 -3
  371. diffusers/utils/hub_utils.py +52 -102
  372. diffusers/utils/import_utils.py +121 -221
  373. diffusers/utils/loading_utils.py +2 -1
  374. diffusers/utils/logging.py +1 -2
  375. diffusers/utils/peft_utils.py +6 -14
  376. diffusers/utils/remote_utils.py +425 -0
  377. diffusers/utils/source_code_parsing_utils.py +52 -0
  378. diffusers/utils/state_dict_utils.py +15 -1
  379. diffusers/utils/testing_utils.py +243 -13
  380. diffusers/utils/torch_utils.py +10 -0
  381. diffusers/utils/typing_utils.py +91 -0
  382. diffusers/video_processor.py +1 -1
  383. {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/METADATA +76 -44
  384. diffusers-0.33.0.dist-info/RECORD +608 -0
  385. {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/WHEEL +1 -1
  386. diffusers-0.32.2.dist-info/RECORD +0 -550
  387. {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/LICENSE +0 -0
  388. {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/entry_points.txt +0 -0
  389. {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,974 @@
1
+ # Copyright 2024 ConsisID Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ import math
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL
21
+ import torch
22
+ from transformers import T5EncoderModel, T5Tokenizer
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...image_processor import PipelineImageInput
26
+ from ...loaders import CogVideoXLoraLoaderMixin
27
+ from ...models import AutoencoderKLCogVideoX, ConsisIDTransformer3DModel
28
+ from ...models.embeddings import get_3d_rotary_pos_embed
29
+ from ...pipelines.pipeline_utils import DiffusionPipeline
30
+ from ...schedulers import CogVideoXDPMScheduler
31
+ from ...utils import is_opencv_available, logging, replace_example_docstring
32
+ from ...utils.torch_utils import randn_tensor
33
+ from ...video_processor import VideoProcessor
34
+ from .pipeline_output import ConsisIDPipelineOutput
35
+
36
+
37
+ if is_opencv_available():
38
+ import cv2
39
+
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+
44
+ EXAMPLE_DOC_STRING = """
45
+ Examples:
46
+ ```python
47
+ >>> import torch
48
+ >>> from diffusers import ConsisIDPipeline
49
+ >>> from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer
50
+ >>> from diffusers.utils import export_to_video
51
+ >>> from huggingface_hub import snapshot_download
52
+
53
+ >>> snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview")
54
+ >>> (
55
+ ... face_helper_1,
56
+ ... face_helper_2,
57
+ ... face_clip_model,
58
+ ... face_main_model,
59
+ ... eva_transform_mean,
60
+ ... eva_transform_std,
61
+ ... ) = prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16)
62
+ >>> pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16)
63
+ >>> pipe.to("cuda")
64
+
65
+ >>> # ConsisID works well with long and well-described prompts. Make sure the face in the image is clearly visible (e.g., preferably half-body or full-body).
66
+ >>> prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel."
67
+ >>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_input.png?download=true"
68
+
69
+ >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(
70
+ ... face_helper_1,
71
+ ... face_clip_model,
72
+ ... face_helper_2,
73
+ ... eva_transform_mean,
74
+ ... eva_transform_std,
75
+ ... face_main_model,
76
+ ... "cuda",
77
+ ... torch.bfloat16,
78
+ ... image,
79
+ ... is_align_face=True,
80
+ ... )
81
+
82
+ >>> video = pipe(
83
+ ... image=image,
84
+ ... prompt=prompt,
85
+ ... num_inference_steps=50,
86
+ ... guidance_scale=6.0,
87
+ ... use_dynamic_cfg=False,
88
+ ... id_vit_hidden=id_vit_hidden,
89
+ ... id_cond=id_cond,
90
+ ... kps_cond=face_kps,
91
+ ... generator=torch.Generator("cuda").manual_seed(42),
92
+ ... )
93
+ >>> export_to_video(video.frames[0], "output.mp4", fps=8)
94
+ ```
95
+ """
96
+
97
+
98
+ def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
99
+ """
100
+ This function draws keypoints and the limbs connecting them on an image.
101
+
102
+ Parameters:
103
+ - image_pil (PIL.Image): Input image as a PIL object.
