diffusers 0.30.3__py3-none-any.whl → 0.31.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (172) hide show
  1. diffusers/__init__.py +34 -2
  2. diffusers/configuration_utils.py +12 -0
  3. diffusers/dependency_versions_table.py +1 -1
  4. diffusers/image_processor.py +257 -54
  5. diffusers/loaders/__init__.py +2 -0
  6. diffusers/loaders/ip_adapter.py +5 -1
  7. diffusers/loaders/lora_base.py +14 -7
  8. diffusers/loaders/lora_conversion_utils.py +332 -0
  9. diffusers/loaders/lora_pipeline.py +707 -41
  10. diffusers/loaders/peft.py +1 -0
  11. diffusers/loaders/single_file_utils.py +81 -4
  12. diffusers/loaders/textual_inversion.py +2 -0
  13. diffusers/loaders/unet.py +39 -8
  14. diffusers/models/__init__.py +4 -0
  15. diffusers/models/adapter.py +53 -53
  16. diffusers/models/attention.py +86 -10
  17. diffusers/models/attention_processor.py +169 -133
  18. diffusers/models/autoencoders/autoencoder_kl.py +71 -11
  19. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +187 -88
  20. diffusers/models/controlnet_flux.py +536 -0
  21. diffusers/models/controlnet_sd3.py +7 -3
  22. diffusers/models/controlnet_sparsectrl.py +0 -1
  23. diffusers/models/embeddings.py +170 -61
  24. diffusers/models/embeddings_flax.py +23 -9
  25. diffusers/models/model_loading_utils.py +182 -14
  26. diffusers/models/modeling_utils.py +283 -46
  27. diffusers/models/normalization.py +79 -0
  28. diffusers/models/transformers/__init__.py +1 -0
  29. diffusers/models/transformers/auraflow_transformer_2d.py +1 -0
  30. diffusers/models/transformers/cogvideox_transformer_3d.py +23 -2
  31. diffusers/models/transformers/pixart_transformer_2d.py +9 -1
  32. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  33. diffusers/models/transformers/transformer_flux.py +161 -44
  34. diffusers/models/transformers/transformer_sd3.py +7 -1
  35. diffusers/models/unets/unet_2d_condition.py +8 -8
  36. diffusers/models/unets/unet_motion_model.py +41 -63
  37. diffusers/models/upsampling.py +6 -6
  38. diffusers/pipelines/__init__.py +35 -6
  39. diffusers/pipelines/animatediff/__init__.py +2 -0
  40. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  41. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +44 -20
  42. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  43. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +2 -0
  44. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -66
  45. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  46. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -1
  47. diffusers/pipelines/auto_pipeline.py +39 -8
  48. diffusers/pipelines/cogvideo/__init__.py +2 -0
  49. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +30 -17
  50. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +794 -0
  51. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +41 -31
  52. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +42 -29
  53. diffusers/pipelines/cogview3/__init__.py +47 -0
  54. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  55. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  56. diffusers/pipelines/controlnet/pipeline_controlnet.py +9 -1
  57. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +8 -0
  58. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +8 -0
  59. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +36 -13
  60. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +9 -1
  61. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +8 -1
  62. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +17 -3
  63. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  64. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +3 -1
  65. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  66. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  67. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  68. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  69. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  70. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  71. diffusers/pipelines/flux/__init__.py +10 -0
  72. diffusers/pipelines/flux/pipeline_flux.py +53 -20
  73. diffusers/pipelines/flux/pipeline_flux_controlnet.py +984 -0
  74. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +988 -0
  75. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1182 -0
  76. diffusers/pipelines/flux/pipeline_flux_img2img.py +850 -0
  77. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1015 -0
  78. diffusers/pipelines/free_noise_utils.py +365 -5
  79. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +15 -3
  80. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  81. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  82. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  83. diffusers/pipelines/kolors/tokenizer.py +4 -0
  84. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  85. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  86. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  87. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  88. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  89. diffusers/pipelines/lumina/pipeline_lumina.py +2 -2
  90. diffusers/pipelines/pag/__init__.py +6 -0
  91. diffusers/pipelines/pag/pag_utils.py +8 -2
  92. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -1
  93. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1544 -0
  94. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +2 -2
  95. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1685 -0
  96. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +17 -5
  97. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  98. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +1 -1
  99. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  100. diffusers/pipelines/pag/pipeline_pag_sd_3.py +12 -3
  101. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  102. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1091 -0
  103. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  104. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  105. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  106. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  107. diffusers/pipelines/pipeline_loading_utils.py +225 -27
  108. diffusers/pipelines/pipeline_utils.py +123 -180
  109. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +1 -1
  110. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +1 -1
  111. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  112. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  113. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +28 -6
  114. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  115. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  116. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  117. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +12 -3
  118. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +20 -4
  119. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +3 -3
