dgenerate-ultralytics-headless 8.3.253__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (299) hide show
  1. dgenerate_ultralytics_headless-8.3.253.dist-info/METADATA +405 -0
  2. dgenerate_ultralytics_headless-8.3.253.dist-info/RECORD +299 -0
  3. dgenerate_ultralytics_headless-8.3.253.dist-info/WHEEL +5 -0
  4. dgenerate_ultralytics_headless-8.3.253.dist-info/entry_points.txt +3 -0
  5. dgenerate_ultralytics_headless-8.3.253.dist-info/licenses/LICENSE +661 -0
  6. dgenerate_ultralytics_headless-8.3.253.dist-info/top_level.txt +1 -0
  7. tests/__init__.py +23 -0
  8. tests/conftest.py +59 -0
  9. tests/test_cli.py +131 -0
  10. tests/test_cuda.py +216 -0
  11. tests/test_engine.py +157 -0
  12. tests/test_exports.py +309 -0
  13. tests/test_integrations.py +151 -0
  14. tests/test_python.py +777 -0
  15. tests/test_solutions.py +371 -0
  16. ultralytics/__init__.py +48 -0
  17. ultralytics/assets/bus.jpg +0 -0
  18. ultralytics/assets/zidane.jpg +0 -0
  19. ultralytics/cfg/__init__.py +1028 -0
  20. ultralytics/cfg/datasets/Argoverse.yaml +78 -0
  21. ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
  22. ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
  23. ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
  24. ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
  25. ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
  26. ultralytics/cfg/datasets/Objects365.yaml +447 -0
  27. ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
  28. ultralytics/cfg/datasets/TT100K.yaml +346 -0
  29. ultralytics/cfg/datasets/VOC.yaml +102 -0
  30. ultralytics/cfg/datasets/VisDrone.yaml +87 -0
  31. ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
  32. ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
  33. ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
  34. ultralytics/cfg/datasets/coco-pose.yaml +64 -0
  35. ultralytics/cfg/datasets/coco.yaml +118 -0
  36. ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
  37. ultralytics/cfg/datasets/coco128.yaml +101 -0
  38. ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
  39. ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
  40. ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
  41. ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
  42. ultralytics/cfg/datasets/coco8.yaml +101 -0
  43. ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
  44. ultralytics/cfg/datasets/crack-seg.yaml +22 -0
  45. ultralytics/cfg/datasets/dog-pose.yaml +52 -0
  46. ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
  47. ultralytics/cfg/datasets/dota8.yaml +35 -0
  48. ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
  49. ultralytics/cfg/datasets/kitti.yaml +27 -0
  50. ultralytics/cfg/datasets/lvis.yaml +1240 -0
  51. ultralytics/cfg/datasets/medical-pills.yaml +21 -0
  52. ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
  53. ultralytics/cfg/datasets/package-seg.yaml +22 -0
  54. ultralytics/cfg/datasets/signature.yaml +21 -0
  55. ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
  56. ultralytics/cfg/datasets/xView.yaml +155 -0
  57. ultralytics/cfg/default.yaml +130 -0
  58. ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
  59. ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
  60. ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
  61. ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
  62. ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
  63. ultralytics/cfg/models/11/yolo11.yaml +50 -0
  64. ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
  65. ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
  66. ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
  67. ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
  68. ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
  69. ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
  70. ultralytics/cfg/models/12/yolo12.yaml +48 -0
