diffusers 0.30.3__py3-none-any.whl → 0.31.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (172) hide show
  1. diffusers/__init__.py +34 -2
  2. diffusers/configuration_utils.py +12 -0
  3. diffusers/dependency_versions_table.py +1 -1
  4. diffusers/image_processor.py +257 -54
  5. diffusers/loaders/__init__.py +2 -0
  6. diffusers/loaders/ip_adapter.py +5 -1
  7. diffusers/loaders/lora_base.py +14 -7
  8. diffusers/loaders/lora_conversion_utils.py +332 -0
  9. diffusers/loaders/lora_pipeline.py +707 -41
  10. diffusers/loaders/peft.py +1 -0
  11. diffusers/loaders/single_file_utils.py +81 -4
  12. diffusers/loaders/textual_inversion.py +2 -0
  13. diffusers/loaders/unet.py +39 -8
  14. diffusers/models/__init__.py +4 -0
  15. diffusers/models/adapter.py +53 -53
  16. diffusers/models/attention.py +86 -10
  17. diffusers/models/attention_processor.py +169 -133
  18. diffusers/models/autoencoders/autoencoder_kl.py +71 -11
  19. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +187 -88
  20. diffusers/models/controlnet_flux.py +536 -0
  21. diffusers/models/controlnet_sd3.py +7 -3
  22. diffusers/models/controlnet_sparsectrl.py +0 -1
  23. diffusers/models/embeddings.py +170 -61
  24. diffusers/models/embeddings_flax.py +23 -9
  25. diffusers/models/model_loading_utils.py +182 -14
  26. diffusers/models/modeling_utils.py +283 -46
  27. diffusers/models/normalization.py +79 -0
  28. diffusers/models/transformers/__init__.py +1 -0
  29. diffusers/models/transformers/auraflow_transformer_2d.py +1 -0
  30. diffusers/models/transformers/cogvideox_transformer_3d.py +23 -2
  31. diffusers/models/transformers/pixart_transformer_2d.py +9 -1
  32. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  33. diffusers/models/transformers/transformer_flux.py +161 -44
  34. diffusers/models/transformers/transformer_sd3.py +7 -1
  35. diffusers/models/unets/unet_2d_condition.py +8 -8
  36. diffusers/models/unets/unet_motion_model.py +41 -63
  37. diffusers/models/upsampling.py +6 -6
  38. diffusers/pipelines/__init__.py +35 -6
  39. diffusers/pipelines/animatediff/__init__.py +2 -0
  40. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  41. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +44 -20
  42. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  43. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +2 -0
  44. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -66
  45. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  46. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +1 -1
  47. diffusers/pipelines/auto_pipeline.py +39 -8
  48. diffusers/pipelines/cogvideo/__init__.py +2 -0
  49. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +30 -17
  50. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +794 -0
  51. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +41 -31
  52. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +42 -29
  53. diffusers/pipelines/cogview3/__init__.py +47 -0
  54. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  55. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  56. diffusers/pipelines/controlnet/pipeline_controlnet.py +9 -1
  57. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +8 -0
  58. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +8 -0
  59. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +36 -13
  60. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +9 -1
  61. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +8 -1
  62. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +17 -3
  63. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  64. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +3 -1
  65. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  66. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  67. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  68. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  69. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  70. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  71. diffusers/pipelines/flux/__init__.py +10 -0
  72. diffusers/pipelines/flux/pipeline_flux.py +53 -20
  73. diffusers/pipelines/flux/pipeline_flux_controlnet.py +984 -0
  74. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +988 -0
  75. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1182 -0
  76. diffusers/pipelines/flux/pipeline_flux_img2img.py +850 -0
  77. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1015 -0
  78. diffusers/pipelines/free_noise_utils.py +365 -5
  79. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +15 -3
  80. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  81. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  82. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  83. diffusers/pipelines/kolors/tokenizer.py +4 -0
  84. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  85. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  86. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  87. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  88. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  89. diffusers/pipelines/lumina/pipeline_lumina.py +2 -2
  90. diffusers/pipelines/pag/__init__.py +6 -0
  91. diffusers/pipelines/pag/pag_utils.py +8 -2
  92. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1 -1
  93. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1544 -0
  94. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +2 -2
  95. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1685 -0
  96. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +17 -5
  97. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  98. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +1 -1
  99. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  100. diffusers/pipelines/pag/pipeline_pag_sd_3.py +12 -3
  101. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  102. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1091 -0