  120. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  121. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  122. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  123. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -4
  124. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -14
  125. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -14
  126. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  127. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  128. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  129. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  130. diffusers/quantizers/__init__.py +16 -0
  131. diffusers/quantizers/auto.py +126 -0
  132. diffusers/quantizers/base.py +233 -0
  133. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  134. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +558 -0
  135. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  136. diffusers/quantizers/quantization_config.py +391 -0
  137. diffusers/schedulers/scheduling_ddim.py +4 -1
  138. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  139. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  140. diffusers/schedulers/scheduling_ddpm.py +4 -1
  141. diffusers/schedulers/scheduling_ddpm_parallel.py +4 -1
  142. diffusers/schedulers/scheduling_deis_multistep.py +78 -1
  143. diffusers/schedulers/scheduling_dpmsolver_multistep.py +82 -1
  144. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +80 -1
  145. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  146. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +82 -1
  147. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  148. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  149. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  150. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  151. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  152. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  153. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  154. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  155. diffusers/schedulers/scheduling_sasolver.py +78 -1
  156. diffusers/schedulers/scheduling_unclip.py +4 -1
  157. diffusers/schedulers/scheduling_unipc_multistep.py +78 -1
  158. diffusers/training_utils.py +48 -18
  159. diffusers/utils/__init__.py +2 -1
  160. diffusers/utils/dummy_pt_objects.py +60 -0
  161. diffusers/utils/dummy_torch_and_transformers_objects.py +165 -0
  162. diffusers/utils/hub_utils.py +16 -4
  163. diffusers/utils/import_utils.py +31 -8
  164. diffusers/utils/loading_utils.py +28 -4
  165. diffusers/utils/peft_utils.py +3 -3
  166. diffusers/utils/testing_utils.py +59 -0
  167. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/METADATA +7 -6
  168. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/RECORD +172 -149
  169. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/LICENSE +0 -0
  170. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/WHEEL +0 -0
  171. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/entry_points.txt +0 -0
  172. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1153 @@
1
+ # Copyright 2024 Stability AI, The HuggingFace Team and The AlimamaCreative Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ from transformers import (
20
+ CLIPTextModelWithProjection,
21
+ CLIPTokenizer,
22
+ T5EncoderModel,
23
+ T5TokenizerFast,
24
+ )
25
+
26
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
27
+ from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin
28
+ from ...models.autoencoders import AutoencoderKL
29
+ from ...models.controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel
30
+ from ...models.transformers import SD3Transformer2DModel
31
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
32
+ from ...utils import (
33
+ USE_PEFT_BACKEND,
34
+ is_torch_xla_available,
35
+ logging,
36
+ replace_example_docstring,
37
+ scale_lora_layers,
38
+ unscale_lora_layers,
39
+ )
40
+ from ...utils.torch_utils import randn_tensor
41
+ from ..pipeline_utils import DiffusionPipeline
42
+ from ..stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
43
+
44
+
45
+ if is_torch_xla_available():
46
+ import torch_xla.core.xla_model as xm
47
+
48
+ XLA_AVAILABLE = True
49
+ else:
50
+ XLA_AVAILABLE = False
51
+
52
+
53
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
54
+
55
+ EXAMPLE_DOC_STRING = """
56
+ Examples:
57
+ ```py
58
+ >>> import torch
59
+ >>> from diffusers.utils import load_image, check_min_version
60
+ >>> from diffusers.pipelines import StableDiffusion3ControlNetInpaintingPipeline
61
+ >>> from diffusers.models.controlnet_sd3 import SD3ControlNetModel
62
+
63
+ >>> controlnet = SD3ControlNetModel.from_pretrained(
64
+ ... "alimama-creative/SD3-Controlnet-Inpainting", use_safetensors=True, extra_conditioning_channels=1
65
+ ... )
66
+ >>> pipe = StableDiffusion3ControlNetInpaintingPipeline.from_pretrained(
67
+ ... "stabilityai/stable-diffusion-3-medium-diffusers",
68
+ ... controlnet=controlnet,
69
+ ... torch_dtype=torch.float16,
70
+ ... )
71
+ >>> pipe.text_encoder.to(torch.float16)
72
+ >>> pipe.controlnet.to(torch.float16)
73
+ >>> pipe.to("cuda")
74
+
75
+ >>> image = load_image(
76
+ ... "https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting/resolve/main/images/dog.png"
77
+ ... )
78
+ >>> mask = load_image(
79
+ ... "https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting/resolve/main/images/dog_mask.png"
80
+ ... )
81
+ >>> width = 1024
82
+ >>> height = 1024
83
+ >>> prompt = "A cat is sitting next to a puppy."
84
+ >>> generator = torch.Generator(device="cuda").manual_seed(24)
85
+ >>> res_image = pipe(
86
+ ... negative_prompt="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
87
+ ... prompt=prompt,
88
+ ... height=height,
89
+ ... width=width,
90
+ ... control_image=image,
91
+ ... control_mask=mask,
92
+ ... num_inference_steps=28,
93
+ ... generator=generator,
94
+ ... controlnet_conditioning_scale=0.95,
95
+ ... guidance_scale=7,
96
+ ... ).images[0]
97
+ >>> res_image.save(f"sd3.png")
98
+ ```
99
+ """
100
+
101
+
102
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
103
+ def retrieve_timesteps(
104
+ scheduler,
105
+ num_inference_steps: Optional[int] = None,
106
+ device: Optional[Union[str, torch.device]] = None,
107
+ timesteps: Optional[List[int]] = None,
108
+ sigmas: Optional[List[float]] = None,
109
+ **kwargs,
110
+ ):
111
+ r"""
112
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
113
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
114
+
115
+ Args:
116
+ scheduler (`SchedulerMixin`):
117
+ The scheduler to get timesteps from.
118
+ num_inference_steps (`int`):
119
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
120
+ must be `None`.
121
+ device (`str` or `torch.device`, *optional*):
122
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
123
+ timesteps (`List[int]`, *optional*):
124
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
125
+ `num_inference_steps` and `sigmas` must be `None`.
