diffusers 0.30.3__py3-none-any.whl → 0.31.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +34 -2
- diffusers/configuration_utils.py +12 -0
- diffusers/dependency_versions_table.py +1 -1
- diffusers/image_processor.py +257 -54
- diffusers/loaders/__init__.py +2 -0
- diffusers/loaders/ip_adapter.py +5 -1
- diffusers/loaders/lora_base.py +14 -7
- diffusers/loaders/lora_conversion_utils.py +332 -0
- diffusers/loaders/lora_pipeline.py +707 -41
- diffusers/loaders/peft.py +1 -0
- diffusers/loaders/single_file_utils.py +81 -4
- diffusers/loaders/textual_inversion.py +2 -0
- diffusers/loaders/unet.py +39 -8
- diffusers/models/__init__.py +4 -0
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +86 -10
- diffusers/models/attention_processor.py +169 -133
- diffusers/models/autoencoders/autoencoder_kl.py +71 -11
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +187 -88
- diffusers/models/controlnet_flux.py +536 -0
- diffusers/models/controlnet_sd3.py +7 -3
- diffusers/models/controlnet_sparsectrl.py +0 -1
- diffusers/models/embeddings.py +170 -61
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +182 -14
- diffusers/models/modeling_utils.py +283 -46
- diffusers/models/normalization.py +79 -0
- diffusers/models/transformers/__init__.py +1 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +1 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +23 -2
- diffusers/models/transformers/pixart_transformer_2d.py +9 -1
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +161 -44
- diffusers/models/transformers/transformer_sd3.py +7 -1
- diffusers/models/unets/unet_2d_condition.py +8 -8
- diffusers/models/unets/unet_motion_model.py +41 -63
- diffusers/models/upsampling.py +6 -6
- diffusers/pipelines/__init__.py +35 -6
- diffusers/pipelines/animatediff/__init__.py +2 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +44 -20
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +2 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -66
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -1
- diffusers/pipelines/auto_pipeline.py +39 -8
- diffusers/pipelines/cogvideo/__init__.py +2 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +30 -17
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +794 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +41 -31
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +42 -29
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/controlnet/pipeline_controlnet.py +9 -1
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +8 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +8 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +36 -13
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +9 -1
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +8 -1
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +17 -3
- diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +3 -1
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
- diffusers/pipelines/flux/__init__.py +10 -0
- diffusers/pipelines/flux/pipeline_flux.py +53 -20
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +984 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +988 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1182 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +850 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1015 -0
- diffusers/pipelines/free_noise_utils.py +365 -5
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +15 -3
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
- diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
- diffusers/pipelines/kolors/tokenizer.py +4 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
- diffusers/pipelines/latte/pipeline_latte.py +2 -2
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
- diffusers/pipelines/lumina/pipeline_lumina.py +2 -2
- diffusers/pipelines/pag/__init__.py +6 -0
- diffusers/pipelines/pag/pag_utils.py +8 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -1
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +2 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1685 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +17 -5
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +1 -1
- diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +12 -3
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1091 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
- diffusers/pipelines/pia/pipeline_pia.py +2 -0
- diffusers/pipelines/pipeline_loading_utils.py +225 -27
- diffusers/pipelines/pipeline_utils.py +123 -180
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +1 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +1 -1
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +28 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +12 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +20 -4
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +3 -3
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -14
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -14
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
- diffusers/quantizers/__init__.py +16 -0
- diffusers/quantizers/auto.py +126 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +558 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/quantization_config.py +391 -0
- diffusers/schedulers/scheduling_ddim.py +4 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
- diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
- diffusers/schedulers/scheduling_ddpm.py +4 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +4 -1
- diffusers/schedulers/scheduling_deis_multistep.py +78 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +82 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +80 -1
- diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +82 -1
- diffusers/schedulers/scheduling_edm_euler.py +8 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
- diffusers/schedulers/scheduling_euler_discrete.py +92 -7
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
- diffusers/schedulers/scheduling_heun_discrete.py +114 -8
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
- diffusers/schedulers/scheduling_lms_discrete.py +76 -1
- diffusers/schedulers/scheduling_sasolver.py +78 -1
- diffusers/schedulers/scheduling_unclip.py +4 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +78 -1
- diffusers/training_utils.py +48 -18
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +165 -0
- diffusers/utils/hub_utils.py +16 -4
- diffusers/utils/import_utils.py +31 -8
- diffusers/utils/loading_utils.py +28 -4
- diffusers/utils/peft_utils.py +3 -3
- diffusers/utils/testing_utils.py +59 -0
- {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/METADATA +7 -6
- {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/RECORD +172 -149
- {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/LICENSE +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/WHEEL +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,391 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