  71. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
  72. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
  73. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
  74. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
  75. ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
  76. ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
  77. ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
  78. ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
  79. ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
  80. ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
  81. ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
  82. ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
  83. ultralytics/cfg/models/v3/yolov3.yaml +49 -0
  84. ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
  85. ultralytics/cfg/models/v5/yolov5.yaml +51 -0
  86. ultralytics/cfg/models/v6/yolov6.yaml +56 -0
  87. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
  88. ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
  89. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
  90. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
  91. ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
  92. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
  93. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
  94. ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
  95. ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
  96. ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
  97. ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
  98. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
  99. ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
  100. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
  101. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
  102. ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
  103. ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
  104. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
  105. ultralytics/cfg/models/v8/yolov8.yaml +49 -0
  106. ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
  107. ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
  108. ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
  109. ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
  110. ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
  111. ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
  112. ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
  113. ultralytics/cfg/trackers/botsort.yaml +21 -0
  114. ultralytics/cfg/trackers/bytetrack.yaml +12 -0
  115. ultralytics/data/__init__.py +26 -0
  116. ultralytics/data/annotator.py +66 -0
  117. ultralytics/data/augment.py +2801 -0
  118. ultralytics/data/base.py +435 -0
  119. ultralytics/data/build.py +437 -0
  120. ultralytics/data/converter.py +855 -0
  121. ultralytics/data/dataset.py +834 -0
  122. ultralytics/data/loaders.py +704 -0
  123. ultralytics/data/scripts/download_weights.sh +18 -0
  124. ultralytics/data/scripts/get_coco.sh +61 -0
  125. ultralytics/data/scripts/get_coco128.sh +18 -0
  126. ultralytics/data/scripts/get_imagenet.sh +52 -0
  127. ultralytics/data/split.py +138 -0
  128. ultralytics/data/split_dota.py +344 -0
  129. ultralytics/data/utils.py +798 -0
  130. ultralytics/engine/__init__.py +1 -0
  131. ultralytics/engine/exporter.py +1580 -0
  132. ultralytics/engine/model.py +1125 -0
  133. ultralytics/engine/predictor.py +508 -0
  134. ultralytics/engine/results.py +1522 -0
  135. ultralytics/engine/trainer.py +977 -0
  136. ultralytics/engine/tuner.py +449 -0
  137. ultralytics/engine/validator.py +387 -0
  138. ultralytics/hub/__init__.py +166 -0
  139. ultralytics/hub/auth.py +151 -0
  140. ultralytics/hub/google/__init__.py +174 -0
  141. ultralytics/hub/session.py +422 -0
  142. ultralytics/hub/utils.py +162 -0
  143. ultralytics/models/__init__.py +9 -0
  144. ultralytics/models/fastsam/__init__.py +7 -0