126
+ sigmas (`List[float]`, *optional*):
127
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
128
+ `num_inference_steps` and `timesteps` must be `None`.
129
+
130
+ Returns:
131
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
132
+ second element is the number of inference steps.
133
+ """
134
+ if timesteps is not None and sigmas is not None:
135
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
136
+ if timesteps is not None:
137
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
138
+ if not accepts_timesteps:
139
+ raise ValueError(
140
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
+ f" timestep schedules. Please check whether you are using the correct scheduler."
142
+ )
143
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ num_inference_steps = len(timesteps)
146
+ elif sigmas is not None:
147
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
148
+ if not accept_sigmas:
149
+ raise ValueError(
150
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
151
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
152
+ )
153
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ num_inference_steps = len(timesteps)
156
+ else:
157
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
158
+ timesteps = scheduler.timesteps
159
+ return timesteps, num_inference_steps
160
+
161
+
162
+ class StableDiffusion3ControlNetInpaintingPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin):
163
+ r"""
164
+ Args:
165
+ transformer ([`SD3Transformer2DModel`]):
166
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
167
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
168
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
169
+ vae ([`AutoencoderKL`]):
170
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
171
+ text_encoder ([`CLIPTextModelWithProjection`]):
172
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
173
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
174
+ with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
175
+ as its dimension.
176
+ text_encoder_2 ([`CLIPTextModelWithProjection`]):
177
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
178
+ specifically the
179
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
180
+ variant.
181
+ text_encoder_3 ([`T5EncoderModel`]):
182
+ Frozen text-encoder. Stable Diffusion 3 uses
183
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
184
+ [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
185
+ tokenizer (`CLIPTokenizer`):
186
+ Tokenizer of class
187
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
188
+ tokenizer_2 (`CLIPTokenizer`):
189
+ Second Tokenizer of class
190
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
191
+ tokenizer_3 (`T5TokenizerFast`):
192
+ Tokenizer of class
193
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
194
+ controlnet ([`SD3ControlNetModel`] or `List[SD3ControlNetModel]` or [`SD3MultiControlNetModel`]):
195
+ Provides additional conditioning to the `unet` during the denoising process. If you set multiple
196
+ ControlNets as a list, the outputs from each ControlNet are added together to create one combined
197
+ additional conditioning.
198
+ """
199
+
200
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
201
+ _optional_components = []
202
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
203
+
204
+ def __init__(
205
+ self,
206
+ transformer: SD3Transformer2DModel,
207
+ scheduler: FlowMatchEulerDiscreteScheduler,
208
+ vae: AutoencoderKL,
209
+ text_encoder: CLIPTextModelWithProjection,
210
+ tokenizer: CLIPTokenizer,
211
+ text_encoder_2: CLIPTextModelWithProjection,
212
+ tokenizer_2: CLIPTokenizer,
213
+ text_encoder_3: T5EncoderModel,
214
+ tokenizer_3: T5TokenizerFast,
215
+ controlnet: Union[
216
+ SD3ControlNetModel, List[SD3ControlNetModel], Tuple[SD3ControlNetModel], SD3MultiControlNetModel
217
+ ],
218
+ ):
219
+ super().__init__()
220
+
221
+ self.register_modules(
222
+ vae=vae,
223
+ text_encoder=text_encoder,
224
+ text_encoder_2=text_encoder_2,
225
+ text_encoder_3=text_encoder_3,
226
+ tokenizer=tokenizer,
227
+ tokenizer_2=tokenizer_2,
228
+ tokenizer_3=tokenizer_3,
229
+ transformer=transformer,
230
+ scheduler=scheduler,
231
+ controlnet=controlnet,
232
+ )
233
+ self.vae_scale_factor = (
234
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
235
+ )
236
+ self.image_processor = VaeImageProcessor(
237
+ vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_rgb=True, do_normalize=True
238
+ )
239
+ self.mask_processor = VaeImageProcessor(
240
+ vae_scale_factor=self.vae_scale_factor,
241
+ do_resize=True,
242
+ do_convert_grayscale=True,
243
+ do_normalize=False,
244
+ do_binarize=True,
245
+ )
246
+ self.tokenizer_max_length = (
247
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
248
+ )
249
+ self.default_sample_size = (
250
+ self.transformer.config.sample_size
251
+ if hasattr(self, "transformer") and self.transformer is not None
252
+ else 128
253
+ )
254
+ self.patch_size = (
255
+ self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
256
+ )
257
+
258
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
259
+ def _get_t5_prompt_embeds(
260
+ self,
261
+ prompt: Union[str, List[str]] = None,
262
+ num_images_per_prompt: int = 1,
263
+ max_sequence_length: int = 256,
264
+ device: Optional[torch.device] = None,
265
+ dtype: Optional[torch.dtype] = None,
266
+ ):
267
+ device = device or self._execution_device
268
+ dtype = dtype or self.text_encoder.dtype
269
+
270
+ prompt = [prompt] if isinstance(prompt, str) else prompt
271
+ batch_size = len(prompt)
272
+
273
+ if self.text_encoder_3 is None:
274
+ return torch.zeros(
275
+ (
276
+ batch_size * num_images_per_prompt,
277
+ self.tokenizer_max_length,
278
+ self.transformer.config.joint_attention_dim,
279
+ ),
280
+ device=device,
281
+ dtype=dtype,
282
+ )
283
+
284
+ text_inputs = self.tokenizer_3(
285
+ prompt,
286
+ padding="max_length",
287
+ max_length=max_sequence_length,