104
+ - kps (list of tuples): A list of keypoints where each keypoint is a tuple of (x, y) coordinates.
105
+ - color_list (list of tuples, optional): List of colors (in RGB format) for each keypoint. Default is a set of five
106
+ colors.
107
+
108
+ Returns:
109
+ - PIL.Image: Image with the keypoints and limbs drawn.
110
+ """
111
+
112
+ stickwidth = 4
113
+ limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
114
+ kps = np.array(kps)
115
+
116
+ w, h = image_pil.size
117
+ out_img = np.zeros([h, w, 3])
118
+
119
+ for i in range(len(limbSeq)):
120
+ index = limbSeq[i]
121
+ color = color_list[index[0]]
122
+
123
+ x = kps[index][:, 0]
124
+ y = kps[index][:, 1]
125
+ length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
126
+ angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
127
+ polygon = cv2.ellipse2Poly(
128
+ (int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
129
+ )
130
+ out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
131
+ out_img = (out_img * 0.6).astype(np.uint8)
132
+
133
+ for idx_kp, kp in enumerate(kps):
134
+ color = color_list[idx_kp]
135
+ x, y = kp
136
+ out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
137
+
138
+ out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
139
+ return out_img_pil
140
+
141
+
142
+ # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
143
+ def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
144
+ """
145
+ This function calculates the resize and crop region for an image to fit a target width and height while preserving
146
+ the aspect ratio.
147
+
148
+ Parameters:
149
+ - src (tuple): A tuple containing the source image's height (h) and width (w).
150
+ - tgt_width (int): The target width to resize the image.
151
+ - tgt_height (int): The target height to resize the image.
152
+
153
+ Returns:
154
+ - tuple: Two tuples representing the crop region:
155
+ 1. The top-left coordinates of the crop region.
156
+ 2. The bottom-right coordinates of the crop region.
157
+ """
158
+
159
+ tw = tgt_width
160
+ th = tgt_height
161
+ h, w = src
162
+ r = h / w
163
+ if r > (th / tw):
164
+ resize_height = th
165
+ resize_width = int(round(th / h * w))
166
+ else:
167
+ resize_width = tw
168
+ resize_height = int(round(tw / w * h))
169
+
170
+ crop_top = int(round((th - resize_height) / 2.0))
171
+ crop_left = int(round((tw - resize_width) / 2.0))
172
+
173
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
174
+
175
+
176
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
177
+ def retrieve_timesteps(
178
+ scheduler,
179
+ num_inference_steps: Optional[int] = None,
180
+ device: Optional[Union[str, torch.device]] = None,
181
+ timesteps: Optional[List[int]] = None,
182
+ sigmas: Optional[List[float]] = None,
183
+ **kwargs,
184
+ ):
185
+ r"""
186
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
187
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
188
+
189
+ Args:
190
+ scheduler (`SchedulerMixin`):
191
+ The scheduler to get timesteps from.
192
+ num_inference_steps (`int`):
193
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
194
+ must be `None`.
195
+ device (`str` or `torch.device`, *optional*):
196
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
197
+ timesteps (`List[int]`, *optional*):
198
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
199
+ `num_inference_steps` and `sigmas` must be `None`.
200
+ sigmas (`List[float]`, *optional*):
201
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
202
+ `num_inference_steps` and `timesteps` must be `None`.
203
+
204
+ Returns:
205
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
206
+ second element is the number of inference steps.
207
+ """
208
+ if timesteps is not None and sigmas is not None:
209
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
210
+ if timesteps is not None:
211
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
212
+ if not accepts_timesteps:
213
+ raise ValueError(
214
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
215
+ f" timestep schedules. Please check whether you are using the correct scheduler."