  145. ultralytics/models/fastsam/model.py +79 -0
  146. ultralytics/models/fastsam/predict.py +169 -0
  147. ultralytics/models/fastsam/utils.py +23 -0
  148. ultralytics/models/fastsam/val.py +38 -0
  149. ultralytics/models/nas/__init__.py +7 -0
  150. ultralytics/models/nas/model.py +98 -0
  151. ultralytics/models/nas/predict.py +56 -0
  152. ultralytics/models/nas/val.py +38 -0
  153. ultralytics/models/rtdetr/__init__.py +7 -0
  154. ultralytics/models/rtdetr/model.py +63 -0
  155. ultralytics/models/rtdetr/predict.py +88 -0
  156. ultralytics/models/rtdetr/train.py +89 -0
  157. ultralytics/models/rtdetr/val.py +216 -0
  158. ultralytics/models/sam/__init__.py +25 -0
  159. ultralytics/models/sam/amg.py +275 -0
  160. ultralytics/models/sam/build.py +365 -0
  161. ultralytics/models/sam/build_sam3.py +377 -0
  162. ultralytics/models/sam/model.py +169 -0
  163. ultralytics/models/sam/modules/__init__.py +1 -0
  164. ultralytics/models/sam/modules/blocks.py +1067 -0
  165. ultralytics/models/sam/modules/decoders.py +495 -0
  166. ultralytics/models/sam/modules/encoders.py +794 -0
  167. ultralytics/models/sam/modules/memory_attention.py +298 -0
  168. ultralytics/models/sam/modules/sam.py +1160 -0
  169. ultralytics/models/sam/modules/tiny_encoder.py +979 -0
  170. ultralytics/models/sam/modules/transformer.py +344 -0
  171. ultralytics/models/sam/modules/utils.py +512 -0
  172. ultralytics/models/sam/predict.py +3940 -0
  173. ultralytics/models/sam/sam3/__init__.py +3 -0
  174. ultralytics/models/sam/sam3/decoder.py +546 -0
  175. ultralytics/models/sam/sam3/encoder.py +529 -0
  176. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  177. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  178. ultralytics/models/sam/sam3/model_misc.py +199 -0
  179. ultralytics/models/sam/sam3/necks.py +129 -0
  180. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  181. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  182. ultralytics/models/sam/sam3/vitdet.py +547 -0
  183. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  184. ultralytics/models/utils/__init__.py +1 -0
  185. ultralytics/models/utils/loss.py +466 -0
  186. ultralytics/models/utils/ops.py +315 -0
  187. ultralytics/models/yolo/__init__.py +7 -0
  188. ultralytics/models/yolo/classify/__init__.py +7 -0
  189. ultralytics/models/yolo/classify/predict.py +90 -0
  190. ultralytics/models/yolo/classify/train.py +202 -0
  191. ultralytics/models/yolo/classify/val.py +216 -0
  192. ultralytics/models/yolo/detect/__init__.py +7 -0
  193. ultralytics/models/yolo/detect/predict.py +122 -0
  194. ultralytics/models/yolo/detect/train.py +227 -0
  195. ultralytics/models/yolo/detect/val.py +507 -0
  196. ultralytics/models/yolo/model.py +430 -0
  197. ultralytics/models/yolo/obb/__init__.py +7 -0
  198. ultralytics/models/yolo/obb/predict.py +56 -0
  199. ultralytics/models/yolo/obb/train.py +79 -0
  200. ultralytics/models/yolo/obb/val.py +302 -0
  201. ultralytics/models/yolo/pose/__init__.py +7 -0
  202. ultralytics/models/yolo/pose/predict.py +65 -0
  203. ultralytics/models/yolo/pose/train.py +110 -0
  204. ultralytics/models/yolo/pose/val.py +248 -0
  205. ultralytics/models/yolo/segment/__init__.py +7 -0
  206. ultralytics/models/yolo/segment/predict.py +109 -0
  207. ultralytics/models/yolo/segment/train.py +69 -0
  208. ultralytics/models/yolo/segment/val.py +307 -0
  209. ultralytics/models/yolo/world/__init__.py +5 -0
  210. ultralytics/models/yolo/world/train.py +173 -0
  211. ultralytics/models/yolo/world/train_world.py +178 -0
  212. ultralytics/models/yolo/yoloe/__init__.py +22 -0
  213. ultralytics/models/yolo/yoloe/predict.py +162 -0
  214. ultralytics/models/yolo/yoloe/train.py +287 -0
  215. ultralytics/models/yolo/yoloe/train_seg.py +122 -0
  216. ultralytics/models/yolo/yoloe/val.py +206 -0
  217. ultralytics/nn/__init__.py +27 -0