# coding=utf-8
|
3
|
+
|
4
|
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
5
|
+
#
|
6
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7
|
+
# you may not use this file except in compliance with the License.
|
8
|
+
# You may obtain a copy of the License at
|
9
|
+
#
|
10
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11
|
+
#
|
12
|
+
# Unless required by applicable law or agreed to in writing, software
|
13
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15
|
+
# See the License for the specific language governing permissions and
|
16
|
+
# limitations under the License.
|
17
|
+
|
18
|
+
"""
|
19
|
+
Adapted from
|
20
|
+
https://github.com/huggingface/transformers/blob/52cb4034ada381fe1ffe8d428a1076e5411a8026/src/transformers/utils/quantization_config.py
|
21
|
+
"""
|
22
|
+
|
23
|
+
import copy
|
24
|
+
import importlib.metadata
|
25
|
+
import json
|
26
|
+
import os
|
27
|
+
from dataclasses import dataclass
|
28
|
+
from enum import Enum
|
29
|
+
from typing import Any, Dict, Union
|
30
|
+
|
31
|
+
from packaging import version
|
32
|
+
|
33
|
+
from ..utils import is_torch_available, logging
|
34
|
+
|
35
|
+
|
36
|
+
if is_torch_available():
|
37
|
+
import torch
|
38
|
+
|
39
|
+
logger = logging.get_logger(__name__)
|
40
|
+
|
41
|
+
|
42
|
+
class QuantizationMethod(str, Enum):
|
43
|
+
BITS_AND_BYTES = "bitsandbytes"
|
44
|
+
|
45
|
+
|
46
|
+
@dataclass
|
47
|
+
class QuantizationConfigMixin:
|
48
|
+
"""
|
49
|
+
Mixin class for quantization config
|
50
|
+
"""
|
51
|
+
|
52
|
+
quant_method: QuantizationMethod
|
53
|
+
_exclude_attributes_at_init = []
|
54
|
+
|
55
|
+
@classmethod
|
56
|
+
def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs):
|
57
|
+
"""
|
58
|
+
Instantiates a [`QuantizationConfigMixin`] from a Python dictionary of parameters.
|
59
|
+
|
60
|
+
Args:
|
61
|
+
config_dict (`Dict[str, Any]`):
|
62
|
+
Dictionary that will be used to instantiate the configuration object.
|
63
|
+
return_unused_kwargs (`bool`,*optional*, defaults to `False`):
|
64
|
+
Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in
|
65
|
+
`PreTrainedModel`.
|
66
|
+
kwargs (`Dict[str, Any]`):
|
67
|
+
Additional parameters from which to initialize the configuration object.
|
68
|
+
|
69
|
+
Returns:
|
70
|
+
[`QuantizationConfigMixin`]: The configuration object instantiated from those parameters.
|
71
|
+
"""
|
72
|
+
|
73
|
+
config = cls(**config_dict)
|
74
|
+
|
75
|
+
to_remove = []
|
76
|
+
for key, value in kwargs.items():
|
77
|
+
if hasattr(config, key):
|
78
|
+
setattr(config, key, value)
|
79
|
+
to_remove.append(key)
|
80
|
+
for key in to_remove:
|
81
|
+
kwargs.pop(key, None)
|
82
|
+
|
83
|
+
if return_unused_kwargs:
|
84
|
+
return config, kwargs
|
85
|
+
else:
|
86
|
+
return config
|
87
|
+
|
88
|
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
89
|
+
"""
|
90
|
+
Save this instance to a JSON file.
|
91
|
+
|
92
|
+
Args:
|
93
|
+
json_file_path (`str` or `os.PathLike`):
|
94
|
+
Path to the JSON file in which this configuration instance's parameters will be saved.
|
95
|
+
use_diff (`bool`, *optional*, defaults to `True`):
|
96
|
+
If set to `True`, only the difference between the config instance and the default
|
97
|
+
`QuantizationConfig()` is serialized to JSON file.