216
+ )
217
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
218
+ timesteps = scheduler.timesteps
219
+ num_inference_steps = len(timesteps)
220
+ elif sigmas is not None:
221
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
222
+ if not accept_sigmas:
223
+ raise ValueError(
224
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
225
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
226
+ )
227
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
228
+ timesteps = scheduler.timesteps
229
+ num_inference_steps = len(timesteps)
230
+ else:
231
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
232
+ timesteps = scheduler.timesteps
233
+ return timesteps, num_inference_steps
234
+
235
+
236
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
237
+ def retrieve_latents(
238
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
239
+ ):
240
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
241
+ return encoder_output.latent_dist.sample(generator)
242
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
243
+ return encoder_output.latent_dist.mode()
244
+ elif hasattr(encoder_output, "latents"):
245
+ return encoder_output.latents
246
+ else:
247
+ raise AttributeError("Could not access latents of provided encoder_output")
248
+
249
+
250
+ class ConsisIDPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
251
+ r"""
252
+ Pipeline for image-to-video generation using ConsisID.
253
+
254
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
255
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
256
+
257
+ Args:
258
+ vae ([`AutoencoderKL`]):
259
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
260
+ text_encoder ([`T5EncoderModel`]):
261
+ Frozen text-encoder. ConsisID uses
262
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
263
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
264
+ tokenizer (`T5Tokenizer`):
265
+ Tokenizer of class
266
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
267
+ transformer ([`ConsisIDTransformer3DModel`]):
268
+ A text conditioned `ConsisIDTransformer3DModel` to denoise the encoded video latents.
269
+ scheduler ([`SchedulerMixin`]):
270
+ A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
271
+ """
272
+
273
+ _optional_components = []
274
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
275
+
276
+ _callback_tensor_inputs = [
277
+ "latents",
278
+ "prompt_embeds",
279
+ "negative_prompt_embeds",
280
+ ]
281
+
282
+ def __init__(
283
+ self,
284
+ tokenizer: T5Tokenizer,
285
+ text_encoder: T5EncoderModel,
286
+ vae: AutoencoderKLCogVideoX,
287
+ transformer: ConsisIDTransformer3DModel,
288
+ scheduler: CogVideoXDPMScheduler,
289
+ ):
290
+ super().__init__()
291
+
292
+ self.register_modules(
293
+ tokenizer=tokenizer,
294
+ text_encoder=text_encoder,
295
+ vae=vae,
296
+ transformer=transformer,
297
+ scheduler=scheduler,
298
+ )
299
+ self.vae_scale_factor_spatial = (
300
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
301
+ )
302
+ self.vae_scale_factor_temporal = (
303
+ self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
304
+ )
305
+ self.vae_scaling_factor_image = (
306
+ self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7
307
+ )
308
+
309
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
310
+
311
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds
312
+ def _get_t5_prompt_embeds(
313
+ self,
314
+ prompt: Union[str, List[str]] = None,
315
+ num_videos_per_prompt: int = 1,
316
+ max_sequence_length: int = 226,
317
+ device: Optional[torch.device] = None,
318
+ dtype: Optional[torch.dtype] = None,
319
+ ):
320
+ device = device or self._execution_device
321
+ dtype = dtype or self.text_encoder.dtype
322
+
323
+ prompt = [prompt] if isinstance(prompt, str) else prompt
324
+ batch_size = len(prompt)
325
+
326
+ text_inputs = self.tokenizer(
327
+ prompt,
328
+ padding="max_length",
329
+ max_length=max_sequence_length,
330
+ truncation=True,
331
+ add_special_tokens=True,
332
+ return_tensors="pt",
333
+ )
334
+ text_input_ids = text_inputs.input_ids
335
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
336
+
337
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
338
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
339
+ logger.warning(
340
+ "The following part of your input was truncated because `max_sequence_length` is set to "
341
+ f" {max_sequence_length} tokens: {removed_text}"
342
+ )
343
+
344
+ prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
345
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
346
+
347
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
348
+ _, seq_len, _ = prompt_embeds.shape
349
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
350
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
351
+
352
+ return prompt_embeds
353
+
354
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt
355
+ def encode_prompt(
356
+ self,
357
+ prompt: Union[str, List[str]],
358
+ negative_prompt: Optional[Union[str, List[str]]] = None,
359
+ do_classifier_free_guidance: bool = True,
360
+ num_videos_per_prompt: int = 1,
361
+ prompt_embeds: Optional[torch.Tensor] = None,
362
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
363
+ max_sequence_length: int = 226,
364
+ device: Optional[torch.device] = None,
365
+ dtype: Optional[torch.dtype] = None,
366
+ ):
367
+ r"""
368
+ Encodes the prompt into text encoder hidden states.