  218. ultralytics/nn/autobackend.py +964 -0
  219. ultralytics/nn/modules/__init__.py +182 -0
  220. ultralytics/nn/modules/activation.py +54 -0
  221. ultralytics/nn/modules/block.py +1947 -0
  222. ultralytics/nn/modules/conv.py +669 -0
  223. ultralytics/nn/modules/head.py +1183 -0
  224. ultralytics/nn/modules/transformer.py +793 -0
  225. ultralytics/nn/modules/utils.py +159 -0
  226. ultralytics/nn/tasks.py +1768 -0
  227. ultralytics/nn/text_model.py +356 -0
  228. ultralytics/py.typed +1 -0
  229. ultralytics/solutions/__init__.py +41 -0
  230. ultralytics/solutions/ai_gym.py +108 -0
  231. ultralytics/solutions/analytics.py +264 -0
  232. ultralytics/solutions/config.py +107 -0
  233. ultralytics/solutions/distance_calculation.py +123 -0
  234. ultralytics/solutions/heatmap.py +125 -0
  235. ultralytics/solutions/instance_segmentation.py +86 -0
  236. ultralytics/solutions/object_blurrer.py +89 -0
  237. ultralytics/solutions/object_counter.py +190 -0
  238. ultralytics/solutions/object_cropper.py +87 -0
  239. ultralytics/solutions/parking_management.py +280 -0
  240. ultralytics/solutions/queue_management.py +93 -0
  241. ultralytics/solutions/region_counter.py +133 -0
  242. ultralytics/solutions/security_alarm.py +151 -0
  243. ultralytics/solutions/similarity_search.py +219 -0
  244. ultralytics/solutions/solutions.py +828 -0
  245. ultralytics/solutions/speed_estimation.py +114 -0
  246. ultralytics/solutions/streamlit_inference.py +260 -0
  247. ultralytics/solutions/templates/similarity-search.html +156 -0
  248. ultralytics/solutions/trackzone.py +88 -0
  249. ultralytics/solutions/vision_eye.py +67 -0
  250. ultralytics/trackers/__init__.py +7 -0
  251. ultralytics/trackers/basetrack.py +115 -0
  252. ultralytics/trackers/bot_sort.py +257 -0
  253. ultralytics/trackers/byte_tracker.py +469 -0
  254. ultralytics/trackers/track.py +116 -0
  255. ultralytics/trackers/utils/__init__.py +1 -0
  256. ultralytics/trackers/utils/gmc.py +339 -0
  257. ultralytics/trackers/utils/kalman_filter.py +482 -0
  258. ultralytics/trackers/utils/matching.py +154 -0
  259. ultralytics/utils/__init__.py +1450 -0
  260. ultralytics/utils/autobatch.py +118 -0
  261. ultralytics/utils/autodevice.py +205 -0
  262. ultralytics/utils/benchmarks.py +728 -0
  263. ultralytics/utils/callbacks/__init__.py +5 -0
  264. ultralytics/utils/callbacks/base.py +233 -0
  265. ultralytics/utils/callbacks/clearml.py +146 -0
  266. ultralytics/utils/callbacks/comet.py +625 -0
  267. ultralytics/utils/callbacks/dvc.py +197 -0
  268. ultralytics/utils/callbacks/hub.py +110 -0
  269. ultralytics/utils/callbacks/mlflow.py +134 -0
  270. ultralytics/utils/callbacks/neptune.py +126 -0
  271. ultralytics/utils/callbacks/platform.py +453 -0
  272. ultralytics/utils/callbacks/raytune.py +42 -0
  273. ultralytics/utils/callbacks/tensorboard.py +123 -0
  274. ultralytics/utils/callbacks/wb.py +188 -0
  275. ultralytics/utils/checks.py +1020 -0
  276. ultralytics/utils/cpu.py +85 -0
  277. ultralytics/utils/dist.py +123 -0
  278. ultralytics/utils/downloads.py +529 -0
  279. ultralytics/utils/errors.py +35 -0
  280. ultralytics/utils/events.py +113 -0
  281. ultralytics/utils/export/__init__.py +7 -0
  282. ultralytics/utils/export/engine.py +237 -0
  283. ultralytics/utils/export/imx.py +325 -0
  284. ultralytics/utils/export/tensorflow.py +231 -0
  285. ultralytics/utils/files.py +219 -0
  286. ultralytics/utils/git.py +137 -0
  287. ultralytics/utils/instance.py +484 -0
  288. ultralytics/utils/logger.py +506 -0
  289. ultralytics/utils/loss.py +849 -0
  290. ultralytics/utils/metrics.py +1563 -0
  291. ultralytics/utils/nms.py +337 -0
  292. ultralytics/utils/ops.py +664 -0
  293. ultralytics/utils/patches.py +201 -0
  294. ultralytics/utils/plotting.py +1047 -0
  295. ultralytics/utils/tal.py +404 -0
  296. ultralytics/utils/torch_utils.py +984 -0
