diffusers 0.32.2__py3-none-any.whl → 0.33.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +186 -3
- diffusers/configuration_utils.py +40 -12
- diffusers/dependency_versions_table.py +9 -2
- diffusers/hooks/__init__.py +9 -0
- diffusers/hooks/faster_cache.py +653 -0
- diffusers/hooks/group_offloading.py +793 -0
- diffusers/hooks/hooks.py +236 -0
- diffusers/hooks/layerwise_casting.py +245 -0
- diffusers/hooks/pyramid_attention_broadcast.py +311 -0
- diffusers/loaders/__init__.py +6 -0
- diffusers/loaders/ip_adapter.py +38 -30
- diffusers/loaders/lora_base.py +121 -86
- diffusers/loaders/lora_conversion_utils.py +504 -44
- diffusers/loaders/lora_pipeline.py +1769 -181
- diffusers/loaders/peft.py +167 -57
- diffusers/loaders/single_file.py +17 -2
- diffusers/loaders/single_file_model.py +53 -5
- diffusers/loaders/single_file_utils.py +646 -72
- diffusers/loaders/textual_inversion.py +9 -9
- diffusers/loaders/transformer_flux.py +8 -9
- diffusers/loaders/transformer_sd3.py +120 -39
- diffusers/loaders/unet.py +20 -7
- diffusers/models/__init__.py +22 -0
- diffusers/models/activations.py +9 -9
- diffusers/models/attention.py +0 -1
- diffusers/models/attention_processor.py +163 -25
- diffusers/models/auto_model.py +169 -0
- diffusers/models/autoencoders/__init__.py +2 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +2 -0
- diffusers/models/autoencoders/autoencoder_dc.py +106 -4
- diffusers/models/autoencoders/autoencoder_kl.py +0 -4
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +5 -23
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +17 -55
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +17 -97
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +326 -107
- diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +21 -56
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -42
- diffusers/models/autoencoders/autoencoder_kl_wan.py +855 -0
- diffusers/models/autoencoders/autoencoder_oobleck.py +1 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +0 -4
- diffusers/models/autoencoders/consistency_decoder_vae.py +3 -1
- diffusers/models/autoencoders/vae.py +31 -141
- diffusers/models/autoencoders/vq_model.py +3 -0
- diffusers/models/cache_utils.py +108 -0
- diffusers/models/controlnets/__init__.py +1 -0
- diffusers/models/controlnets/controlnet.py +3 -8
- diffusers/models/controlnets/controlnet_flux.py +14 -42
- diffusers/models/controlnets/controlnet_sd3.py +58 -34
- diffusers/models/controlnets/controlnet_sparsectrl.py +4 -7
- diffusers/models/controlnets/controlnet_union.py +27 -18
- diffusers/models/controlnets/controlnet_xs.py +7 -46
- diffusers/models/controlnets/multicontrolnet_union.py +196 -0
- diffusers/models/embeddings.py +18 -7
- diffusers/models/model_loading_utils.py +122 -80
- diffusers/models/modeling_flax_pytorch_utils.py +1 -1
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +617 -272
- diffusers/models/normalization.py +67 -14
- diffusers/models/resnet.py +1 -1
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +9 -35
- diffusers/models/transformers/cogvideox_transformer_3d.py +13 -24
- diffusers/models/transformers/consisid_transformer_3d.py +789 -0
- diffusers/models/transformers/dit_transformer_2d.py +5 -19
- diffusers/models/transformers/hunyuan_transformer_2d.py +4 -3
- diffusers/models/transformers/latte_transformer_3d.py +20 -15
- diffusers/models/transformers/lumina_nextdit2d.py +3 -1
- diffusers/models/transformers/pixart_transformer_2d.py +4 -19
- diffusers/models/transformers/prior_transformer.py +5 -1
- diffusers/models/transformers/sana_transformer.py +144 -40
- diffusers/models/transformers/stable_audio_transformer.py +5 -20
- diffusers/models/transformers/transformer_2d.py +7 -22
- diffusers/models/transformers/transformer_allegro.py +9 -17
- diffusers/models/transformers/transformer_cogview3plus.py +6 -17
- diffusers/models/transformers/transformer_cogview4.py +462 -0
- diffusers/models/transformers/transformer_easyanimate.py +527 -0
- diffusers/models/transformers/transformer_flux.py +68 -110
- diffusers/models/transformers/transformer_hunyuan_video.py +404 -46
- diffusers/models/transformers/transformer_ltx.py +53 -35
- diffusers/models/transformers/transformer_lumina2.py +548 -0
- diffusers/models/transformers/transformer_mochi.py +6 -17
- diffusers/models/transformers/transformer_omnigen.py +469 -0
- diffusers/models/transformers/transformer_sd3.py +56 -86
- diffusers/models/transformers/transformer_temporal.py +5 -11
- diffusers/models/transformers/transformer_wan.py +469 -0
- diffusers/models/unets/unet_1d.py +3 -1
- diffusers/models/unets/unet_2d.py +21 -20
- diffusers/models/unets/unet_2d_blocks.py +19 -243
- diffusers/models/unets/unet_2d_condition.py +4 -6
- diffusers/models/unets/unet_3d_blocks.py +14 -127
- diffusers/models/unets/unet_3d_condition.py +8 -12
- diffusers/models/unets/unet_i2vgen_xl.py +5 -13
- diffusers/models/unets/unet_kandinsky3.py +0 -4
- diffusers/models/unets/unet_motion_model.py +20 -114
- diffusers/models/unets/unet_spatio_temporal_condition.py +7 -8
- diffusers/models/unets/unet_stable_cascade.py +8 -35
- diffusers/models/unets/uvit_2d.py +1 -4
- diffusers/optimization.py +2 -2
- diffusers/pipelines/__init__.py +57 -8
- diffusers/pipelines/allegro/pipeline_allegro.py +22 -2
- diffusers/pipelines/amused/pipeline_amused.py +15 -2
- diffusers/pipelines/amused/pipeline_amused_img2img.py +15 -2
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +15 -2
- diffusers/pipelines/animatediff/pipeline_animatediff.py +15 -2
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +15 -3
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +24 -4
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +15 -2
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +16 -4
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +16 -4
- diffusers/pipelines/audioldm/pipeline_audioldm.py +13 -2