369
+
370
+ Args:
371
+ prompt (`str` or `List[str]`, *optional*):
372
+ prompt to be encoded
373
+ negative_prompt (`str` or `List[str]`, *optional*):
374
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
375
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
376
+ less than `1`).
377
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
378
+ Whether to use classifier free guidance or not.
379
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
380
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
381
+ prompt_embeds (`torch.Tensor`, *optional*):
382
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
383
+ provided, text embeddings will be generated from `prompt` input argument.
384
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
385
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
386
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
387
+ argument.
388
+ device: (`torch.device`, *optional*):
389
+ torch device
390
+ dtype: (`torch.dtype`, *optional*):
391
+ torch dtype
392
+ """
393
+ device = device or self._execution_device
394
+
395
+ prompt = [prompt] if isinstance(prompt, str) else prompt
396
+ if prompt is not None:
397
+ batch_size = len(prompt)
398
+ else:
399
+ batch_size = prompt_embeds.shape[0]
400
+
401
+ if prompt_embeds is None:
402
+ prompt_embeds = self._get_t5_prompt_embeds(
403
+ prompt=prompt,
404
+ num_videos_per_prompt=num_videos_per_prompt,
405
+ max_sequence_length=max_sequence_length,
406
+ device=device,
407
+ dtype=dtype,
408
+ )
409
+
410
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
411
+ negative_prompt = negative_prompt or ""
412
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
413
+
414
+ if prompt is not None and type(prompt) is not type(negative_prompt):
415
+ raise TypeError(
416
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
417
+ f" {type(prompt)}."
418
+ )
419
+ elif batch_size != len(negative_prompt):
420
+ raise ValueError(
421
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
422
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
423
+ " the batch size of `prompt`."
424
+ )
425
+
426
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
427
+ prompt=negative_prompt,
428
+ num_videos_per_prompt=num_videos_per_prompt,
429
+ max_sequence_length=max_sequence_length,
430
+ device=device,
431
+ dtype=dtype,
432
+ )
433
+
434
+ return prompt_embeds, negative_prompt_embeds
435
+
436
+ def prepare_latents(
437
+ self,
438
+ image: torch.Tensor,
439
+ batch_size: int = 1,
440
+ num_channels_latents: int = 16,
441
+ num_frames: int = 13,
442
+ height: int = 60,
443
+ width: int = 90,
444
+ dtype: Optional[torch.dtype] = None,
445
+ device: Optional[torch.device] = None,
446
+ generator: Optional[torch.Generator] = None,
447
+ latents: Optional[torch.Tensor] = None,
448
+ kps_cond: Optional[torch.Tensor] = None,
449
+ ):
450
+ if isinstance(generator, list) and len(generator) != batch_size:
451
+ raise ValueError(
452
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
453
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
454
+ )
455
+
456
+ num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
457
+ shape = (
458
+ batch_size,
459
+ num_frames,
460
+ num_channels_latents,
461
+ height // self.vae_scale_factor_spatial,
462
+ width // self.vae_scale_factor_spatial,
463
+ )
464
+
465
+ image = image.unsqueeze(2) # [B, C, F, H, W]
466
+
467
+ if isinstance(generator, list):
468
+ image_latents = [
469
+ retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i]) for i in range(batch_size)
470
+ ]
471
+ if kps_cond is not None:
472
+ kps_cond = kps_cond.unsqueeze(2)
473
+ kps_cond_latents = [
474
+ retrieve_latents(self.vae.encode(kps_cond[i].unsqueeze(0)), generator[i])
475
+ for i in range(batch_size)
476
+ ]
477
+ else:
478
+ image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image]
479
+ if kps_cond is not None:
480
+ kps_cond = kps_cond.unsqueeze(2)
481
+ kps_cond_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in kps_cond]
482
+
483
+ image_latents = torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
484
+ image_latents = self.vae_scaling_factor_image * image_latents
485
+
486
+ if kps_cond is not None:
487
+ kps_cond_latents = torch.cat(kps_cond_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
488
+ kps_cond_latents = self.vae_scaling_factor_image * kps_cond_latents
489
+
490
+ padding_shape = (
491
+ batch_size,
492
+ num_frames - 2,
493
+ num_channels_latents,