288
+ truncation=True,
289
+ add_special_tokens=True,
290
+ return_tensors="pt",
291
+ )
292
+ text_input_ids = text_inputs.input_ids
293
+ untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
294
+
295
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
296
+ removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
297
+ logger.warning(
298
+ "The following part of your input was truncated because `max_sequence_length` is set to "
299
+ f" {max_sequence_length} tokens: {removed_text}"
300
+ )
301
+
302
+ prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
303
+
304
+ dtype = self.text_encoder_3.dtype
305
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
306
+
307
+ _, seq_len, _ = prompt_embeds.shape
308
+
309
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
310
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
311
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
312
+
313
+ return prompt_embeds
314
+
315
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
316
+ def _get_clip_prompt_embeds(
317
+ self,
318
+ prompt: Union[str, List[str]],
319
+ num_images_per_prompt: int = 1,
320
+ device: Optional[torch.device] = None,
321
+ clip_skip: Optional[int] = None,
322
+ clip_model_index: int = 0,
323
+ ):
324
+ device = device or self._execution_device
325
+
326
+ clip_tokenizers = [self.tokenizer, self.tokenizer_2]
327
+ clip_text_encoders = [self.text_encoder, self.text_encoder_2]
328
+
329
+ tokenizer = clip_tokenizers[clip_model_index]
330
+ text_encoder = clip_text_encoders[clip_model_index]
331
+
332
+ prompt = [prompt] if isinstance(prompt, str) else prompt
333
+ batch_size = len(prompt)
334
+
335
+ text_inputs = tokenizer(
336
+ prompt,
337
+ padding="max_length",
338
+ max_length=self.tokenizer_max_length,
339
+ truncation=True,
340
+ return_tensors="pt",
341
+ )
342
+
343
+ text_input_ids = text_inputs.input_ids
344
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
345
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
346
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
347
+ logger.warning(
348
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
349
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
350
+ )
351
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
352
+ pooled_prompt_embeds = prompt_embeds[0]
353
+
354
+ if clip_skip is None:
355
+ prompt_embeds = prompt_embeds.hidden_states[-2]
356
+ else:
357
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
358
+
359
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
360
+
361
+ _, seq_len, _ = prompt_embeds.shape
362
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
363
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
364
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
365
+
366
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
367
+ pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
368
+
369
+ return prompt_embeds, pooled_prompt_embeds
370
+
371
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
372
+ def encode_prompt(
373
+ self,
374
+ prompt: Union[str, List[str]],
375
+ prompt_2: Union[str, List[str]],
376
+ prompt_3: Union[str, List[str]],
377
+ device: Optional[torch.device] = None,
378
+ num_images_per_prompt: int = 1,
379
+ do_classifier_free_guidance: bool = True,
380
+ negative_prompt: Optional[Union[str, List[str]]] = None,
381
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
382
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
383
+ prompt_embeds: Optional[torch.FloatTensor] = None,
384
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
385
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
386
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
387
+ clip_skip: Optional[int] = None,
388
+ max_sequence_length: int = 256,
389
+ lora_scale: Optional[float] = None,
390
+ ):
391
+ r"""
392
+
393
+ Args:
394
+ prompt (`str` or `List[str]`, *optional*):
395
+ prompt to be encoded
396
+ prompt_2 (`str` or `List[str]`, *optional*):
397
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
398
+ used in all text-encoders
399
+ prompt_3 (`str` or `List[str]`, *optional*):
400
+ The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
401
+ used in all text-encoders
402
+ device: (`torch.device`):
403
+ torch device
404
+ num_images_per_prompt (`int`):
405
+ number of images that should be generated per prompt
406
+ do_classifier_free_guidance (`bool`):
407
+ whether to use classifier free guidance or not
408
+ negative_prompt (`str` or `List[str]`, *optional*):
409
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
410
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
411
+ less than `1`).
412
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
413
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
414
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
415
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
416
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
417
+ `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
418
+ prompt_embeds (`torch.FloatTensor`, *optional*):
419
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
420
+ provided, text embeddings will be generated from `prompt` input argument.
421
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
422
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
423
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
424
+ argument.
425
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
426
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
427
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
428
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
429
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
430
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
431
+ input argument.
432
+ clip_skip (`int`, *optional*):
433
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
434
+ the output of the pre-final layer will be used for computing the prompt embeddings.