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +13 -68
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +39 -9
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +63 -7
- diffusers/pipelines/auto_pipeline.py +35 -14
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -8
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +12 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +22 -6
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +22 -6
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +22 -5
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +22 -6
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +12 -4
- diffusers/pipelines/cogview4/__init__.py +49 -0
- diffusers/pipelines/cogview4/pipeline_cogview4.py +684 -0
- diffusers/pipelines/cogview4/pipeline_cogview4_control.py +732 -0
- diffusers/pipelines/cogview4/pipeline_output.py +21 -0
- diffusers/pipelines/consisid/__init__.py +49 -0
- diffusers/pipelines/consisid/consisid_utils.py +357 -0
- diffusers/pipelines/consisid/pipeline_consisid.py +974 -0
- diffusers/pipelines/consisid/pipeline_output.py +20 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +11 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +6 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +13 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +17 -5
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +31 -12
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +26 -7
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +20 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +22 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +26 -25
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +224 -109
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +25 -29
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +7 -4
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +3 -5
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +121 -10
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +122 -11
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +12 -1
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +20 -3
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +14 -2
- diffusers/pipelines/ddim/pipeline_ddim.py +14 -1
- diffusers/pipelines/ddpm/pipeline_ddpm.py +15 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +12 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +12 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +14 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +12 -0
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +14 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +14 -1
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -7
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -7
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +10 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_onnx_stable_diffusion_inpaint_legacy.py +2 -2
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +11 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +10 -105
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +15 -2
- diffusers/pipelines/easyanimate/__init__.py +52 -0
- diffusers/pipelines/easyanimate/pipeline_easyanimate.py +770 -0
- diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py +994 -0
- diffusers/pipelines/easyanimate/pipeline_easyanimate_inpaint.py +1234 -0
- diffusers/pipelines/easyanimate/pipeline_output.py +20 -0
- diffusers/pipelines/flux/pipeline_flux.py +53 -21
- diffusers/pipelines/flux/pipeline_flux_control.py +9 -12
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +6 -10
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +8 -10
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +185 -13
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +8 -10
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +16 -16
- diffusers/pipelines/flux/pipeline_flux_fill.py +107 -39
- diffusers/pipelines/flux/pipeline_flux_img2img.py +193 -15
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +199 -19
- diffusers/pipelines/free_noise_utils.py +3 -3
- diffusers/pipelines/hunyuan_video/__init__.py +4 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_skyreels_image2video.py +804 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +90 -23
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video_image2video.py +924 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +3 -5
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +13 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +12 -0
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +12 -0
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +13 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +12 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +12 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +13 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +12 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +12 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +12 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +12 -0
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +12 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +12 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +12 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +10 -8
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +6 -4
- diffusers/pipelines/kolors/text_encoder.py +7 -34
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +12 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +13 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +14 -13
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +12 -1
- diffusers/pipelines/latte/pipeline_latte.py +36 -7
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +67 -13
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +60 -15
- diffusers/pipelines/ltx/__init__.py +2 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +25 -13