494
+ height // self.vae_scale_factor_spatial,
495
+ width // self.vae_scale_factor_spatial,
496
+ )
497
+ else:
498
+ padding_shape = (
499
+ batch_size,
500
+ num_frames - 1,
501
+ num_channels_latents,
502
+ height // self.vae_scale_factor_spatial,
503
+ width // self.vae_scale_factor_spatial,
504
+ )
505
+
506
+ latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype)
507
+ if kps_cond is not None:
508
+ image_latents = torch.cat([image_latents, kps_cond_latents, latent_padding], dim=1)
509
+ else:
510
+ image_latents = torch.cat([image_latents, latent_padding], dim=1)
511
+
512
+ if latents is None:
513
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
514
+ else:
515
+ latents = latents.to(device)
516
+
517
+ # scale the initial noise by the standard deviation required by the scheduler
518
+ latents = latents * self.scheduler.init_noise_sigma
519
+ return latents, image_latents
520
+
521
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents
522
+ def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
523
+ latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
524
+ latents = 1 / self.vae_scaling_factor_image * latents
525
+
526
+ frames = self.vae.decode(latents).sample
527
+ return frames
528
+
529
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps
530
+ def get_timesteps(self, num_inference_steps, timesteps, strength, device):
531
+ # get the original timestep using init_timestep
532
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
533
+
534
+ t_start = max(num_inference_steps - init_timestep, 0)
535
+ timesteps = timesteps[t_start * self.scheduler.order :]
536
+
537
+ return timesteps, num_inference_steps - t_start
538
+
539
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
540
+ def prepare_extra_step_kwargs(self, generator, eta):
541
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
542
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
543
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
544
+ # and should be between [0, 1]
545
+
546
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
547
+ extra_step_kwargs = {}
548
+ if accepts_eta:
549
+ extra_step_kwargs["eta"] = eta
550
+
551
+ # check if the scheduler accepts generator
552
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
553
+ if accepts_generator:
554
+ extra_step_kwargs["generator"] = generator
555
+ return extra_step_kwargs
556
+
557
+ def check_inputs(
558
+ self,
559
+ image,
560
+ prompt,
561
+ height,
562
+ width,
563
+ negative_prompt,
564
+ callback_on_step_end_tensor_inputs,
565
+ latents=None,
566
+ prompt_embeds=None,
567
+ negative_prompt_embeds=None,
568
+ ):
569
+ if (
570
+ not isinstance(image, torch.Tensor)
571
+ and not isinstance(image, PIL.Image.Image)
572
+ and not isinstance(image, list)
573
+ ):
574
+ raise ValueError(
575
+ "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
576
+ f" {type(image)}"
577
+ )
578
+
579
+ if height % 8 != 0 or width % 8 != 0:
580
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
581
+
582
+ if callback_on_step_end_tensor_inputs is not None and not all(
583
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
584
+ ):
585
+ raise ValueError(
586
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
587
+ )
588
+ if prompt is not None and prompt_embeds is not None:
589
+ raise ValueError(
590
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
591
+ " only forward one of the two."
592
+ )
593
+ elif prompt is None and prompt_embeds is None:
594
+ raise ValueError(
595
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
596
+ )
597
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
598
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
599
+
600
+ if prompt is not None and negative_prompt_embeds is not None:
601
+ raise ValueError(
602
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
603
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
604
+ )
605
+
606
+ if negative_prompt is not None and negative_prompt_embeds is not None:
607
+ raise ValueError(
608
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
609
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
610
+ )
611
+
612
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
613
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
614
+ raise ValueError(
615
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
616
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
617
+ f" {negative_prompt_embeds.shape}."