  103. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  104. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  105. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  106. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  107. diffusers/pipelines/pipeline_loading_utils.py +225 -27
  108. diffusers/pipelines/pipeline_utils.py +123 -180
  109. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +1 -1
  110. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +1 -1
  111. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  112. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  113. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +28 -6
  114. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  115. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  116. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  117. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +12 -3
  118. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +20 -4
  119. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +3 -3
  120. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  121. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  122. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  123. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -4
  124. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -14
  125. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -14
  126. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  127. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  128. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  129. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  130. diffusers/quantizers/__init__.py +16 -0
  131. diffusers/quantizers/auto.py +126 -0
  132. diffusers/quantizers/base.py +233 -0
  133. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  134. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +558 -0
  135. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  136. diffusers/quantizers/quantization_config.py +391 -0
  137. diffusers/schedulers/scheduling_ddim.py +4 -1
  138. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  139. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  140. diffusers/schedulers/scheduling_ddpm.py +4 -1
  141. diffusers/schedulers/scheduling_ddpm_parallel.py +4 -1
  142. diffusers/schedulers/scheduling_deis_multistep.py +78 -1
  143. diffusers/schedulers/scheduling_dpmsolver_multistep.py +82 -1
  144. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +80 -1
  145. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  146. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +82 -1
  147. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  148. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  149. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  150. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  151. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  152. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  153. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  154. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  155. diffusers/schedulers/scheduling_sasolver.py +78 -1
  156. diffusers/schedulers/scheduling_unclip.py +4 -1
  157. diffusers/schedulers/scheduling_unipc_multistep.py +78 -1
  158. diffusers/training_utils.py +48 -18
  159. diffusers/utils/__init__.py +2 -1
  160. diffusers/utils/dummy_pt_objects.py +60 -0
  161. diffusers/utils/dummy_torch_and_transformers_objects.py +165 -0
  162. diffusers/utils/hub_utils.py +16 -4
  163. diffusers/utils/import_utils.py +31 -8
  164. diffusers/utils/loading_utils.py +28 -4
  165. diffusers/utils/peft_utils.py +3 -3
  166. diffusers/utils/testing_utils.py +59 -0
  167. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/METADATA +7 -6
  168. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/RECORD +172 -149
  169. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/LICENSE +0 -0
  170. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/WHEEL +0 -0
  171. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/entry_points.txt +0 -0
  172. {diffusers-0.30.3.dist-info → diffusers-0.31.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,674 @@
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import inspect
17
+ from typing import Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import torch
20
+ from transformers import T5EncoderModel, T5Tokenizer
21
+
22
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
23
+ from ...image_processor import VaeImageProcessor
24
+ from ...models import AutoencoderKL, CogView3PlusTransformer2DModel
25
+ from ...pipelines.pipeline_utils import DiffusionPipeline
26
+ from ...schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
27
+ from ...utils import logging, replace_example_docstring
28
+ from ...utils.torch_utils import randn_tensor
29
+ from .pipeline_output import CogView3PipelineOutput
30
+
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+
34
+
35
+ EXAMPLE_DOC_STRING = """
36
+ Examples:
37
+ ```python
38
+ >>> import torch
39
+ >>> from diffusers import CogView3PlusPipeline
40
+
41
+ >>> pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3Plus-3B", torch_dtype=torch.bfloat16)
42
+ >>> pipe.to("cuda")
43
+
44
+ >>> prompt = "A photo of an astronaut riding a horse on mars"
45
+ >>> image = pipe(prompt).images[0]
46
+ >>> image.save("output.png")
47
+ ```
48
+ """
49
+
50
+
51
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
52
+ def retrieve_timesteps(
53
+ scheduler,
54
+ num_inference_steps: Optional[int] = None,
55
+ device: Optional[Union[str, torch.device]] = None,
56
+ timesteps: Optional[List[int]] = None,
57
+ sigmas: Optional[List[float]] = None,
58
+ **kwargs,
59
+ ):
60
+ r"""
61
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
62
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
63
+
64
+ Args:
65
+ scheduler (`SchedulerMixin`):
66
+ The scheduler to get timesteps from.