- diffusers/pipelines/ltx/pipeline_ltx_condition.py +1194 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +31 -17
- diffusers/pipelines/lumina/__init__.py +2 -2
- diffusers/pipelines/lumina/pipeline_lumina.py +83 -20
- diffusers/pipelines/lumina2/__init__.py +48 -0
- diffusers/pipelines/lumina2/pipeline_lumina2.py +790 -0
- diffusers/pipelines/marigold/__init__.py +2 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +127 -14
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +31 -16
- diffusers/pipelines/marigold/pipeline_marigold_intrinsics.py +721 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +31 -16
- diffusers/pipelines/mochi/pipeline_mochi.py +14 -18
- diffusers/pipelines/musicldm/pipeline_musicldm.py +16 -1
- diffusers/pipelines/omnigen/__init__.py +50 -0
- diffusers/pipelines/omnigen/pipeline_omnigen.py +512 -0
- diffusers/pipelines/omnigen/processor_omnigen.py +327 -0
- diffusers/pipelines/onnx_utils.py +5 -3
- diffusers/pipelines/pag/pag_utils.py +1 -1
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +12 -1
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +15 -4
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +20 -3
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +20 -3
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +1 -3
- diffusers/pipelines/pag/pipeline_pag_kolors.py +6 -4
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +16 -3
- diffusers/pipelines/pag/pipeline_pag_sana.py +65 -8
- diffusers/pipelines/pag/pipeline_pag_sd.py +23 -7
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +3 -5
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +3 -5
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +13 -1
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +23 -7
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +26 -10
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +12 -4
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +7 -3
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +10 -6
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +13 -3
- diffusers/pipelines/pia/pipeline_pia.py +13 -1
- diffusers/pipelines/pipeline_flax_utils.py +7 -7
- diffusers/pipelines/pipeline_loading_utils.py +193 -83
- diffusers/pipelines/pipeline_utils.py +221 -106
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +17 -5
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +17 -4
- diffusers/pipelines/sana/__init__.py +2 -0
- diffusers/pipelines/sana/pipeline_sana.py +183 -58
- diffusers/pipelines/sana/pipeline_sana_sprint.py +889 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +12 -2
- diffusers/pipelines/shap_e/pipeline_shap_e.py +12 -0
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +12 -0
- diffusers/pipelines/shap_e/renderer.py +6 -6
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +1 -1
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +15 -4
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +12 -8
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +12 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +3 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +14 -10
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +3 -3
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +14 -10
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +4 -3
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +5 -4
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +18 -13
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +30 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +24 -10
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +28 -12
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +39 -18
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +17 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +13 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +20 -3
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +14 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +13 -1
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +16 -17
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +136 -18
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +150 -21
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +15 -3
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +26 -11
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +15 -3
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +22 -4
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -13
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +12 -4
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +15 -3
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +15 -3
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +26 -12
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +16 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +12 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +7 -3
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +10 -6
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +11 -4
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +13 -2
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +18 -4
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +26 -5
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +13 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +13 -1
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +26 -4
- diffusers/pipelines/transformers_loading_utils.py +121 -0
- diffusers/pipelines/unclip/pipeline_unclip.py +11 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +11 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +19 -2
- diffusers/pipelines/wan/__init__.py +51 -0
- diffusers/pipelines/wan/pipeline_output.py +20 -0
- diffusers/pipelines/wan/pipeline_wan.py +593 -0
- diffusers/pipelines/wan/pipeline_wan_i2v.py +722 -0
- diffusers/pipelines/wan/pipeline_wan_video2video.py +725 -0