618
+ )
619
+
620
+ def _prepare_rotary_positional_embeddings(
621
+ self,
622
+ height: int,
623
+ width: int,
624
+ num_frames: int,
625
+ device: torch.device,
626
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
627
+ grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
628
+ grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
629
+ base_size_width = self.transformer.config.sample_width // self.transformer.config.patch_size
630
+ base_size_height = self.transformer.config.sample_height // self.transformer.config.patch_size
631
+
632
+ grid_crops_coords = get_resize_crop_region_for_grid(
633
+ (grid_height, grid_width), base_size_width, base_size_height
634
+ )
635
+ freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
636
+ embed_dim=self.transformer.config.attention_head_dim,
637
+ crops_coords=grid_crops_coords,
638
+ grid_size=(grid_height, grid_width),
639
+ temporal_size=num_frames,
640
+ device=device,
641
+ )
642
+
643
+ return freqs_cos, freqs_sin
644
+
645
+ @property
646
+ def guidance_scale(self):
647
+ return self._guidance_scale
648
+
649
+ @property
650
+ def num_timesteps(self):
651
+ return self._num_timesteps
652
+
653
+ @property
654
+ def attention_kwargs(self):
655
+ return self._attention_kwargs
656
+
657
+ @property
658
+ def interrupt(self):
659
+ return self._interrupt
660
+
661
+ @torch.no_grad()
662
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
663
+ def __call__(
664
+ self,
665
+ image: PipelineImageInput,
666
+ prompt: Optional[Union[str, List[str]]] = None,
667
+ negative_prompt: Optional[Union[str, List[str]]] = None,
668
+ height: int = 480,
669
+ width: int = 720,
670
+ num_frames: int = 49,
671
+ num_inference_steps: int = 50,
672
+ guidance_scale: float = 6.0,
673
+ use_dynamic_cfg: bool = False,
674
+ num_videos_per_prompt: int = 1,
675
+ eta: float = 0.0,
676
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
677
+ latents: Optional[torch.FloatTensor] = None,
678
+ prompt_embeds: Optional[torch.FloatTensor] = None,
679
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
680
+ output_type: str = "pil",
681
+ return_dict: bool = True,
682
+ attention_kwargs: Optional[Dict[str, Any]] = None,
683
+ callback_on_step_end: Optional[
684
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
685
+ ] = None,
686
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
687
+ max_sequence_length: int = 226,
688
+ id_vit_hidden: Optional[torch.Tensor] = None,
689
+ id_cond: Optional[torch.Tensor] = None,
690
+ kps_cond: Optional[torch.Tensor] = None,
691
+ ) -> Union[ConsisIDPipelineOutput, Tuple]:
692
+ """
693
+ Function invoked when calling the pipeline for generation.
694
+
695
+ Args:
696
+ image (`PipelineImageInput`):
697
+ The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
698
+ prompt (`str` or `List[str]`, *optional*):
699
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
700
+ instead.
701
+ negative_prompt (`str` or `List[str]`, *optional*):
702
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
703
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
704
+ less than `1`).
705
+ height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
706
+ The height in pixels of the generated image. This is set to 480 by default for the best results.
707
+ width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
708
+ The width in pixels of the generated image. This is set to 720 by default for the best results.
709
+ num_frames (`int`, defaults to `49`):
710
+ Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
711
+ contain 1 extra frame because ConsisID is conditioned with (num_seconds * fps + 1) frames where
712
+ num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that
713
+ needs to be satisfied is that of divisibility mentioned above.
714
+ num_inference_steps (`int`, *optional*, defaults to 50):
715
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
716
+ expense of slower inference.
717
+ guidance_scale (`float`, *optional*, defaults to 6):
718
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
719
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
720
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
721
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
722
+ usually at the expense of lower image quality.
723
+ use_dynamic_cfg (`bool`, *optional*, defaults to `False`):
724
+ If True, dynamically adjusts the guidance scale during inference. This allows the model to use a
725
+ progressive guidance scale, improving the balance between text-guided generation and image quality over
726
+ the course of the inference steps. Typically, early inference steps use a higher guidance scale for
727
+ more faithful image generation, while later steps reduce it for more diverse and natural results.
728
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
729
+ The number of videos to generate per prompt.
730
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
731
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
732
+ to make generation deterministic.
733
+ latents (`torch.FloatTensor`, *optional*):
734
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
735
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
736
+ tensor will ge generated by sampling using the supplied random `generator`.