  297. ultralytics/utils/tqdm.py +443 -0
  298. ultralytics/utils/triton.py +112 -0
  299. ultralytics/utils/tuner.py +168 -0
@@ -0,0 +1,41 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Tiger Pose dataset by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/pose/tiger-pose/
5
+ # Example usage: yolo train data=tiger-pose.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── tiger-pose ← downloads here (49.8 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: tiger-pose # dataset root dir
13
+ train: images/train # train images (relative to 'path') 210 images
14
+ val: images/val # val images (relative to 'path') 53 images
15
+
16
+ # Keypoints
17
+ kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18
+ flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
19
+
20
+ # Classes
21
+ names:
22
+ 0: tiger
23
+
24
+ # Keypoint names per class
25
+ kpt_names:
26
+ 0:
27
+ - nose
28
+ - head
29
+ - withers
30
+ - tail_base
31
+ - right_hind_hock
32
+ - right_hind_paw
33
+ - left_hind_paw
34
+ - left_hind_hock
35
+ - right_front_wrist
36
+ - right_front_paw
37
+ - left_front_wrist
38
+ - left_front_paw
39
+
40
+ # Download script/URL (optional)
41
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/tiger-pose.zip
@@ -0,0 +1,155 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # DIUx xView 2018 Challenge dataset https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
4
+ # -------- Download and extract data manually to `datasets/xView` before running the train command. --------
5
+ # Documentation: https://docs.ultralytics.com/datasets/detect/xview/
6
+ # Example usage: yolo train data=xView.yaml
7
+ # parent
8
+ # ├── ultralytics
9
+ # └── datasets
10
+ # └── xView ← downloads here (20.7 GB)
11
+
12
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
+ path: xView # dataset root dir
14
+ train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
15
+ val: images/autosplit_val.txt # val images (relative to 'path') 10% of 847 train images
16
+
17
+ # Classes
18
+ names:
19
+ 0: Fixed-wing Aircraft
20
+ 1: Small Aircraft
21
+ 2: Cargo Plane
22
+ 3: Helicopter
23
+ 4: Passenger Vehicle
24
+ 5: Small Car
25
+ 6: Bus
26
+ 7: Pickup Truck
27
+ 8: Utility Truck
28
+ 9: Truck
29
+ 10: Cargo Truck
30
+ 11: Truck w/Box
31
+ 12: Truck Tractor
32
+ 13: Trailer
33
+ 14: Truck w/Flatbed
34
+ 15: Truck w/Liquid
35
+ 16: Crane Truck
36
+ 17: Railway Vehicle
37
+ 18: Passenger Car
38
+ 19: Cargo Car
39
+ 20: Flat Car
40
+ 21: Tank car
41
+ 22: Locomotive
42
+ 23: Maritime Vessel
43
+ 24: Motorboat
44
+ 25: Sailboat
45
+ 26: Tugboat
46
+ 27: Barge
47
+ 28: Fishing Vessel
48
+ 29: Ferry
49
+ 30: Yacht
50
+ 31: Container Ship
51
+ 32: Oil Tanker
52
+ 33: Engineering Vehicle
53
+ 34: Tower crane
54
+ 35: Container Crane
55
+ 36: Reach Stacker
56
+ 37: Straddle Carrier
57
+ 38: Mobile Crane
58
+ 39: Dump Truck
59
+ 40: Haul Truck
60
+ 41: Scraper/Tractor
61
+ 42: Front loader/Bulldozer
62
+ 43: Excavator
63
+ 44: Cement Mixer
64
+ 45: Ground Grader
65
+ 46: Hut/Tent
66
+ 47: Shed
67
+ 48: Building
68
+ 49: Aircraft Hangar
69
+ 50: Damaged Building
70
+ 51: Facility
71
+ 52: Construction Site
72
+ 53: Vehicle Lot
73
+ 54: Helipad
74
+ 55: Storage Tank
75
+ 56: Shipping container lot
76
+ 57: Shipping Container
77
+ 58: Pylon
78
+ 59: Tower
79
+
80
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
81
+ download: |
82
+ import json
83
+ from pathlib import Path
84
+ import shutil
85
+
86
+ import numpy as np
87
+ from PIL import Image
88
+
89
+ from ultralytics.utils import TQDM
90
+ from ultralytics.data.split import autosplit
91
+ from ultralytics.utils.ops import xyxy2xywhn
92
+
93
+
94
+ def convert_labels(fname=Path("xView/xView_train.geojson")):
95
+ """Convert xView GeoJSON labels to YOLO format (classes 0-59) and save them as text files."""
96
+ path = fname.parent
97
+ with open(fname, encoding="utf-8") as f:
98
+ print(f"Loading {fname}...")