435
+ lora_scale (`float`, *optional*):
436
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
437
+ """
438
+ device = device or self._execution_device
439
+
440
+ # set lora scale so that monkey patched LoRA
441
+ # function of text encoder can correctly access it
442
+ if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
443
+ self._lora_scale = lora_scale
444
+
445
+ # dynamically adjust the LoRA scale
446
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
447
+ scale_lora_layers(self.text_encoder, lora_scale)
448
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
449
+ scale_lora_layers(self.text_encoder_2, lora_scale)
450
+
451
+ prompt = [prompt] if isinstance(prompt, str) else prompt
452
+ if prompt is not None:
453
+ batch_size = len(prompt)
454
+ else:
455
+ batch_size = prompt_embeds.shape[0]
456
+
457
+ if prompt_embeds is None:
458
+ prompt_2 = prompt_2 or prompt
459
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
460
+
461
+ prompt_3 = prompt_3 or prompt
462
+ prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
463
+
464
+ prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
465
+ prompt=prompt,
466
+ device=device,
467
+ num_images_per_prompt=num_images_per_prompt,
468
+ clip_skip=clip_skip,
469
+ clip_model_index=0,
470
+ )
471
+ prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
472
+ prompt=prompt_2,
473
+ device=device,
474
+ num_images_per_prompt=num_images_per_prompt,
475
+ clip_skip=clip_skip,
476
+ clip_model_index=1,
477
+ )
478
+ clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
479
+
480
+ t5_prompt_embed = self._get_t5_prompt_embeds(
481
+ prompt=prompt_3,
482
+ num_images_per_prompt=num_images_per_prompt,
483
+ max_sequence_length=max_sequence_length,
484
+ device=device,
485
+ )
486
+
487
+ clip_prompt_embeds = torch.nn.functional.pad(
488
+ clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
489
+ )
490
+
491
+ prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
492
+ pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
493
+
494
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
495
+ negative_prompt = negative_prompt or ""
496
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
497
+ negative_prompt_3 = negative_prompt_3 or negative_prompt
498
+
499
+ # normalize str to list
500
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
501
+ negative_prompt_2 = (
502
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
503
+ )
504
+ negative_prompt_3 = (
505
+ batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
506
+ )
507
+
508
+ if prompt is not None and type(prompt) is not type(negative_prompt):
509
+ raise TypeError(
510
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
511
+ f" {type(prompt)}."
512
+ )
513
+ elif batch_size != len(negative_prompt):
514
+ raise ValueError(
515
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
516
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
517
+ " the batch size of `prompt`."
518
+ )
519
+
520
+ negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
521
+ negative_prompt,
522
+ device=device,
523
+ num_images_per_prompt=num_images_per_prompt,
524
+ clip_skip=None,
525
+ clip_model_index=0,
526
+ )
527
+ negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
528
+ negative_prompt_2,
529
+ device=device,
530
+ num_images_per_prompt=num_images_per_prompt,
531
+ clip_skip=None,
532
+ clip_model_index=1,
533
+ )
534
+ negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
535
+
536
+ t5_negative_prompt_embed = self._get_t5_prompt_embeds(
537
+ prompt=negative_prompt_3,
538
+ num_images_per_prompt=num_images_per_prompt,
539
+ max_sequence_length=max_sequence_length,
540
+ device=device,
541
+ )
542
+
543
+ negative_clip_prompt_embeds = torch.nn.functional.pad(
544
+ negative_clip_prompt_embeds,
545
+ (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
546
+ )
547
+
548
+ negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
549
+ negative_pooled_prompt_embeds = torch.cat(
550
+ [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
551
+ )
552
+
553
+ if self.text_encoder is not None:
554
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
555
+ # Retrieve the original scale by scaling back the LoRA layers
556
+ unscale_lora_layers(self.text_encoder, lora_scale)
557
+
558
+ if self.text_encoder_2 is not None:
559
+ if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
560
+ # Retrieve the original scale by scaling back the LoRA layers
561
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
562
+
563
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
564
+
565
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.check_inputs
566
+ def check_inputs(
567
+ self,
568
+ prompt,
569
+ prompt_2,
570
+ prompt_3,
571
+ height,
572
+ width,
573
+ negative_prompt=None,
574
+ negative_prompt_2=None,
575
+ negative_prompt_3=None,
576
+ prompt_embeds=None,
577
+ negative_prompt_embeds=None,
578
+ pooled_prompt_embeds=None,
579
+ negative_pooled_prompt_embeds=None,
580
+ callback_on_step_end_tensor_inputs=None,
581
+ max_sequence_length=None,
582
+ ):
583
+ if (
584
+ height % (self.vae_scale_factor * self.patch_size) != 0
585
+ or width % (self.vae_scale_factor * self.patch_size) != 0
586
+ ):
587
+ raise ValueError(
588
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
589
+ f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
590
+ )
591
+
592
+ if callback_on_step_end_tensor_inputs is not None and not all(
593
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
594
+ ):
595
+ raise ValueError(
596
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
597
+ )
598
+
599
+ if prompt is not None and prompt_embeds is not None:
600
+ raise ValueError(
601
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
602
+ " only forward one of the two."
603
+ )
604
+ elif prompt_2 is not None and prompt_embeds is not None:
605
+ raise ValueError(
606
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
607
+ " only forward one of the two."
608
+ )
609
+ elif prompt_3 is not None and prompt_embeds is not None:
610
+ raise ValueError(
611
+ f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
612
+ " only forward one of the two."
613
+ )
614
+ elif prompt is None and prompt_embeds is None:
615
+ raise ValueError(
616
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
617
+ )
618
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
619
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
620
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
621
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
622
+ elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
623
+ raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
624
+
625
+ if negative_prompt is not None and negative_prompt_embeds is not None:
626
+ raise ValueError(
627
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
628
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
629
+ )
630
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
631
+ raise ValueError(
632
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
633
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
634
+ )
635
+ elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
636
+ raise ValueError(
637
+ f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
638
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
639
+ )
640
+
641
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
642
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
643
+ raise ValueError(
644
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
645
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
646
+ f" {negative_prompt_embeds.shape}."