67
+ num_inference_steps (`int`):
68
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
69
+ must be `None`.
70
+ device (`str` or `torch.device`, *optional*):
71
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
72
+ timesteps (`List[int]`, *optional*):
73
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
74
+ `num_inference_steps` and `sigmas` must be `None`.
75
+ sigmas (`List[float]`, *optional*):
76
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
77
+ `num_inference_steps` and `timesteps` must be `None`.
78
+
79
+ Returns:
80
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
81
+ second element is the number of inference steps.
82
+ """
83
+ if timesteps is not None and sigmas is not None:
84
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
85
+ if timesteps is not None:
86
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
87
+ if not accepts_timesteps:
88
+ raise ValueError(
89
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
90
+ f" timestep schedules. Please check whether you are using the correct scheduler."
91
+ )
92
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
93
+ timesteps = scheduler.timesteps
94
+ num_inference_steps = len(timesteps)
95
+ elif sigmas is not None:
96
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
97
+ if not accept_sigmas:
98
+ raise ValueError(
99
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
100
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
101
+ )
102
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
103
+ timesteps = scheduler.timesteps
104
+ num_inference_steps = len(timesteps)
105
+ else:
106
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
107
+ timesteps = scheduler.timesteps
108
+ return timesteps, num_inference_steps
109
+
110
+
111
+ class CogView3PlusPipeline(DiffusionPipeline):
112
+ r"""
113
+ Pipeline for text-to-image generation using CogView3Plus.
114
+
115
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
116
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
117
+
118
+ Args:
119
+ vae ([`AutoencoderKL`]):
120
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
121
+ text_encoder ([`T5EncoderModel`]):
122
+ Frozen text-encoder. CogView3Plus uses
123
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
124
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
125
+ tokenizer (`T5Tokenizer`):
126
+ Tokenizer of class
127
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
128
+ transformer ([`CogView3PlusTransformer2DModel`]):
129
+ A text conditioned `CogView3PlusTransformer2DModel` to denoise the encoded image latents.
130
+ scheduler ([`SchedulerMixin`]):
131
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
132
+ """
133
+
134
+ _optional_components = []
135
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
136
+
137
+ _callback_tensor_inputs = [
138
+ "latents",
139
+ "prompt_embeds",
140
+ "negative_prompt_embeds",
141
+ ]
142
+
143
+ def __init__(
144
+ self,
145
+ tokenizer: T5Tokenizer,
146
+ text_encoder: T5EncoderModel,
147
+ vae: AutoencoderKL,
148
+ transformer: CogView3PlusTransformer2DModel,
149
+ scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
150
+ ):
151
+ super().__init__()
152
+
153
+ self.register_modules(
154
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
155
+ )
156
+ self.vae_scale_factor = (
157
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
158
+ )
159
+
160
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
161
+
162
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds with num_videos_per_prompt->num_images_per_prompt
163
+ def _get_t5_prompt_embeds(
164
+ self,
165
+ prompt: Union[str, List[str]] = None,
166
+ num_images_per_prompt: int = 1,
167
+ max_sequence_length: int = 226,
168
+ device: Optional[torch.device] = None,
169
+ dtype: Optional[torch.dtype] = None,
170
+ ):
171
+ device = device or self._execution_device
172
+ dtype = dtype or self.text_encoder.dtype
173
+
174
+ prompt = [prompt] if isinstance(prompt, str) else prompt