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +7 -31
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +12 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +12 -1
- diffusers/quantizers/auto.py +5 -1
- diffusers/quantizers/base.py +5 -9
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +41 -29
- diffusers/quantizers/bitsandbytes/utils.py +30 -20
- diffusers/quantizers/gguf/gguf_quantizer.py +1 -0
- diffusers/quantizers/gguf/utils.py +4 -2
- diffusers/quantizers/quantization_config.py +59 -4
- diffusers/quantizers/quanto/__init__.py +1 -0
- diffusers/quantizers/quanto/quanto_quantizer.py +177 -0
- diffusers/quantizers/quanto/utils.py +60 -0
- diffusers/quantizers/torchao/__init__.py +1 -1
- diffusers/quantizers/torchao/torchao_quantizer.py +47 -2
- diffusers/schedulers/__init__.py +2 -1
- diffusers/schedulers/scheduling_consistency_models.py +1 -2
- diffusers/schedulers/scheduling_ddim_inverse.py +1 -1
- diffusers/schedulers/scheduling_ddpm.py +2 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +12 -4
- diffusers/schedulers/scheduling_edm_euler.py +45 -10
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +116 -28
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +7 -6
- diffusers/schedulers/scheduling_heun_discrete.py +1 -1
- diffusers/schedulers/scheduling_lcm.py +1 -2
- diffusers/schedulers/scheduling_lms_discrete.py +1 -1
- diffusers/schedulers/scheduling_repaint.py +5 -1
- diffusers/schedulers/scheduling_scm.py +265 -0
- diffusers/schedulers/scheduling_tcd.py +1 -2
- diffusers/schedulers/scheduling_utils.py +2 -1
- diffusers/training_utils.py +14 -7
- diffusers/utils/__init__.py +9 -1
- diffusers/utils/constants.py +13 -1
- diffusers/utils/deprecation_utils.py +1 -1
- diffusers/utils/dummy_bitsandbytes_objects.py +17 -0
- diffusers/utils/dummy_gguf_objects.py +17 -0
- diffusers/utils/dummy_optimum_quanto_objects.py +17 -0
- diffusers/utils/dummy_pt_objects.py +233 -0
- diffusers/utils/dummy_torch_and_transformers_and_opencv_objects.py +17 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +270 -0
- diffusers/utils/dummy_torchao_objects.py +17 -0
- diffusers/utils/dynamic_modules_utils.py +1 -1
- diffusers/utils/export_utils.py +28 -3
- diffusers/utils/hub_utils.py +52 -102
- diffusers/utils/import_utils.py +121 -221
- diffusers/utils/loading_utils.py +2 -1
- diffusers/utils/logging.py +1 -2
- diffusers/utils/peft_utils.py +6 -14
- diffusers/utils/remote_utils.py +425 -0
- diffusers/utils/source_code_parsing_utils.py +52 -0
- diffusers/utils/state_dict_utils.py +15 -1
- diffusers/utils/testing_utils.py +243 -13
- diffusers/utils/torch_utils.py +10 -0
- diffusers/utils/typing_utils.py +91 -0
- diffusers/video_processor.py +1 -1
- {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/METADATA +76 -44
- diffusers-0.33.0.dist-info/RECORD +608 -0
- {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/WHEEL +1 -1
- diffusers-0.32.2.dist-info/RECORD +0 -550
- {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/LICENSE +0 -0
- {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.32.2.dist-info → diffusers-0.33.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,469 @@
|
|
1
|
+
# Copyright 2024 OmniGen team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import math
|
16
|
+
from typing import Dict, List, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
import torch.nn as nn
|
20
|
+
import torch.nn.functional as F
|
21
|
+
|
22
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
23
|
+
from ...utils import logging
|
24
|
+
from ..attention_processor import Attention
|
25
|
+
from ..embeddings import TimestepEmbedding, Timesteps, get_2d_sincos_pos_embed
|
26
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
27
|
+
from ..modeling_utils import ModelMixin
|
28
|
+
from ..normalization import AdaLayerNorm, RMSNorm
|
29
|
+
|
30
|
+
|
31
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32
|
+
|
33
|
+
|
34
|
+
class OmniGenFeedForward(nn.Module):
|
35
|
+
def __init__(self, hidden_size: int, intermediate_size: int):
|
36
|
+
super().__init__()
|
37
|
+
|
38
|
+
self.gate_up_proj = nn.Linear(hidden_size, 2 * intermediate_size, bias=False)
|
39
|
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
40
|
+
self.activation_fn = nn.SiLU()
|
41
|
+
|
42
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
43
|
+
up_states = self.gate_up_proj(hidden_states)
|
44
|
+
gate, up_states = up_states.chunk(2, dim=-1)
|
45
|
+
up_states = up_states * self.activation_fn(gate)
|
46
|
+
return self.down_proj(up_states)
|
47
|
+
|
48
|
+
|
49
|
+
class OmniGenPatchEmbed(nn.Module):
|
50
|
+
def __init__(
|
51
|
+
self,
|
52
|
+
patch_size: int = 2,
|
53
|
+
in_channels: int = 4,
|
54
|
+
embed_dim: int = 768,
|
55
|
+
bias: bool = True,
|
56
|
+
interpolation_scale: float = 1,
|
57
|
+
pos_embed_max_size: int = 192,
|
58
|
+
base_size: int = 64,
|
59
|
+
):
|
60
|
+
super().__init__()
|
61
|
+
|
62
|
+
self.output_image_proj = nn.Conv2d(
|
63
|
+
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
|
64
|
+
)
|
65
|
+
self.input_image_proj = nn.Conv2d(
|
66
|
+
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
|
67
|
+
)
|
68
|
+
|
69
|
+
self.patch_size = patch_size
|
70
|
+
self.interpolation_scale = interpolation_scale
|
71
|
+
self.pos_embed_max_size = pos_embed_max_size
|
72
|
+
|
73
|
+
pos_embed = get_2d_sincos_pos_embed(
|
74
|
+
embed_dim,
|
75
|
+
self.pos_embed_max_size,
|
76
|
+
base_size=base_size,
|
77
|
+
interpolation_scale=self.interpolation_scale,
|
78
|
+
output_type="pt",
|
79
|
+
)
|
80
|
+
self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=True)
|
81
|
+
|
82
|
+
def _cropped_pos_embed(self, height, width):
|
83
|
+
"""Crops positional embeddings for SD3 compatibility."""
|
84
|
+
if self.pos_embed_max_size is None:
|
85
|
+
raise ValueError("`pos_embed_max_size` must be set for cropping.")