|
98
|
+
"""
|
99
|
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
100
|
+
config_dict = self.to_dict()
|
101
|
+
json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
102
|
+
|
103
|
+
writer.write(json_string)
|
104
|
+
|
105
|
+
def to_dict(self) -> Dict[str, Any]:
|
106
|
+
"""
|
107
|
+
Serializes this instance to a Python dictionary. Returns:
|
108
|
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
109
|
+
"""
|
110
|
+
return copy.deepcopy(self.__dict__)
|
111
|
+
|
112
|
+
def __iter__(self):
|
113
|
+
"""allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
|
114
|
+
for attr, value in copy.deepcopy(self.__dict__).items():
|
115
|
+
yield attr, value
|
116
|
+
|
117
|
+
def __repr__(self):
|
118
|
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
119
|
+
|
120
|
+
def to_json_string(self, use_diff: bool = True) -> str:
|
121
|
+
"""
|
122
|
+
Serializes this instance to a JSON string.
|
123
|
+
|
124
|
+
Args:
|
125
|
+
use_diff (`bool`, *optional*, defaults to `True`):
|
126
|
+
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
|
127
|
+
is serialized to JSON string.
|
128
|
+
|
129
|
+
Returns:
|
130
|
+
`str`: String containing all the attributes that make up this configuration instance in JSON format.
|
131
|
+
"""
|
132
|
+
if use_diff is True:
|
133
|
+
config_dict = self.to_diff_dict()
|
134
|
+
else:
|
135
|
+
config_dict = self.to_dict()
|
136
|
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
137
|
+
|
138
|
+
def update(self, **kwargs):
|
139
|
+
"""
|
140
|
+
Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes,
|
141
|
+
returning all the unused kwargs.
|
142
|
+
|
143
|
+
Args:
|
144
|
+
kwargs (`Dict[str, Any]`):
|
145
|
+
Dictionary of attributes to tentatively update this class.
|
146
|
+
|
147
|
+
Returns:
|
148
|
+
`Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
|
149
|
+
"""
|
150
|
+
to_remove = []
|
151
|
+
for key, value in kwargs.items():
|
152
|
+
if hasattr(self, key):
|
153
|
+
setattr(self, key, value)
|
154
|
+
to_remove.append(key)
|
155
|
+
|
156
|
+
# Remove all the attributes that were updated, without modifying the input dict
|
157
|
+
unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
|
158
|
+
return unused_kwargs
|
159
|
+
|
160
|
+
|
161
|
+
@dataclass
|
162
|
+
class BitsAndBytesConfig(QuantizationConfigMixin):
|
163
|
+
"""
|
164
|
+
This is a wrapper class about all possible attributes and features that you can play with a model that has been
|
165
|
+
loaded using `bitsandbytes`.
|
166
|
+
|
167
|
+
This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive.
|
168
|
+
|
169
|
+
Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`,
|
170
|
+
then more arguments will be added to this class.
|
171
|
+
|
172
|
+
Args:
|
173
|
+
load_in_8bit (`bool`, *optional*, defaults to `False`):
|
174
|
+
This flag is used to enable 8-bit quantization with LLM.int8().
|
175
|
+
load_in_4bit (`bool`, *optional*, defaults to `False`):
|
176
|
+
This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from
|
177
|
+
`bitsandbytes`.
|
178
|
+
llm_int8_threshold (`float`, *optional*, defaults to 6.0):
|
179
|
+
This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix
|
180
|
+
Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value
|
181
|
+
that is above this threshold will be considered an outlier and the operation on those values will be done
|
182
|
+
in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but
|
183
|
+
there are some exceptional systematic outliers that are very differently distributed for large models.
|
184
|
+
These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of
|
185
|
+
magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6,
|
186
|
+
but a lower threshold might be needed for more unstable models (small models, fine-tuning).
|
187
|
+
llm_int8_skip_modules (`List[str]`, *optional*):
|
188
|
+
An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as
|
189
|
+
Jukebox that has several heads in different places and not necessarily at the last position. For example
|
190
|
+
for `CausalLM` models, the last `lm_head` is typically kept in its original `dtype`.