99
+ data = json.load(f)
100
+
101
+ # Make dirs
102
+ labels = path / "labels" / "train"
103
+ shutil.rmtree(labels, ignore_errors=True)
104
+ labels.mkdir(parents=True, exist_ok=True)
105
+
106
+ # xView classes 11-94 to 0-59
107
+ xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
108
+ 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
109
+ 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
110
+ 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
111
+
112
+ shapes = {}
113
+ for feature in TQDM(data["features"], desc=f"Converting {fname}"):
114
+ p = feature["properties"]
115
+ if p["bounds_imcoords"]:
116
+ image_id = p["image_id"]
117
+ image_file = path / "train_images" / image_id
118
+ if image_file.exists(): # 1395.tif missing
119
+ try:
120
+ box = np.array([int(num) for num in p["bounds_imcoords"].split(",")])
121
+ assert box.shape[0] == 4, f"incorrect box shape {box.shape[0]}"
122
+ cls = p["type_id"]
123
+ cls = xview_class2index[int(cls)] # xView class to 0-59
124
+ assert 59 >= cls >= 0, f"incorrect class index {cls}"
125
+
126
+ # Write YOLO label
127
+ if image_id not in shapes:
128
+ shapes[image_id] = Image.open(image_file).size
129
+ box = xyxy2xywhn(box[None].astype(float), w=shapes[image_id][0], h=shapes[image_id][1], clip=True)
130
+ with open((labels / image_id).with_suffix(".txt"), "a", encoding="utf-8") as f:
131
+ f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
132
+ except Exception as e:
133
+ print(f"WARNING: skipping one label for {image_file}: {e}")
134
+
135
+
136
+ # Download manually from https://challenge.xviewdataset.org
137
+ dir = Path(yaml["path"]) # dataset root dir
138
+ # urls = [
139
+ # "https://d307kc0mrhucc3.cloudfront.net/train_labels.zip", # train labels
140
+ # "https://d307kc0mrhucc3.cloudfront.net/train_images.zip", # 15G, 847 train images
141
+ # "https://d307kc0mrhucc3.cloudfront.net/val_images.zip", # 5G, 282 val images (no labels)
142
+ # ]
143
+ # download(urls, dir=dir)
144
+
145
+ # Convert labels
146
+ convert_labels(dir / "xView_train.geojson")
147
+
148
+ # Move images
149
+ images = Path(dir / "images")
150
+ images.mkdir(parents=True, exist_ok=True)
151
+ Path(dir / "train_images").rename(dir / "images" / "train")
152
+ Path(dir / "val_images").rename(dir / "images" / "val")
153
+
154
+ # Split
155
+ autosplit(dir / "images" / "train")
@@ -0,0 +1,130 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Global configuration YAML with settings and hyperparameters for YOLO training, validation, prediction and export
4
+ # For documentation see https://docs.ultralytics.com/usage/cfg/
5
+
6
+ task: detect # (str) YOLO task, i.e. detect, segment, classify, pose, obb
7
+ mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark
8
+
9
+ # Train settings -------------------------------------------------------------------------------------------------------
10
+ model: # (str, optional) path to model file, i.e. yolov8n.pt or yolov8n.yaml
11
+ data: # (str, optional) path to data file, i.e. coco8.yaml
12
+ epochs: 100 # (int) number of epochs to train for
13
+ time: # (float, optional) max hours to train; overrides epochs if set
14
+ patience: 100 # (int) early stop after N epochs without val improvement
15
+ batch: 16 # (int) batch size; use -1 for AutoBatch
16
+ imgsz: 640 # (int | list) train/val use int (square); predict/export may use [h,w]
17
+ save: True # (bool) save train checkpoints and predict results
18
+ save_period: -1 # (int) save checkpoint every N epochs; disabled if < 1
19
+ cache: False # (bool | str) cache images in RAM (True/'ram') or on 'disk' to speed dataloading; False disables
20
+ device: # (int | str | list) device: 0 or [0,1,2,3] for CUDA, 'cpu'/'mps', or -1/[-1,-1] to auto-select idle GPUs
21
+ workers: 8 # (int) dataloader workers (per RANK if DDP)
22
+ project: # (str, optional) project name for results root
23
+ name: # (str, optional) experiment name; results in 'project/name'
24
+ exist_ok: False # (bool) overwrite existing 'project/name' if True
25
+ pretrained: True # (bool | str) use pretrained weights (bool) or load weights from path (str)
26
+ optimizer: auto # (str) optimizer: SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, or auto
27
+ verbose: True # (bool) print verbose logs during training/val
28
+ seed: 0 # (int) random seed for reproducibility
29
+ deterministic: True # (bool) enable deterministic ops; reproducible but may be slower
30
+ single_cls: False # (bool) treat all classes as a single class
31