|
86
|
+
|
87
|
+
height = height // self.patch_size
|
88
|
+
width = width // self.patch_size
|
89
|
+
if height > self.pos_embed_max_size:
|
90
|
+
raise ValueError(
|
91
|
+
f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
|
92
|
+
)
|
93
|
+
if width > self.pos_embed_max_size:
|
94
|
+
raise ValueError(
|
95
|
+
f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
|
96
|
+
)
|
97
|
+
|
98
|
+
top = (self.pos_embed_max_size - height) // 2
|
99
|
+
left = (self.pos_embed_max_size - width) // 2
|
100
|
+
spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
|
101
|
+
spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
|
102
|
+
spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
|
103
|
+
return spatial_pos_embed
|
104
|
+
|
105
|
+
def _patch_embeddings(self, hidden_states: torch.Tensor, is_input_image: bool) -> torch.Tensor:
|
106
|
+
if is_input_image:
|
107
|
+
hidden_states = self.input_image_proj(hidden_states)
|
108
|
+
else:
|
109
|
+
hidden_states = self.output_image_proj(hidden_states)
|
110
|
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
111
|
+
return hidden_states
|
112
|
+
|
113
|
+
def forward(
|
114
|
+
self, hidden_states: torch.Tensor, is_input_image: bool, padding_latent: torch.Tensor = None
|
115
|
+
) -> torch.Tensor:
|
116
|
+
if isinstance(hidden_states, list):
|
117
|
+
if padding_latent is None:
|
118
|
+
padding_latent = [None] * len(hidden_states)
|
119
|
+
patched_latents = []
|
120
|
+
for sub_latent, padding in zip(hidden_states, padding_latent):
|
121
|
+
height, width = sub_latent.shape[-2:]
|
122
|
+
sub_latent = self._patch_embeddings(sub_latent, is_input_image)
|
123
|
+
pos_embed = self._cropped_pos_embed(height, width)
|
124
|
+
sub_latent = sub_latent + pos_embed
|
125
|
+
if padding is not None:
|
126
|
+
sub_latent = torch.cat([sub_latent, padding.to(sub_latent.device)], dim=-2)
|
127
|
+
patched_latents.append(sub_latent)
|
128
|
+
else:
|
129
|
+
height, width = hidden_states.shape[-2:]
|
130
|
+
pos_embed = self._cropped_pos_embed(height, width)
|
131
|
+
hidden_states = self._patch_embeddings(hidden_states, is_input_image)
|
132
|
+
patched_latents = hidden_states + pos_embed
|
133
|
+
|
134
|
+
return patched_latents
|
135
|
+
|
136
|
+
|
137
|
+
class OmniGenSuScaledRotaryEmbedding(nn.Module):
|
138
|
+
def __init__(
|
139
|
+
self, dim, max_position_embeddings=131072, original_max_position_embeddings=4096, base=10000, rope_scaling=None
|
140
|
+
):
|
141
|
+
super().__init__()
|
142
|
+
|
143
|
+
self.dim = dim
|
144
|
+
self.max_position_embeddings = max_position_embeddings
|
145
|
+
self.base = base
|
146
|
+
|
147
|
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
|
148
|
+
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
|
149
|
+
|
150
|
+
self.short_factor = rope_scaling["short_factor"]
|
151
|
+
self.long_factor = rope_scaling["long_factor"]
|
152
|
+
self.original_max_position_embeddings = original_max_position_embeddings
|
153
|
+
|
154
|
+
def forward(self, hidden_states, position_ids):
|
155
|
+
seq_len = torch.max(position_ids) + 1
|
156
|
+
if seq_len > self.original_max_position_embeddings:
|
157
|
+
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=hidden_states.device)
|
158
|
+
else:
|
159
|
+
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=hidden_states.device)
|
160
|
+
|
161
|
+
inv_freq_shape = (
|
162
|
+
torch.arange(0, self.dim, 2, dtype=torch.int64, device=hidden_states.device).float() / self.dim
|
163
|
+
)
|
164
|
+
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
165
|
+
|
166
|
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
167
|
+
position_ids_expanded = position_ids[:, None, :].float()
|
168
|
+
|
169
|
+
# Force float32 since bfloat16 loses precision on long contexts
|
170
|
+
# See https://github.com/huggingface/transformers/pull/29285
|
171
|
+
device_type = hidden_states.device.type
|
172
|
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
173
|
+
with torch.autocast(device_type=device_type, enabled=False):
|
174
|
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
175
|
+
emb = torch.cat((freqs, freqs), dim=-1)[0]
|
176
|
+
|
177
|
+
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
178
|
+
if scale <= 1.0:
|
179
|
+
scaling_factor = 1.0
|
180
|
+
else:
|
181
|
+
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
182
|
+
|
183
|
+
cos = emb.cos() * scaling_factor
|
184
|
+
sin = emb.sin() * scaling_factor
|
185
|
+
return cos, sin
|
186
|
+
|
187
|
+
|
188
|
+
class OmniGenAttnProcessor2_0:
|
189
|
+
r"""
|
190
|
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
|
191
|
+
used in the OmniGen model.