647
+ )
648
+
649
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
650
+ raise ValueError(
651
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
652
+ )
653
+
654
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
655
+ raise ValueError(
656
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
657
+ )
658
+
659
+ if max_sequence_length is not None and max_sequence_length > 512:
660
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
661
+
662
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
663
+ def prepare_latents(
664
+ self,
665
+ batch_size,
666
+ num_channels_latents,
667
+ height,
668
+ width,
669
+ dtype,
670
+ device,
671
+ generator,
672
+ latents=None,
673
+ ):
674
+ if latents is not None:
675
+ return latents.to(device=device, dtype=dtype)
676
+
677
+ shape = (
678
+ batch_size,
679
+ num_channels_latents,
680
+ int(height) // self.vae_scale_factor,
681
+ int(width) // self.vae_scale_factor,
682
+ )
683
+
684
+ if isinstance(generator, list) and len(generator) != batch_size:
685
+ raise ValueError(
686
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
687
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
688
+ )
689
+
690
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
691
+
692
+ return latents
693
+
694
+ def prepare_image_with_mask(
695
+ self,
696
+ image,
697
+ mask,
698
+ width,
699
+ height,
700
+ batch_size,
701
+ num_images_per_prompt,
702
+ device,
703
+ dtype,
704
+ do_classifier_free_guidance=False,
705
+ guess_mode=False,
706
+ ):
707
+ if isinstance(image, torch.Tensor):
708
+ pass
709
+ else:
710
+ image = self.image_processor.preprocess(image, height=height, width=width)
711
+
712
+ image_batch_size = image.shape[0]
713
+
714
+ # Prepare image
715
+ if image_batch_size == 1:
716
+ repeat_by = batch_size
717
+ else:
718
+ # image batch size is the same as prompt batch size
719
+ repeat_by = num_images_per_prompt
720
+
721
+ image = image.repeat_interleave(repeat_by, dim=0)
722
+
723
+ image = image.to(device=device, dtype=dtype)
724
+
725
+ # Prepare mask
726
+ if isinstance(mask, torch.Tensor):
727
+ pass
728
+ else:
729
+ mask = self.mask_processor.preprocess(mask, height=height, width=width)
730
+ mask = mask.repeat_interleave(repeat_by, dim=0)
731
+ mask = mask.to(device=device, dtype=dtype)
732
+
733
+ # Get masked image
734
+ masked_image = image.clone()
735
+ masked_image[(mask > 0.5).repeat(1, 3, 1, 1)] = -1
736
+
737
+ # Encode to latents
738
+ image_latents = self.vae.encode(masked_image).latent_dist.sample()
739
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
740
+ image_latents = image_latents.to(dtype)
741
+
742
+ mask = torch.nn.functional.interpolate(
743
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
744
+ )
745
+ mask = 1 - mask
746
+ control_image = torch.cat([image_latents, mask], dim=1)
747
+
748
+ if do_classifier_free_guidance and not guess_mode:
749
+ control_image = torch.cat([control_image] * 2)
750
+
751
+ return control_image
752
+
753
+ @property
754
+ def guidance_scale(self):
755
+ return self._guidance_scale
756
+
757
+ @property
758
+ def clip_skip(self):
759
+ return self._clip_skip
760
+
761
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
762
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
763
+ # corresponds to doing no classifier free guidance.
764
+ @property
765
+ def do_classifier_free_guidance(self):
766
+ return self._guidance_scale > 1
767
+
768
+ @property
769
+ def joint_attention_kwargs(self):
770
+ return self._joint_attention_kwargs
771
+
772
+ @property
773
+ def num_timesteps(self):
774
+ return self._num_timesteps
775
+
776
+ @property
777
+ def interrupt(self):
778
+ return self._interrupt
779
+
780
+ @torch.no_grad()
781
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
782
+ def __call__(
783
+ self,
784
+ prompt: Union[str, List[str]] = None,
785
+ prompt_2: Optional[Union[str, List[str]]] = None,
786
+ prompt_3: Optional[Union[str, List[str]]] = None,
787
+ height: Optional[int] = None,
788
+ width: Optional[int] = None,
789
+ num_inference_steps: int = 28,
790
+ timesteps: List[int] = None,
791
+ guidance_scale: float = 7.0,
792
+ control_guidance_start: Union[float, List[float]] = 0.0,
793
+ control_guidance_end: Union[float, List[float]] = 1.0,
794
+ control_image: PipelineImageInput = None,
795
+ control_mask: PipelineImageInput = None,
796
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
797
+ controlnet_pooled_projections: Optional[torch.FloatTensor] = None,
798
+ negative_prompt: Optional[Union[str, List[str]]] = None,
799
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
800
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
801
+ num_images_per_prompt: Optional[int] = 1,
802
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
803
+ latents: Optional[torch.FloatTensor] = None,
804
+ prompt_embeds: Optional[torch.FloatTensor] = None,
805
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
806
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
807
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
808
+ output_type: Optional[str] = "pil",
809
+ return_dict: bool = True,
810
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
811
+ clip_skip: Optional[int] = None,
812
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
813
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
814
+ max_sequence_length: int = 256,
815
+ ):
816
+ r"""
817
+ Function invoked when calling the pipeline for generation.
818
+
819
+ Args:
820
+ prompt (`str` or `List[str]`, *optional*):
821
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
822
+ instead.
823
+ prompt_2 (`str` or `List[str]`, *optional*):
824
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
825
+ will be used instead
826
+ prompt_3 (`str` or `List[str]`, *optional*):
827
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
828
+ will be used instead
829
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
830
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
831
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
832
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
833
+ num_inference_steps (`int`, *optional*, defaults to 50):
834
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
835
+ expense of slower inference.
836
+ timesteps (`List[int]`, *optional*):
837
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
838
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
839
+ passed will be used. Must be in descending order.