|
191
|
+
llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`):
|
192
|
+
This flag is used for advanced use cases and users that are aware of this feature. If you want to split
|
193
|
+
your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use
|
194
|
+
this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8
|
195
|
+
operations will not be run on CPU.
|
196
|
+
llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`):
|
197
|
+
This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not
|
198
|
+
have to be converted back and forth for the backward pass.
|
199
|
+
bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`):
|
200
|
+
This sets the computational type which might be different than the input type. For example, inputs might be
|
201
|
+
fp32, but computation can be set to bf16 for speedups.
|
202
|
+
bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`):
|
203
|
+
This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types
|
204
|
+
which are specified by `fp4` or `nf4`.
|
205
|
+
bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`):
|
206
|
+
This flag is used for nested quantization where the quantization constants from the first quantization are
|
207
|
+
quantized again.
|
208
|
+
bnb_4bit_quant_storage (`torch.dtype` or str, *optional*, defaults to `torch.uint8`):
|
209
|
+
This sets the storage type to pack the quanitzed 4-bit prarams.
|
210
|
+
kwargs (`Dict[str, Any]`, *optional*):
|
211
|
+
Additional parameters from which to initialize the configuration object.
|
212
|
+
"""
|
213
|
+
|
214
|
+
_exclude_attributes_at_init = ["_load_in_4bit", "_load_in_8bit", "quant_method"]
|
215
|
+
|
216
|
+
def __init__(
|
217
|
+
self,
|
218
|
+
load_in_8bit=False,
|
219
|
+
load_in_4bit=False,
|
220
|
+
llm_int8_threshold=6.0,
|
221
|
+
llm_int8_skip_modules=None,
|
222
|
+
llm_int8_enable_fp32_cpu_offload=False,
|
223
|
+
llm_int8_has_fp16_weight=False,
|
224
|
+
bnb_4bit_compute_dtype=None,
|
225
|
+
bnb_4bit_quant_type="fp4",
|
226
|
+
bnb_4bit_use_double_quant=False,
|
227
|
+
bnb_4bit_quant_storage=None,
|
228
|
+
**kwargs,
|
229
|
+
):
|
230
|
+
self.quant_method = QuantizationMethod.BITS_AND_BYTES
|
231
|
+
|
232
|
+
if load_in_4bit and load_in_8bit:
|
233
|
+
raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
|
234
|
+
|
235
|
+
self._load_in_8bit = load_in_8bit
|
236
|
+
self._load_in_4bit = load_in_4bit
|
237
|
+
self.llm_int8_threshold = llm_int8_threshold
|
238
|
+
self.llm_int8_skip_modules = llm_int8_skip_modules
|
239
|
+
self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload
|
240
|
+
self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight
|
241
|
+
self.bnb_4bit_quant_type = bnb_4bit_quant_type
|
242
|
+
self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant
|
243
|
+
|
244
|
+
if bnb_4bit_compute_dtype is None:
|
245
|
+
self.bnb_4bit_compute_dtype = torch.float32
|
246
|
+
elif isinstance(bnb_4bit_compute_dtype, str):
|
247
|
+
self.bnb_4bit_compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
248
|
+
elif isinstance(bnb_4bit_compute_dtype, torch.dtype):
|
249
|
+
self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype
|
250
|
+
else:
|
251
|
+
raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype")
|
252
|
+
|
253
|
+
if bnb_4bit_quant_storage is None:
|
254
|
+
self.bnb_4bit_quant_storage = torch.uint8
|
255
|
+
elif isinstance(bnb_4bit_quant_storage, str):
|
256
|
+
if bnb_4bit_quant_storage not in ["float16", "float32", "int8", "uint8", "float64", "bfloat16"]:
|
257
|
+
raise ValueError(
|
258
|
+
"`bnb_4bit_quant_storage` must be a valid string (one of 'float16', 'float32', 'int8', 'uint8', 'float64', 'bfloat16') "
|
259
|
+
)
|
260
|
+
self.bnb_4bit_quant_storage = getattr(torch, bnb_4bit_quant_storage)
|
261
|
+
elif isinstance(bnb_4bit_quant_storage, torch.dtype):
|
262
|
+
self.bnb_4bit_quant_storage = bnb_4bit_quant_storage
|
263
|
+
else:
|
264
|
+
raise ValueError("bnb_4bit_quant_storage must be a string or a torch.dtype")
|
265
|
+
|
266
|
+
if kwargs and not all(k in self._exclude_attributes_at_init for k in kwargs):
|
267
|
+
logger.warning(f"Unused kwargs: {list(kwargs.keys())}. These kwargs are not used in {self.__class__}.")