175
+ batch_size = len(prompt)
176
+
177
+ text_inputs = self.tokenizer(
178
+ prompt,
179
+ padding="max_length",
180
+ max_length=max_sequence_length,
181
+ truncation=True,
182
+ add_special_tokens=True,
183
+ return_tensors="pt",
184
+ )
185
+ text_input_ids = text_inputs.input_ids
186
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
187
+
188
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
189
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
190
+ logger.warning(
191
+ "The following part of your input was truncated because `max_sequence_length` is set to "
192
+ f" {max_sequence_length} tokens: {removed_text}"
193
+ )
194
+
195
+ prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
196
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
197
+
198
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
199
+ _, seq_len, _ = prompt_embeds.shape
200
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
201
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
202
+
203
+ return prompt_embeds
204
+
205
+ def encode_prompt(
206
+ self,
207
+ prompt: Union[str, List[str]],
208
+ negative_prompt: Optional[Union[str, List[str]]] = None,
209
+ do_classifier_free_guidance: bool = True,
210
+ num_images_per_prompt: int = 1,
211
+ prompt_embeds: Optional[torch.Tensor] = None,
212
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
213
+ max_sequence_length: int = 224,
214
+ device: Optional[torch.device] = None,
215
+ dtype: Optional[torch.dtype] = None,
216
+ ):
217
+ r"""
218
+ Encodes the prompt into text encoder hidden states.
219
+
220
+ Args:
221
+ prompt (`str` or `List[str]`, *optional*):
222
+ prompt to be encoded
223
+ negative_prompt (`str` or `List[str]`, *optional*):
224
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
225
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
226
+ less than `1`).
227
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
228
+ Whether to use classifier free guidance or not.
229
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
230
+ Number of images that should be generated per prompt. torch device to place the resulting embeddings on
231
+ prompt_embeds (`torch.Tensor`, *optional*):
232
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
233
+ provided, text embeddings will be generated from `prompt` input argument.
234
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
235
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
236
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
237
+ argument.
238
+ max_sequence_length (`int`, defaults to `224`):
239
+ Maximum sequence length in encoded prompt. Can be set to other values but may lead to poorer results.
240
+ device: (`torch.device`, *optional*):
241
+ torch device
242
+ dtype: (`torch.dtype`, *optional*):
243
+ torch dtype
244
+ """
245
+ device = device or self._execution_device
246
+
247
+ prompt = [prompt] if isinstance(prompt, str) else prompt
248
+ if prompt is not None:
249
+ batch_size = len(prompt)
250
+ else:
251
+ batch_size = prompt_embeds.shape[0]
252
+
253
+ if prompt_embeds is None:
254
+ prompt_embeds = self._get_t5_prompt_embeds(
255
+ prompt=prompt,
256
+ num_images_per_prompt=num_images_per_prompt,
257
+ max_sequence_length=max_sequence_length,
258
+ device=device,
259
+ dtype=dtype,
260
+ )
261
+
262
+ if do_classifier_free_guidance and negative_prompt is None:
263
+ negative_prompt_embeds = prompt_embeds.new_zeros(prompt_embeds.shape)
264
+
265
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
266
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
267
+
268
+ if prompt is not None and type(prompt) is not type(negative_prompt):
269
+ raise TypeError(
270
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
271
+ f" {type(prompt)}."
272
+ )
273
+ elif batch_size != len(negative_prompt):
274
+ raise ValueError(
275
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
276
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
277
+ " the batch size of `prompt`."