737
+ prompt_embeds (`torch.FloatTensor`, *optional*):
738
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
739
+ provided, text embeddings will be generated from `prompt` input argument.
740
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
741
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
742
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
743
+ argument.
744
+ output_type (`str`, *optional*, defaults to `"pil"`):
745
+ The output format of the generate image. Choose between
746
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
747
+ return_dict (`bool`, *optional*, defaults to `True`):
748
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
749
+ of a plain tuple.
750
+ attention_kwargs (`dict`, *optional*):
751
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
752
+ `self.processor` in
753
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
754
+ callback_on_step_end (`Callable`, *optional*):
755
+ A function that calls at the end of each denoising steps during the inference. The function is called
756
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
757
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
758
+ `callback_on_step_end_tensor_inputs`.
759
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
760
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
761
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
762
+ `._callback_tensor_inputs` attribute of your pipeline class.
763
+ max_sequence_length (`int`, defaults to `226`):
764
+ Maximum sequence length in encoded prompt. Must be consistent with
765
+ `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
766
+ id_vit_hidden (`Optional[torch.Tensor]`, *optional*):
767
+ The tensor representing the hidden features extracted from the face model, which are used to condition
768
+ the local facial extractor. This is crucial for the model to obtain high-frequency information of the
769
+ face. If not provided, the local facial extractor will not run normally.
770
+ id_cond (`Optional[torch.Tensor]`, *optional*):
771
+ The tensor representing the hidden features extracted from the clip model, which are used to condition
772
+ the local facial extractor. This is crucial for the model to edit facial features If not provided, the
773
+ local facial extractor will not run normally.
774
+ kps_cond (`Optional[torch.Tensor]`, *optional*):
775
+ A tensor that determines whether the global facial extractor use keypoint information for conditioning.
776
+ If provided, this tensor controls whether facial keypoints such as eyes, nose, and mouth landmarks are
777
+ used during the generation process. This helps ensure the model retains more facial low-frequency
778
+ information.
779
+
780
+ Examples:
781
+
782
+ Returns:
783
+ [`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] or `tuple`:
784
+ [`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] if `return_dict` is True, otherwise a
785
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
786
+ """
787
+
788
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
789
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
790
+
791
+ height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial
792
+ width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial
793
+ num_frames = num_frames or self.transformer.config.sample_frames
794
+
795
+ num_videos_per_prompt = 1
796
+
797
+ # 1. Check inputs. Raise error if not correct
798
+ self.check_inputs(
799
+ image=image,
800
+ prompt=prompt,
801
+ height=height,
802
+ width=width,
803
+ negative_prompt=negative_prompt,
804
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
805
+ latents=latents,
806
+ prompt_embeds=prompt_embeds,
807
+ negative_prompt_embeds=negative_prompt_embeds,
808
+ )
809
+ self._guidance_scale = guidance_scale
810
+ self._attention_kwargs = attention_kwargs
811
+ self._interrupt = False
812
+
813
+ # 2. Default call parameters
814
+ if prompt is not None and isinstance(prompt, str):
815
+ batch_size = 1
816
+ elif prompt is not None and isinstance(prompt, list):
817
+ batch_size = len(prompt)
818
+ else:
819
+ batch_size = prompt_embeds.shape[0]
820
+
821
+ device = self._execution_device
822
+
823
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
824
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
825
+ # corresponds to doing no classifier free guidance.