|
268
|
+
|
269
|
+
self.post_init()
|
270
|
+
|
271
|
+
@property
|
272
|
+
def load_in_4bit(self):
|
273
|
+
return self._load_in_4bit
|
274
|
+
|
275
|
+
@load_in_4bit.setter
|
276
|
+
def load_in_4bit(self, value: bool):
|
277
|
+
if not isinstance(value, bool):
|
278
|
+
raise TypeError("load_in_4bit must be a boolean")
|
279
|
+
|
280
|
+
if self.load_in_8bit and value:
|
281
|
+
raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
|
282
|
+
self._load_in_4bit = value
|
283
|
+
|
284
|
+
@property
|
285
|
+
def load_in_8bit(self):
|
286
|
+
return self._load_in_8bit
|
287
|
+
|
288
|
+
@load_in_8bit.setter
|
289
|
+
def load_in_8bit(self, value: bool):
|
290
|
+
if not isinstance(value, bool):
|
291
|
+
raise TypeError("load_in_8bit must be a boolean")
|
292
|
+
|
293
|
+
if self.load_in_4bit and value:
|
294
|
+
raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
|
295
|
+
self._load_in_8bit = value
|
296
|
+
|
297
|
+
def post_init(self):
|
298
|
+
r"""
|
299
|
+
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
|
300
|
+
"""
|
301
|
+
if not isinstance(self.load_in_4bit, bool):
|
302
|
+
raise TypeError("load_in_4bit must be a boolean")
|
303
|
+
|
304
|
+
if not isinstance(self.load_in_8bit, bool):
|
305
|
+
raise TypeError("load_in_8bit must be a boolean")
|
306
|
+
|
307
|
+
if not isinstance(self.llm_int8_threshold, float):
|
308
|
+
raise TypeError("llm_int8_threshold must be a float")
|
309
|
+
|
310
|
+
if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list):
|
311
|
+
raise TypeError("llm_int8_skip_modules must be a list of strings")
|
312
|
+
if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool):
|
313
|
+
raise TypeError("llm_int8_enable_fp32_cpu_offload must be a boolean")
|
314
|
+
|
315
|
+
if not isinstance(self.llm_int8_has_fp16_weight, bool):
|
316
|
+
raise TypeError("llm_int8_has_fp16_weight must be a boolean")
|
317
|
+
|
318
|
+
if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype):
|
319
|
+
raise TypeError("bnb_4bit_compute_dtype must be torch.dtype")
|
320
|
+
|
321
|
+
if not isinstance(self.bnb_4bit_quant_type, str):
|
322
|
+
raise TypeError("bnb_4bit_quant_type must be a string")
|
323
|
+
|
324
|
+
if not isinstance(self.bnb_4bit_use_double_quant, bool):
|
325
|
+
raise TypeError("bnb_4bit_use_double_quant must be a boolean")
|
326
|
+
|
327
|
+
if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse(
|
328
|
+
"0.39.0"
|
329
|
+
):
|
330
|
+
raise ValueError(
|
331
|
+
"4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version"
|
332
|
+
)
|
333
|
+
|
334
|
+
def is_quantizable(self):
|
335
|
+
r"""
|
336
|
+
Returns `True` if the model is quantizable, `False` otherwise.
|
337
|
+
"""
|
338
|
+
return self.load_in_8bit or self.load_in_4bit
|
339
|
+
|
340
|
+
def quantization_method(self):
|
341
|
+
r"""
|
342
|
+
This method returns the quantization method used for the model. If the model is not quantizable, it returns
|
343
|
+
`None`.