278
+ )
279
+
280
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
281
+ prompt=negative_prompt,
282
+ num_images_per_prompt=num_images_per_prompt,
283
+ max_sequence_length=max_sequence_length,
284
+ device=device,
285
+ dtype=dtype,
286
+ )
287
+
288
+ return prompt_embeds, negative_prompt_embeds
289
+
290
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
291
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
292
+ shape = (
293
+ batch_size,
294
+ num_channels_latents,
295
+ int(height) // self.vae_scale_factor,
296
+ int(width) // self.vae_scale_factor,
297
+ )
298
+ if isinstance(generator, list) and len(generator) != batch_size:
299
+ raise ValueError(
300
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
301
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
302
+ )
303
+
304
+ if latents is None:
305
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
306
+ else:
307
+ latents = latents.to(device)
308
+
309
+ # scale the initial noise by the standard deviation required by the scheduler
310
+ latents = latents * self.scheduler.init_noise_sigma
311
+ return latents
312
+
313
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
314
+ def prepare_extra_step_kwargs(self, generator, eta):
315
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
316
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
317
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
318
+ # and should be between [0, 1]
319
+
320
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
321
+ extra_step_kwargs = {}
322
+ if accepts_eta:
323
+ extra_step_kwargs["eta"] = eta
324
+
325
+ # check if the scheduler accepts generator
326
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
327
+ if accepts_generator:
328
+ extra_step_kwargs["generator"] = generator
329
+ return extra_step_kwargs
330
+
331
+ # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
332
+ def check_inputs(
333
+ self,
334
+ prompt,
335
+ height,
336
+ width,
337
+ negative_prompt,
338
+ callback_on_step_end_tensor_inputs,
339
+ prompt_embeds=None,
340
+ negative_prompt_embeds=None,
341
+ ):
342
+ if height % 8 != 0 or width % 8 != 0:
343
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
344
+
345
+ if callback_on_step_end_tensor_inputs is not None and not all(
346
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
347
+ ):
348
+ raise ValueError(
349
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
350
+ )
351
+ if prompt is not None and prompt_embeds is not None:
352
+ raise ValueError(
353
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
354
+ " only forward one of the two."
355
+ )
356
+ elif prompt is None and prompt_embeds is None:
357
+ raise ValueError(
358
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
359
+ )
360
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
361
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
362
+
363
+ if prompt is not None and negative_prompt_embeds is not None:
364
+ raise ValueError(
365
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
366
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
367
+ )
368
+
369
+ if negative_prompt is not None and negative_prompt_embeds is not None:
370
+ raise ValueError(
371
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
372
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
373
+ )
374
+
375
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
376
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
377
+ raise ValueError(
378
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
379
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
380
+ f" {negative_prompt_embeds.shape}."
381
+ )
382
+
383
+ @property
384
+ def guidance_scale(self):
385
+ return self._guidance_scale
386
+
387
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
388
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
389
+ # corresponds to doing no classifier free guidance.
390
+ @property
391
+ def do_classifier_free_guidance(self):
392
+ return self._guidance_scale > 1
393
+
394
+ @property
395
+ def num_timesteps(self):
396
+ return self._num_timesteps
397
+
398
+ @property
399
+ def interrupt(self):
400
+ return self._interrupt
401
+
402
+ @torch.no_grad()
403
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
404
+ def __call__(
405
+ self,
406
+ prompt: Optional[Union[str, List[str]]] = None,
407
+ negative_prompt: Optional[Union[str, List[str]]] = None,
408
+ height: Optional[int] = None,
409
+ width: Optional[int] = None,
410
+ num_inference_steps: int = 50,
411
+ timesteps: Optional[List[int]] = None,
412
+ guidance_scale: float = 5.0,
413
+ num_images_per_prompt: int = 1,
414
+ eta: float = 0.0,
415
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
416
+ latents: Optional[torch.FloatTensor] = None,
417
+ prompt_embeds: Optional[torch.FloatTensor] = None,
418
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
419
+ original_size: Optional[Tuple[int, int]] = None,
420
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
421
+ output_type: str = "pil",
422
+ return_dict: bool = True,
423
+ callback_on_step_end: Optional[
424
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
425
+ ] = None,
426
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
427
+ max_sequence_length: int = 224,
428
+ ) -> Union[CogView3PipelineOutput, Tuple]:
429
+ """
430
+ Function invoked when calling the pipeline for generation.
431
+
432
+ Args:
433
+ prompt (`str` or `List[str]`, *optional*):
434
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
435
+ negative_prompt (`str` or `List[str]`, *optional*):
436
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
437
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
438
+ less than `1`).