|
192
|
+
"""
|
193
|
+
|
194
|
+
def __init__(self):
|
195
|
+
if not hasattr(F, "scaled_dot_product_attention"):
|
196
|
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
197
|
+
|
198
|
+
def __call__(
|
199
|
+
self,
|
200
|
+
attn: Attention,
|
201
|
+
hidden_states: torch.Tensor,
|
202
|
+
encoder_hidden_states: torch.Tensor,
|
203
|
+
attention_mask: Optional[torch.Tensor] = None,
|
204
|
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
205
|
+
) -> torch.Tensor:
|
206
|
+
batch_size, sequence_length, _ = hidden_states.shape
|
207
|
+
|
208
|
+
# Get Query-Key-Value Pair
|
209
|
+
query = attn.to_q(hidden_states)
|
210
|
+
key = attn.to_k(encoder_hidden_states)
|
211
|
+
value = attn.to_v(encoder_hidden_states)
|
212
|
+
|
213
|
+
bsz, q_len, query_dim = query.size()
|
214
|
+
inner_dim = key.shape[-1]
|
215
|
+
head_dim = query_dim // attn.heads
|
216
|
+
|
217
|
+
# Get key-value heads
|
218
|
+
kv_heads = inner_dim // head_dim
|
219
|
+
|
220
|
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
221
|
+
key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
|
222
|
+
value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
|
223
|
+
|
224
|
+
# Apply RoPE if needed
|
225
|
+
if image_rotary_emb is not None:
|
226
|
+
from ..embeddings import apply_rotary_emb
|
227
|
+
|
228
|
+
query = apply_rotary_emb(query, image_rotary_emb, use_real_unbind_dim=-2)
|
229
|
+
key = apply_rotary_emb(key, image_rotary_emb, use_real_unbind_dim=-2)
|
230
|
+
|
231
|
+
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask)
|
232
|
+
hidden_states = hidden_states.transpose(1, 2).type_as(query)
|
233
|
+
hidden_states = hidden_states.reshape(bsz, q_len, attn.out_dim)
|
234
|
+
hidden_states = attn.to_out[0](hidden_states)
|
235
|
+
return hidden_states
|
236
|
+
|
237
|
+
|
238
|
+
class OmniGenBlock(nn.Module):
|
239
|
+
def __init__(
|
240
|
+
self,
|
241
|
+
hidden_size: int,
|
242
|
+
num_attention_heads: int,
|
243
|
+
num_key_value_heads: int,
|
244
|
+
intermediate_size: int,
|
245
|
+
rms_norm_eps: float,
|
246
|
+
) -> None:
|
247
|
+
super().__init__()
|
248
|
+
|
249
|
+
self.input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)
|
250
|
+
self.self_attn = Attention(
|
251
|
+
query_dim=hidden_size,
|
252
|
+
cross_attention_dim=hidden_size,
|
253
|
+
dim_head=hidden_size // num_attention_heads,
|
254
|
+
heads=num_attention_heads,
|
255
|
+
kv_heads=num_key_value_heads,
|
256
|
+
bias=False,
|
257
|
+
out_dim=hidden_size,
|
258
|
+
out_bias=False,
|
259
|
+
processor=OmniGenAttnProcessor2_0(),
|
260
|
+
)
|
261
|
+
self.post_attention_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)
|
262
|
+
self.mlp = OmniGenFeedForward(hidden_size, intermediate_size)
|
263
|
+
|
264
|
+
def forward(
|
265
|
+
self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor
|
266
|
+
) -> torch.Tensor:
|
267
|
+
# 1. Attention
|
268
|
+
norm_hidden_states = self.input_layernorm(hidden_states)
|
269
|
+
attn_output = self.self_attn(
|
270
|
+
hidden_states=norm_hidden_states,
|
271
|
+
encoder_hidden_states=norm_hidden_states,
|
272
|
+
attention_mask=attention_mask,
|
273
|
+
image_rotary_emb=image_rotary_emb,
|
274
|
+
)
|
275
|
+
hidden_states = hidden_states + attn_output
|
276
|
+
|
277
|
+
# 2. Feed Forward
|
278
|
+
norm_hidden_states = self.post_attention_layernorm(hidden_states)
|
279
|
+
ff_output = self.mlp(norm_hidden_states)
|
280
|
+
hidden_states = hidden_states + ff_output
|
281
|
+
return hidden_states
|
282
|
+
|
283
|
+
|
284
|
+
class OmniGenTransformer2DModel(ModelMixin, ConfigMixin):
|
285
|
+
"""
|
286
|
+
The Transformer model introduced in OmniGen (https://arxiv.org/pdf/2409.11340).
|
287
|
+
|
288
|
+
Parameters:
|
289
|
+
in_channels (`int`, defaults to `4`):
|
290
|
+
The number of channels in the input.
|
291
|
+
patch_size (`int`, defaults to `2`):
|
292
|
+
The size of the spatial patches to use in the patch embedding layer.
|
293
|
+
hidden_size (`int`, defaults to `3072`):
|
294
|
+
The dimensionality of the hidden layers in the model.
|
295
|
+
rms_norm_eps (`float`, defaults to `1e-5`):
|
296
|
+
Eps for RMSNorm layer.
|
297
|
+
num_attention_heads (`int`, defaults to `32`):
|
298
|
+
The number of heads to use for multi-head attention.
|
299
|
+
num_key_value_heads (`int`, defaults to `32`):
|
300
|
+
The number of heads to use for keys and values in multi-head attention.
|
301
|
+
intermediate_size (`int`, defaults to `8192`):
|
302
|
+
Dimension of the hidden layer in FeedForward layers.