840
+ guidance_scale (`float`, *optional*, defaults to 5.0):
841
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
842
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
843
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
844
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
845
+ usually at the expense of lower image quality.
846
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
847
+ The percentage of total steps at which the ControlNet starts applying.
848
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
849
+ The percentage of total steps at which the ControlNet stops applying.
850
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`):
851
+ `Image`, numpy array or tensor representing an image batch to be inpainted (which parts of the image to
852
+ be masked out with `control_mask` and repainted according to `prompt`). For both numpy array and
853
+ pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the
854
+ expected shape should be `(B, C, H, W)`. If it is a numpy array or a list of arrays, the expected shape
855
+ should be `(B, H, W, C)` or `(H, W, C)`.
856
+ control_mask (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`):
857
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
858
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
859
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
860
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`. And
861
+ for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W, 1)`, or `(H, W)`.
862
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
863
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
864
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
865
+ the corresponding scale as a list.
866
+ controlnet_pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`):
867
+ Embeddings projected from the embeddings of controlnet input conditions.
868
+ negative_prompt (`str` or `List[str]`, *optional*):
869
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
870
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
871
+ less than `1`).
872
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
873
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
874
+ `text_encoder_2`. If not defined, `negative_prompt` is used instead
875
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
876
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
877
+ `text_encoder_3`. If not defined, `negative_prompt` is used instead
878
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
879
+ The number of images to generate per prompt.
880
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
881
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
882
+ to make generation deterministic.
883
+ latents (`torch.FloatTensor`, *optional*):
884
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
885
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
886
+ tensor will ge generated by sampling using the supplied random `generator`.
887
+ prompt_embeds (`torch.FloatTensor`, *optional*):
888
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
889
+ provided, text embeddings will be generated from `prompt` input argument.
890
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
891
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
892
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
893
+ argument.
894
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
895
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
896
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
897
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
898
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
899
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
900
+ input argument.
901
+ output_type (`str`, *optional*, defaults to `"pil"`):
902
+ The output format of the generate image. Choose between
903
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
904
+ return_dict (`bool`, *optional*, defaults to `True`):
905
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
906
+ of a plain tuple.
907
+ joint_attention_kwargs (`dict`, *optional*):
908
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
909
+ `self.processor` in
910
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
911
+ callback_on_step_end (`Callable`, *optional*):
912
+ A function that calls at the end of each denoising steps during the inference. The function is called
913
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
914
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
915
+ `callback_on_step_end_tensor_inputs`.
916
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
917
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
918
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
919
+ `._callback_tensor_inputs` attribute of your pipeline class.
920
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
921
+
922
+ Examples:
923
+
924
+ Returns:
925
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
926
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
927
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
928
+ """
929
+
930
+ height = height or self.default_sample_size * self.vae_scale_factor
931
+ width = width or self.default_sample_size * self.vae_scale_factor
932
+
933
+ # align format for control guidance
934
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
935
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
936
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
937
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
938
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
939
+ mult = len(self.controlnet.nets) if isinstance(self.controlnet, SD3MultiControlNetModel) else 1
940
+ control_guidance_start, control_guidance_end = (
941
+ mult * [control_guidance_start],
942
+ mult * [control_guidance_end],
943
+ )
944
+
945
+ # 1. Check inputs. Raise error if not correct
946
+ self.check_inputs(
947
+ prompt,
948
+ prompt_2,
949
+ prompt_3,
950
+ height,
951
+ width,
952
+ negative_prompt=negative_prompt,
953
+ negative_prompt_2=negative_prompt_2,
954
+ negative_prompt_3=negative_prompt_3,
955
+ prompt_embeds=prompt_embeds,
956
+ negative_prompt_embeds=negative_prompt_embeds,
957
+ pooled_prompt_embeds=pooled_prompt_embeds,
958
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
959
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
960
+ max_sequence_length=max_sequence_length,
961
+ )
962
+
963
+ self._guidance_scale = guidance_scale
964
+ self._clip_skip = clip_skip
965
+ self._joint_attention_kwargs = joint_attention_kwargs
966
+ self._interrupt = False
967
+
968
+ # 2. Define call parameters
969
+ if prompt is not None and isinstance(prompt, str):
970
+ batch_size = 1
971
+ elif prompt is not None and isinstance(prompt, list):
972
+ batch_size = len(prompt)
973
+ else:
974
+ batch_size = prompt_embeds.shape[0]
975
+
976
+ device = self._execution_device
977
+ dtype = self.transformer.dtype
978
+
979
+ (
980
+ prompt_embeds,
981
+ negative_prompt_embeds,
982
+ pooled_prompt_embeds,
983
+ negative_pooled_prompt_embeds,
984
+ ) = self.encode_prompt(
985
+ prompt=prompt,
986
+ prompt_2=prompt_2,
987
+ prompt_3=prompt_3,
988
+ negative_prompt=negative_prompt,
989
+ negative_prompt_2=negative_prompt_2,
990
+ negative_prompt_3=negative_prompt_3,
991
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
992
+ prompt_embeds=prompt_embeds,
993
+ negative_prompt_embeds=negative_prompt_embeds,
994
+ pooled_prompt_embeds=pooled_prompt_embeds,
995
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
996
+ device=device,
997
+ clip_skip=self.clip_skip,
998
+ num_images_per_prompt=num_images_per_prompt,
999
+ max_sequence_length=max_sequence_length,
1000
+ )
1001
+
1002
+ if self.do_classifier_free_guidance:
1003
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1004
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
1005
+
1006
+ # 3. Prepare control image
1007
+ if isinstance(self.controlnet, SD3ControlNetModel):
1008
+ control_image = self.prepare_image_with_mask(
1009
+ image=control_image,
1010
+ mask=control_mask,
1011
+ width=width,
1012
+ height=height,
1013
+ batch_size=batch_size * num_images_per_prompt,
1014
+ num_images_per_prompt=num_images_per_prompt,
1015
+ device=device,
1016
+ dtype=dtype,
1017
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1018
+ guess_mode=False,
1019
+ )
1020
+ latent_height, latent_width = control_image.shape[-2:]
1021
+
1022
+ height = latent_height * self.vae_scale_factor
1023
+ width = latent_width * self.vae_scale_factor
1024
+
1025
+ elif isinstance(self.controlnet, SD3MultiControlNetModel):
1026
+ raise NotImplementedError("MultiControlNetModel is not supported for SD3ControlNetInpaintingPipeline.")