439
+ height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
440
+ The height in pixels of the generated image. If not provided, it is set to 1024.
441
+ width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
442
+ The width in pixels of the generated image. If not provided it is set to 1024.
443
+ num_inference_steps (`int`, *optional*, defaults to `50`):
444
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
445
+ expense of slower inference.
446
+ timesteps (`List[int]`, *optional*):
447
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
448
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
449
+ passed will be used. Must be in descending order.
450
+ guidance_scale (`float`, *optional*, defaults to `5.0`):
451
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
452
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
453
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
454
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
455
+ usually at the expense of lower image quality.
456
+ num_images_per_prompt (`int`, *optional*, defaults to `1`):
457
+ The number of images to generate per prompt.
458
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
459
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
460
+ to make generation deterministic.
461
+ latents (`torch.FloatTensor`, *optional*):
462
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
463
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
464
+ tensor will ge generated by sampling using the supplied random `generator`.
465
+ prompt_embeds (`torch.FloatTensor`, *optional*):
466
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
467
+ provided, text embeddings will be generated from `prompt` input argument.
468
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
469
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
470
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
471
+ argument.
472
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
473
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
474
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
475
+ explained in section 2.2 of
476
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
477
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
478
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
479
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
480
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
481
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
482
+ output_type (`str`, *optional*, defaults to `"pil"`):
483
+ The output format of the generate image. Choose between
484
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
485
+ return_dict (`bool`, *optional*, defaults to `True`):
486
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
487
+ of a plain tuple.
488
+ attention_kwargs (`dict`, *optional*):
489
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
490
+ `self.processor` in
491
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
492
+ callback_on_step_end (`Callable`, *optional*):
493
+ A function that calls at the end of each denoising steps during the inference. The function is called
494
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
495
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
496
+ `callback_on_step_end_tensor_inputs`.
497
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
498
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
499
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
500
+ `._callback_tensor_inputs` attribute of your pipeline class.
501
+ max_sequence_length (`int`, defaults to `224`):
502
+ Maximum sequence length in encoded prompt. Can be set to other values but may lead to poorer results.
503
+
504
+ Examples:
505
+
506
+ Returns:
507
+ [`~pipelines.cogview3.pipeline_cogview3plus.CogView3PipelineOutput`] or `tuple`:
508
+ [`~pipelines.cogview3.pipeline_cogview3plus.CogView3PipelineOutput`] if `return_dict` is True, otherwise a
509
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
510
+ """
511
+
512
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
513
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
514
+
515
+ height = height or self.transformer.config.sample_size * self.vae_scale_factor
516
+ width = width or self.transformer.config.sample_size * self.vae_scale_factor
517
+
518
+ original_size = original_size or (height, width)
519
+ target_size = (height, width)
520
+
521
+ # 1. Check inputs. Raise error if not correct
522
+ self.check_inputs(
523
+ prompt,
524
+ height,
525
+ width,
526
+ negative_prompt,
527
+ callback_on_step_end_tensor_inputs,
528
+ prompt_embeds,
529
+ negative_prompt_embeds,
530
+ )
531
+ self._guidance_scale = guidance_scale
532
+ self._interrupt = False
533
+
534
+ # 2. Default call parameters
535
+ if prompt is not None and isinstance(prompt, str):
536
+ batch_size = 1
537
+ elif prompt is not None and isinstance(prompt, list):
538
+ batch_size = len(prompt)
539
+ else:
540
+ batch_size = prompt_embeds.shape[0]
541
+
542
+ device = self._execution_device
543
+
544
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
545
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
546
+ # corresponds to doing no classifier free guidance.
547
+ do_classifier_free_guidance = guidance_scale > 1.0
548
+
549
+ # 3. Encode input prompt
550
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
551
+ prompt,
552
+ negative_prompt,
553
+ self.do_classifier_free_guidance,
554
+ num_images_per_prompt=num_images_per_prompt,
555
+ prompt_embeds=prompt_embeds,
556
+ negative_prompt_embeds=negative_prompt_embeds,
557
+ max_sequence_length=max_sequence_length,
558
+ device=device,
559
+ )
560
+ if self.do_classifier_free_guidance:
561
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
562
+
563
+ # 4. Prepare timesteps
564
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
565
+ self._num_timesteps = len(timesteps)
566
+
567
+ # 5. Prepare latents.