826
+ do_classifier_free_guidance = guidance_scale > 1.0
827
+
828
+ # 3. Encode input prompt
829
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
830
+ prompt=prompt,
831
+ negative_prompt=negative_prompt,
832
+ do_classifier_free_guidance=do_classifier_free_guidance,
833
+ num_videos_per_prompt=num_videos_per_prompt,
834
+ prompt_embeds=prompt_embeds,
835
+ negative_prompt_embeds=negative_prompt_embeds,
836
+ max_sequence_length=max_sequence_length,
837
+ device=device,
838
+ )
839
+ if do_classifier_free_guidance:
840
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
841
+
842
+ # 4. Prepare timesteps
843
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device)
844
+ self._num_timesteps = len(timesteps)
845
+
846
+ # 5. Prepare latents
847
+ is_kps = getattr(self.transformer.config, "is_kps", False)
848
+ kps_cond = kps_cond if is_kps else None
849
+ if kps_cond is not None:
850
+ kps_cond = draw_kps(image, kps_cond)
851
+ kps_cond = self.video_processor.preprocess(kps_cond, height=height, width=width).to(
852
+ device, dtype=prompt_embeds.dtype
853
+ )
854
+
855
+ image = self.video_processor.preprocess(image, height=height, width=width).to(
856
+ device, dtype=prompt_embeds.dtype
857
+ )
858
+
859
+ latent_channels = self.transformer.config.in_channels // 2
860
+ latents, image_latents = self.prepare_latents(
861
+ image,
862
+ batch_size * num_videos_per_prompt,
863
+ latent_channels,
864
+ num_frames,
865
+ height,
866
+ width,
867
+ prompt_embeds.dtype,
868
+ device,
869
+ generator,
870
+ latents,
871
+ kps_cond,
872
+ )
873
+
874
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
875
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
876
+
877
+ # 7. Create rotary embeds if required
878
+ image_rotary_emb = (
879
+ self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
880
+ if self.transformer.config.use_rotary_positional_embeddings
881
+ else None
882
+ )
883
+
884
+ # 8. Denoising loop
885
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
886
+
887
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
888
+ # for DPM-solver++
889
+ old_pred_original_sample = None
890
+ timesteps_cpu = timesteps.cpu()
891
+ for i, t in enumerate(timesteps):
892
+ if self.interrupt:
893
+ continue
894
+
895
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
896
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
897
+
898
+ latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
899
+ latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
900
+
901
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
902
+ timestep = t.expand(latent_model_input.shape[0])
903
+
904
+ # predict noise model_output
905
+ noise_pred = self.transformer(
906
+ hidden_states=latent_model_input,
907
+ encoder_hidden_states=prompt_embeds,
908
+ timestep=timestep,
909
+ image_rotary_emb=image_rotary_emb,
910
+ attention_kwargs=attention_kwargs,
911
+ return_dict=False,
912
+ id_vit_hidden=id_vit_hidden,
913
+ id_cond=id_cond,
914
+ )[0]
915
+ noise_pred = noise_pred.float()
916
+
917
+ # perform guidance
918
+ if use_dynamic_cfg:
919
+ self._guidance_scale = 1 + guidance_scale * (
920
+ (
921
+ 1
922
+ - math.cos(
923
+ math.pi
924
+ * ((num_inference_steps - timesteps_cpu[i].item()) / num_inference_steps) ** 5.0
925
+ )
926
+ )
927
+ / 2
928
+ )
929
+ if do_classifier_free_guidance:
930
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
931
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
932
+
933
+ # compute the previous noisy sample x_t -> x_t-1
934
+ if not isinstance(self.scheduler, CogVideoXDPMScheduler):
935
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
936
+ else:
937
+ latents, old_pred_original_sample = self.scheduler.step(
938
+ noise_pred,
939
+ old_pred_original_sample,
940
+ t,
941
+ timesteps[i - 1] if i > 0 else None,
942
+ latents,
943
+ **extra_step_kwargs,
944
+ return_dict=False,
945
+ )
946
+ latents = latents.to(prompt_embeds.dtype)
947
+
948
+ # call the callback, if provided
949
+ if callback_on_step_end is not None:
950
+ callback_kwargs = {}
951
+ for k in callback_on_step_end_tensor_inputs:
952
+ callback_kwargs[k] = locals()[k]
953
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
954
+
955
+ latents = callback_outputs.pop("latents", latents)
956
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
957
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
958
+
959
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
960
+ progress_bar.update()
961
+
962
+ if not output_type == "latent":
963
+ video = self.decode_latents(latents)
964
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
965
+ else:
966
+ video = latents
967
+
968
+ # Offload all models
969
+ self.maybe_free_model_hooks()
970
+
971
+ if not return_dict:
972
+ return (video,)
973
+
974
+ return ConsisIDPipelineOutput(frames=video)