|
303
|
+
num_layers (`int`, default to `32`):
|
304
|
+
The number of layers of transformer blocks to use.
|
305
|
+
pad_token_id (`int`, default to `32000`):
|
306
|
+
The id of the padding token.
|
307
|
+
vocab_size (`int`, default to `32064`):
|
308
|
+
The size of the vocabulary of the embedding vocabulary.
|
309
|
+
rope_base (`int`, default to `10000`):
|
310
|
+
The default theta value to use when creating RoPE.
|
311
|
+
rope_scaling (`Dict`, optional):
|
312
|
+
The scaling factors for the RoPE. Must contain `short_factor` and `long_factor`.
|
313
|
+
pos_embed_max_size (`int`, default to `192`):
|
314
|
+
The maximum size of the positional embeddings.
|
315
|
+
time_step_dim (`int`, default to `256`):
|
316
|
+
Output dimension of timestep embeddings.
|
317
|
+
flip_sin_to_cos (`bool`, default to `True`):
|
318
|
+
Whether to flip the sin and cos in the positional embeddings when preparing timestep embeddings.
|
319
|
+
downscale_freq_shift (`int`, default to `0`):
|
320
|
+
The frequency shift to use when downscaling the timestep embeddings.
|
321
|
+
timestep_activation_fn (`str`, default to `silu`):
|
322
|
+
The activation function to use for the timestep embeddings.
|
323
|
+
"""
|
324
|
+
|
325
|
+
_supports_gradient_checkpointing = True
|
326
|
+
_no_split_modules = ["OmniGenBlock"]
|
327
|
+
_skip_layerwise_casting_patterns = ["patch_embedding", "embed_tokens", "norm"]
|
328
|
+
|
329
|
+
@register_to_config
|
330
|
+
def __init__(
|
331
|
+
self,
|
332
|
+
in_channels: int = 4,
|
333
|
+
patch_size: int = 2,
|
334
|
+
hidden_size: int = 3072,
|
335
|
+
rms_norm_eps: float = 1e-5,
|
336
|
+
num_attention_heads: int = 32,
|
337
|
+
num_key_value_heads: int = 32,
|
338
|
+
intermediate_size: int = 8192,
|
339
|
+
num_layers: int = 32,
|
340
|
+
pad_token_id: int = 32000,
|
341
|
+
vocab_size: int = 32064,
|
342
|
+
max_position_embeddings: int = 131072,
|
343
|
+
original_max_position_embeddings: int = 4096,
|
344
|
+
rope_base: int = 10000,
|
345
|
+
rope_scaling: Dict = None,
|
346
|
+
pos_embed_max_size: int = 192,
|
347
|
+
time_step_dim: int = 256,
|
348
|
+
flip_sin_to_cos: bool = True,
|
349
|
+
downscale_freq_shift: int = 0,
|
350
|
+
timestep_activation_fn: str = "silu",
|
351
|
+
):
|
352
|
+
super().__init__()
|
353
|
+
self.in_channels = in_channels
|
354
|
+
self.out_channels = in_channels
|
355
|
+
|
356
|
+
self.patch_embedding = OmniGenPatchEmbed(
|
357
|
+
patch_size=patch_size,
|
358
|
+
in_channels=in_channels,
|
359
|
+
embed_dim=hidden_size,
|
360
|
+
pos_embed_max_size=pos_embed_max_size,
|
361
|
+
)
|
362
|
+
|
363
|
+
self.time_proj = Timesteps(time_step_dim, flip_sin_to_cos, downscale_freq_shift)
|
364
|
+
self.time_token = TimestepEmbedding(time_step_dim, hidden_size, timestep_activation_fn)
|
365
|
+
self.t_embedder = TimestepEmbedding(time_step_dim, hidden_size, timestep_activation_fn)
|
366
|
+
|
367
|
+
self.embed_tokens = nn.Embedding(vocab_size, hidden_size, pad_token_id)
|
368
|
+
self.rope = OmniGenSuScaledRotaryEmbedding(
|
369
|
+
hidden_size // num_attention_heads,
|
370
|
+
max_position_embeddings=max_position_embeddings,
|
371
|
+
original_max_position_embeddings=original_max_position_embeddings,
|
372
|
+
base=rope_base,
|
373
|
+
rope_scaling=rope_scaling,
|
374
|
+
)
|
375
|
+
|
376
|
+
self.layers = nn.ModuleList(
|
377
|
+
[
|
378
|
+
OmniGenBlock(hidden_size, num_attention_heads, num_key_value_heads, intermediate_size, rms_norm_eps)
|
379
|
+
for _ in range(num_layers)
|
380
|
+
]
|
381
|
+
)
|
382
|
+
|
383
|
+
self.norm = RMSNorm(hidden_size, eps=rms_norm_eps)
|
384
|
+
self.norm_out = AdaLayerNorm(hidden_size, norm_elementwise_affine=False, norm_eps=1e-6, chunk_dim=1)
|
385
|
+
self.proj_out = nn.Linear(hidden_size, patch_size * patch_size * self.out_channels, bias=True)
|
386
|
+
|
387
|
+
self.gradient_checkpointing = False
|
388
|
+
|
389
|
+
def _get_multimodal_embeddings(
|
390
|
+
self, input_ids: torch.Tensor, input_img_latents: List[torch.Tensor], input_image_sizes: Dict
|
391
|
+
) -> Optional[torch.Tensor]:
|
392
|
+
if input_ids is None:
|
393
|
+
return None
|
394
|
+
|
395
|
+
input_img_latents = [x.to(self.dtype) for x in input_img_latents]
|
396
|
+
condition_tokens = self.embed_tokens(input_ids)
|
397
|
+
input_img_inx = 0
|
398
|
+
input_image_tokens = self.patch_embedding(input_img_latents, is_input_image=True)
|
399
|
+
for b_inx in input_image_sizes.keys():
|
400
|
+
for start_inx, end_inx in input_image_sizes[b_inx]:
|
401
|
+
# replace the placeholder in text tokens with the image embedding.
|
402
|
+
condition_tokens[b_inx, start_inx:end_inx] = input_image_tokens[input_img_inx].to(
|
403
|
+
condition_tokens.dtype
|
404
|
+
)
|
405
|
+
input_img_inx += 1
|
406
|
+
return condition_tokens
|
407
|
+
|
408
|
+
def forward(
|
409
|
+
self,
|
410
|
+
hidden_states: torch.Tensor,
|
411
|
+
timestep: Union[int, float, torch.FloatTensor],
|
412
|
+
input_ids: torch.Tensor,
|
413
|
+
input_img_latents: List[torch.Tensor],
|
414
|
+
input_image_sizes: Dict[int, List[int]],
|
415
|
+
attention_mask: torch.Tensor,
|
416
|
+
position_ids: torch.Tensor,
|
417
|
+
return_dict: bool = True,
|
418
|
+
) -> Union[Transformer2DModelOutput, Tuple[torch.Tensor]]:
|
419
|
+
batch_size, num_channels, height, width = hidden_states.shape
|
420
|
+
p = self.config.patch_size
|
421
|
+
post_patch_height, post_patch_width = height // p, width // p
|
422
|
+
|
423
|
+
# 1. Patch & Timestep & Conditional Embedding
|
424
|
+
hidden_states = self.patch_embedding(hidden_states, is_input_image=False)
|
425
|
+
num_tokens_for_output_image = hidden_states.size(1)
|
426
|
+
|
427
|
+
timestep_proj = self.time_proj(timestep).type_as(hidden_states)
|
428
|
+
time_token = self.time_token(timestep_proj).unsqueeze(1)
|
429
|
+
temb = self.t_embedder(timestep_proj)
|
430
|
+
|
431
|
+
condition_tokens = self._get_multimodal_embeddings(input_ids, input_img_latents, input_image_sizes)
|
432
|
+
if condition_tokens is not None:
|
433
|
+
hidden_states = torch.cat([condition_tokens, time_token, hidden_states], dim=1)
|
434
|
+
else:
|
435
|
+
hidden_states = torch.cat([time_token, hidden_states], dim=1)
|
436
|
+
|
437
|
+
seq_length = hidden_states.size(1)
|
438
|
+
position_ids = position_ids.view(-1, seq_length).long()
|
439
|
+
|
440
|
+
# 2. Attention mask preprocessing
|
441
|
+
if attention_mask is not None and attention_mask.dim() == 3:
|
442
|
+
dtype = hidden_states.dtype
|
443
|
+
min_dtype = torch.finfo(dtype).min
|
444
|
+
attention_mask = (1 - attention_mask) * min_dtype
|
445
|
+
attention_mask = attention_mask.unsqueeze(1).type_as(hidden_states)
|
446
|
+
|
447
|
+
# 3. Rotary position embedding
|
448
|
+
image_rotary_emb = self.rope(hidden_states, position_ids)
|
449
|
+
|
450
|
+
# 4. Transformer blocks
|
451
|
+
for block in self.layers:
|
452
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
453
|
+
hidden_states = self._gradient_checkpointing_func(
|
454
|
+
block, hidden_states, attention_mask, image_rotary_emb
|
455
|
+
)
|
456
|
+
else:
|
457
|
+
hidden_states = block(hidden_states, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb)
|
458
|
+
|
459
|
+
# 5. Output norm & projection
|
460
|
+
hidden_states = self.norm(hidden_states)
|
461
|
+
hidden_states = hidden_states[:, -num_tokens_for_output_image:]
|
462
|
+
hidden_states = self.norm_out(hidden_states, temb=temb)
|
463
|
+
hidden_states = self.proj_out(hidden_states)
|
464
|
+
hidden_states = hidden_states.reshape(batch_size, post_patch_height, post_patch_width, p, p, -1)
|
465
|
+
output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3)
|
466
|
+
|
467
|
+
if not return_dict:
|
468
|
+
return (output,)
|
469
|
+
return Transformer2DModelOutput(sample=output)
|