1027
+ else:
1028
+ assert False
1029
+
1030
+ if controlnet_pooled_projections is None:
1031
+ controlnet_pooled_projections = torch.zeros_like(pooled_prompt_embeds)
1032
+ else:
1033
+ controlnet_pooled_projections = controlnet_pooled_projections or pooled_prompt_embeds
1034
+
1035
+ # 4. Prepare timesteps
1036
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1037
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1038
+ self._num_timesteps = len(timesteps)
1039
+
1040
+ # 5. Prepare latent variables
1041
+ num_channels_latents = self.transformer.config.in_channels
1042
+ latents = self.prepare_latents(
1043
+ batch_size * num_images_per_prompt,
1044
+ num_channels_latents,
1045
+ height,
1046
+ width,
1047
+ prompt_embeds.dtype,
1048
+ device,
1049
+ generator,
1050
+ latents,
1051
+ )
1052
+
1053
+ # 6. Create tensor stating which controlnets to keep
1054
+ controlnet_keep = []
1055
+ for i in range(len(timesteps)):
1056
+ keeps = [
1057
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1058
+ for s, e in zip(control_guidance_start, control_guidance_end)
1059
+ ]
1060
+ controlnet_keep.append(keeps[0] if isinstance(self.controlnet, SD3ControlNetModel) else keeps)
1061
+
1062
+ # 7. Denoising loop
1063
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1064
+ for i, t in enumerate(timesteps):
1065
+ if self.interrupt:
1066
+ continue
1067
+
1068
+ # expand the latents if we are doing classifier free guidance
1069
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1070
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1071
+ timestep = t.expand(latent_model_input.shape[0])
1072
+
1073
+ if isinstance(controlnet_keep[i], list):
1074
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1075
+ else:
1076
+ controlnet_cond_scale = controlnet_conditioning_scale
1077
+ if isinstance(controlnet_cond_scale, list):
1078
+ controlnet_cond_scale = controlnet_cond_scale[0]
1079
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1080
+
1081
+ # controlnet(s) inference
1082
+ control_block_samples = self.controlnet(
1083
+ hidden_states=latent_model_input,
1084
+ timestep=timestep,
1085
+ encoder_hidden_states=prompt_embeds,
1086
+ pooled_projections=controlnet_pooled_projections,
1087
+ joint_attention_kwargs=self.joint_attention_kwargs,
1088
+ controlnet_cond=control_image,
1089
+ conditioning_scale=cond_scale,
1090
+ return_dict=False,
1091
+ )[0]
1092
+
1093
+ noise_pred = self.transformer(
1094
+ hidden_states=latent_model_input,
1095
+ timestep=timestep,
1096
+ encoder_hidden_states=prompt_embeds,
1097
+ pooled_projections=pooled_prompt_embeds,
1098
+ block_controlnet_hidden_states=control_block_samples,
1099
+ joint_attention_kwargs=self.joint_attention_kwargs,
1100
+ return_dict=False,
1101
+ )[0]
1102
+
1103
+ # perform guidance
1104
+ if self.do_classifier_free_guidance:
1105
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1106
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1107
+
1108
+ # compute the previous noisy sample x_t -> x_t-1
1109
+ latents_dtype = latents.dtype
1110
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1111
+
1112
+ if latents.dtype != latents_dtype:
1113
+ if torch.backends.mps.is_available():
1114
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1115
+ latents = latents.to(latents_dtype)
1116
+
1117
+ if callback_on_step_end is not None:
1118
+ callback_kwargs = {}
1119
+ for k in callback_on_step_end_tensor_inputs:
1120
+ callback_kwargs[k] = locals()[k]
1121
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1122
+
1123
+ latents = callback_outputs.pop("latents", latents)
1124
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1125
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1126
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1127
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1128
+ )
1129
+
1130
+ # call the callback, if provided
1131
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1132
+ progress_bar.update()
1133
+
1134
+ if XLA_AVAILABLE:
1135
+ xm.mark_step()
1136
+
1137
+ if output_type == "latent":
1138
+ image = latents
1139
+
1140
+ else:
1141
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1142
+ latents = latents.to(dtype=self.vae.dtype)
1143
+
1144
+ image = self.vae.decode(latents, return_dict=False)[0]
1145
+ image = self.image_processor.postprocess(image, output_type=output_type)
1146
+
1147
+ # Offload all models
1148
+ self.maybe_free_model_hooks()
1149
+
1150
+ if not return_dict:
1151
+ return (image,)
1152
+
1153
+ return StableDiffusion3PipelineOutput(images=image)