|
344
|
+
"""
|
345
|
+
if self.load_in_8bit:
|
346
|
+
return "llm_int8"
|
347
|
+
elif self.load_in_4bit and self.bnb_4bit_quant_type == "fp4":
|
348
|
+
return "fp4"
|
349
|
+
elif self.load_in_4bit and self.bnb_4bit_quant_type == "nf4":
|
350
|
+
return "nf4"
|
351
|
+
else:
|
352
|
+
return None
|
353
|
+
|
354
|
+
def to_dict(self) -> Dict[str, Any]:
|
355
|
+
"""
|
356
|
+
Serializes this instance to a Python dictionary. Returns:
|
357
|
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
358
|
+
"""
|
359
|
+
output = copy.deepcopy(self.__dict__)
|
360
|
+
output["bnb_4bit_compute_dtype"] = str(output["bnb_4bit_compute_dtype"]).split(".")[1]
|
361
|
+
output["bnb_4bit_quant_storage"] = str(output["bnb_4bit_quant_storage"]).split(".")[1]
|
362
|
+
output["load_in_4bit"] = self.load_in_4bit
|
363
|
+
output["load_in_8bit"] = self.load_in_8bit
|
364
|
+
|
365
|
+
return output
|
366
|
+
|
367
|
+
def __repr__(self):
|
368
|
+
config_dict = self.to_dict()
|
369
|
+
return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n"
|
370
|
+
|
371
|
+
def to_diff_dict(self) -> Dict[str, Any]:
|
372
|
+
"""
|
373
|
+
Removes all attributes from config which correspond to the default config attributes for better readability and
|
374
|
+
serializes to a Python dictionary.
|
375
|
+
|
376
|
+
Returns:
|
377
|
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
|
378
|
+
"""
|
379
|
+
config_dict = self.to_dict()
|
380
|
+
|
381
|
+
# get the default config dict
|
382
|
+
default_config_dict = BitsAndBytesConfig().to_dict()
|
383
|
+
|
384
|
+
serializable_config_dict = {}
|
385
|
+
|
386
|
+
# only serialize values that differ from the default config
|
387
|
+
for key, value in config_dict.items():
|
388
|
+
if value != default_config_dict[key]:
|
389
|
+
serializable_config_dict[key] = value
|
390
|
+
|
391
|
+
return serializable_config_dict
|
@@ -463,7 +463,10 @@ class DDIMScheduler(SchedulerMixin, ConfigMixin):
|
|
463
463
|
prev_sample = prev_sample + variance
|
464
464
|
|
465
465
|
if not return_dict:
|
466
|
-
return (
|
466
|
+
return (
|
467
|
+
prev_sample,
|
468
|
+
pred_original_sample,
|
469
|
+
)
|
467
470
|
|
468
471
|
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
469
472
|
|
@@ -394,7 +394,10 @@ class CogVideoXDDIMScheduler(SchedulerMixin, ConfigMixin):
|
|
394
394
|
prev_sample = a_t * sample + b_t * pred_original_sample
|
395
395
|
|
396
396
|
if not return_dict:
|
397
|
-
return (
|
397
|
+
return (
|
398
|
+
prev_sample,
|
399
|
+
pred_original_sample,
|
400
|
+
)
|
398
401
|
|
399
402
|
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
400
403
|
|
@@ -480,7 +480,10 @@ class DDIMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
480
480
|
prev_sample = prev_sample + variance
|
481
481
|
|
482
482
|
if not return_dict:
|
483
|
-
return (
|
483
|
+
return (
|
484
|
+
prev_sample,
|
485
|
+
pred_original_sample,
|
486
|
+
)
|
484
487
|
|
485
488
|
return DDIMParallelSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
486
489
|
|
@@ -492,7 +492,10 @@ class DDPMScheduler(SchedulerMixin, ConfigMixin):
|
|
492
492
|
pred_prev_sample = pred_prev_sample + variance
|
493
493
|
|
494
494
|
if not return_dict:
|
495
|
-
return (
|
495
|
+
return (
|
496
|
+
pred_prev_sample,
|
497
|
+
pred_original_sample,
|
498
|
+
)
|
496
499
|
|
497
500
|
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
|
498
501
|
|
@@ -500,7 +500,10 @@ class DDPMParallelScheduler(SchedulerMixin, ConfigMixin):
|
|
500
500
|
pred_prev_sample = pred_prev_sample + variance
|
501
501
|
|
502
502
|
if not return_dict:
|
503
|
-
return (
|
503
|
+
return (
|
504
|
+
pred_prev_sample,
|
505
|
+
pred_original_sample,
|
506
|
+
)
|
504
507
|
|
505
508
|
return DDPMParallelSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
|
506
509
|
|
@@ -22,10 +22,14 @@ import numpy as np
|
|
22
22
|
import torch
|
23
23
|
|
24
24
|
from ..configuration_utils import ConfigMixin, register_to_config
|
25
|
-
from ..utils import deprecate
|
25
|
+
from ..utils import deprecate, is_scipy_available
|
26
26
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
|
27
27
|
|
28
28
|
|
29
|
+
if is_scipy_available():
|
30
|
+
import scipy.stats
|
31
|
+
|
32
|
+
|
29
33
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
30
34
|
def betas_for_alpha_bar(
|
31
35
|
num_diffusion_timesteps,
|
@@ -111,6 +115,11 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
111
115