568
+ latent_channels = self.transformer.config.in_channels
569
+ latents = self.prepare_latents(
570
+ batch_size * num_images_per_prompt,
571
+ latent_channels,
572
+ height,
573
+ width,
574
+ prompt_embeds.dtype,
575
+ device,
576
+ generator,
577
+ latents,
578
+ )
579
+
580
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
581
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
582
+
583
+ # 7. Prepare additional timestep conditions
584
+ original_size = torch.tensor([original_size], dtype=prompt_embeds.dtype)
585
+ target_size = torch.tensor([target_size], dtype=prompt_embeds.dtype)
586
+ crops_coords_top_left = torch.tensor([crops_coords_top_left], dtype=prompt_embeds.dtype)
587
+
588
+ if self.do_classifier_free_guidance:
589
+ original_size = torch.cat([original_size, original_size])
590
+ target_size = torch.cat([target_size, target_size])
591
+ crops_coords_top_left = torch.cat([crops_coords_top_left, crops_coords_top_left])
592
+
593
+ original_size = original_size.to(device).repeat(batch_size * num_images_per_prompt, 1)
594
+ target_size = target_size.to(device).repeat(batch_size * num_images_per_prompt, 1)
595
+ crops_coords_top_left = crops_coords_top_left.to(device).repeat(batch_size * num_images_per_prompt, 1)
596
+
597
+ # 8. Denoising loop
598
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
599
+
600
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
601
+ # for DPM-solver++
602
+ old_pred_original_sample = None
603
+ for i, t in enumerate(timesteps):
604
+ if self.interrupt:
605
+ continue
606
+
607
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
608
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
609
+
610
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
611
+ timestep = t.expand(latent_model_input.shape[0])
612
+
613
+ # predict noise model_output
614
+ noise_pred = self.transformer(
615
+ hidden_states=latent_model_input,
616
+ encoder_hidden_states=prompt_embeds,
617
+ timestep=timestep,
618
+ original_size=original_size,
619
+ target_size=target_size,
620
+ crop_coords=crops_coords_top_left,
621
+ return_dict=False,
622
+ )[0]
623
+ noise_pred = noise_pred.float()
624
+
625
+ # perform guidance
626
+ if self.do_classifier_free_guidance:
627
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
628
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
629
+
630
+ # compute the previous noisy sample x_t -> x_t-1
631
+ if not isinstance(self.scheduler, CogVideoXDPMScheduler):
632
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
633
+ else:
634
+ latents, old_pred_original_sample = self.scheduler.step(
635
+ noise_pred,
636
+ old_pred_original_sample,
637
+ t,
638
+ timesteps[i - 1] if i > 0 else None,
639
+ latents,
640
+ **extra_step_kwargs,
641
+ return_dict=False,
642
+ )
643
+ latents = latents.to(prompt_embeds.dtype)
644
+
645
+ # call the callback, if provided
646
+ if callback_on_step_end is not None:
647
+ callback_kwargs = {}
648
+ for k in callback_on_step_end_tensor_inputs:
649
+ callback_kwargs[k] = locals()[k]
650
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
651
+
652
+ latents = callback_outputs.pop("latents", latents)
653
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
654
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
655
+
656
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
657
+ progress_bar.update()
658
+
659
+ if not output_type == "latent":
660
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
661
+ 0
662
+ ]
663
+ else:
664
+ image = latents
665
+
666
+ image = self.image_processor.postprocess(image, output_type=output_type)
667
+
668
+ # Offload all models
669
+ self.maybe_free_model_hooks()
670
+
671
+ if not return_dict:
672
+ return (image,)
673
+
674
+ return CogView3PipelineOutput(images=image)