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
112
116
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
113
117
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
118
|
+
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
119
|
+
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
120
|
+
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
121
|
+
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
122
|
+
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
114
123
|
timestep_spacing (`str`, defaults to `"linspace"`):
|
115
124
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
116
125
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
@@ -138,9 +147,17 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
138
147
|
solver_type: str = "logrho",
|
139
148
|
lower_order_final: bool = True,
|
140
149
|
use_karras_sigmas: Optional[bool] = False,
|
150
|
+
use_exponential_sigmas: Optional[bool] = False,
|
151
|
+
use_beta_sigmas: Optional[bool] = False,
|
141
152
|
timestep_spacing: str = "linspace",
|
142
153
|
steps_offset: int = 0,
|
143
154
|
):
|
155
|
+
if self.config.use_beta_sigmas and not is_scipy_available():
|
156
|
+
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
157
|
+
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
158
|
+
raise ValueError(
|
159
|
+
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
160
|
+
)
|
144
161
|
if trained_betas is not None:
|
145
162
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
146
163
|
elif beta_schedule == "linear":
|
@@ -255,6 +272,12 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
255
272
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
256
273
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
257
274
|
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
275
|
+
elif self.config.use_exponential_sigmas:
|
276
|
+
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
277
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
278
|
+
elif self.config.use_beta_sigmas:
|
279
|
+
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
|
280
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
258
281
|
else:
|
259
282
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
260
283
|
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
@@ -366,6 +389,60 @@ class DEISMultistepScheduler(SchedulerMixin, ConfigMixin):
|
|
366
389
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
367
390
|
return sigmas
|
368
391
|
|
392
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
393
|
+
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
394
|
+
"""Constructs an exponential noise schedule."""
|
395
|
+
|
396
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
397
|
+
# TODO: Add this logic to the other schedulers
|
398
|
+
if hasattr(self.config, "sigma_min"):
|
399
|
+
sigma_min = self.config.sigma_min
|
400
|
+
else:
|
401
|
+
sigma_min = None
|
402
|
+
|
403
|
+
if hasattr(self.config, "sigma_max"):
|
404
|
+
sigma_max = self.config.sigma_max
|
405
|
+
else:
|
406
|
+
sigma_max = None
|
407
|
+
|
408
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
409
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
410
|
+
|
411
|
+
sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
|
412
|
+
return sigmas
|
413
|
+
|
414
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
415
|
+
def _convert_to_beta(
|
416
|
+
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
417
|
+
) -> torch.Tensor:
|
418
|
+
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
419
|
+
|
420
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
421
|
+
# TODO: Add this logic to the other schedulers
|
422
|
+
if hasattr(self.config, "sigma_min"):
|
423
|
+
sigma_min = self.config.sigma_min
|
424
|
+
else:
|
425
|
+
sigma_min = None
|
426
|
+
|
427
|
+
if hasattr(self.config, "sigma_max"):
|
428
|
+
sigma_max = self.config.sigma_max
|
429
|
+
else:
|
430
|
+
sigma_max = None
|
431
|
+
|
432
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
433
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
434
|
+
|
435
|
+
sigmas = torch.Tensor(
|
436
|
+
[
|
437
|
+
sigma_min + (ppf * (sigma_max - sigma_min))
|
438
|
+
for ppf in [
|
439
|
+
scipy.stats.beta.ppf(timestep, alpha, beta)
|
440
|
+
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
441
|
+
]
|
442
|
+
]
|
443
|
+
)
|
444
|
+
return sigmas
|
445
|
+
|
369
446
|
def convert_model_output(
|
370
447
|
self,
|
371
448
|
model_output: torch.Tensor,
|