+ rect: False # (bool) rectangular batches for train; rectangular batching for val when mode='val'
32
+ cos_lr: False # (bool) cosine learning rate scheduler
33
+ close_mosaic: 10 # (int) disable mosaic augmentation for final N epochs (0 to keep enabled)
34
+ resume: False # (bool) resume training from last checkpoint in the run dir
35
+ amp: True # (bool) Automatic Mixed Precision (AMP) training; True runs AMP capability check
36
+ fraction: 1.0 # (float) fraction of training dataset to use (1.0 = all)
37
+ profile: False # (bool) profile ONNX/TensorRT speeds during training for loggers
38
+ freeze: # (int | list, optional) freeze first N layers (int) or specific layer indices (list)
39
+ multi_scale: False # (bool) multiscale training by varying image size
40
+ compile: False # (bool | str) enable torch.compile() backend='inductor'; True="default", False=off, or "default|reduce-overhead|max-autotune-no-cudagraphs"
41
+
42
+ # Segmentation
43
+ overlap_mask: True # (bool) merge instance masks into one mask during training (segment only)
44
+ mask_ratio: 4 # (int) mask downsample ratio (segment only)
45
+
46
+ # Classification
47
+ dropout: 0.0 # (float) dropout for classification head (classify only)
48
+
49
+ # Val/Test settings ----------------------------------------------------------------------------------------------------
50
+ val: True # (bool) run validation/testing during training
51
+ split: val # (str) dataset split to evaluate: 'val', 'test' or 'train'
52
+ save_json: False # (bool) save results to COCO JSON for external evaluation
53
+ conf: # (float, optional) confidence threshold; defaults: predict=0.25, val=0.001
54
+ iou: 0.7 # (float) IoU threshold used for NMS
55
+ max_det: 300 # (int) maximum number of detections per image
56
+ half: False # (bool) use half precision (FP16) if supported
57
+ dnn: False # (bool) use OpenCV DNN for ONNX inference
58
+ plots: True # (bool) save plots and images during train/val
59
+
60
+ # Predict settings -----------------------------------------------------------------------------------------------------
61
+ source: # (str, optional) path/dir/URL/stream for images or videos; e.g. 'ultralytics/assets' or '0' for webcam
62
+ vid_stride: 1 # (int) read every Nth frame for video sources
63
+ stream_buffer: False # (bool) True buffers all frames; False keeps the most recent frame for low-latency streams
64
+ visualize: False # (bool) visualize model features (predict) or TP/FP/FN confusion (val)
65
+ augment: False # (bool) apply test-time augmentation during prediction
66
+ agnostic_nms: False # (bool) class-agnostic NMS
67
+ classes: # (int | list[int], optional) filter by class id(s), e.g. 0 or [0,2,3]
68
+ retina_masks: False # (bool) use high-resolution segmentation masks (segment)
69
+ embed: # (list[int], optional) return feature embeddings from given layer indices
70
+
71
+ # Visualize settings ---------------------------------------------------------------------------------------------------
72
+ show: False # (bool) show images/videos in a window if supported
73
+ save_frames: False # (bool) save individual frames from video predictions
74
+ save_txt: False # (bool) save results as .txt files (xywh format)
75
+ save_conf: False # (bool) save confidence scores with results
76
+ save_crop: False # (bool) save cropped prediction regions to files
77
+ show_labels: True # (bool) draw class labels on images, e.g. 'person'
78
+ show_conf: True # (bool) draw confidence values on images, e.g. '0.99'
79
+ show_boxes: True # (bool) draw bounding boxes on images
80
+ line_width: # (int, optional) line width of boxes; auto-scales with image size if not set
81
+
82
+ # Export settings ------------------------------------------------------------------------------------------------------
83
+ format: torchscript # (str) target format, e.g. torchscript|onnx|openvino|engine|coreml|saved_model|pb|tflite|edgetpu|tfjs|paddle|mnn|ncnn|imx|rknn|executorch
84
+ keras: False # (bool) TF SavedModel only (format=saved_model); enable Keras layers during export
85
+ optimize: False # (bool) TorchScript only; apply mobile optimizations to the scripted model
86
+ int8: False # (bool) INT8/PTQ where supported (openvino, tflite, tfjs, engine, imx); needs calibration data/fraction
87
+ dynamic: False # (bool) dynamic shapes for torchscript, onnx, openvino, engine; enable variable image sizes
88
+ simplify: True # (bool) ONNX/engine only; run graph simplifier for cleaner ONNX before runtime conversion
89
+ opset: # (int, optional) ONNX/engine only; opset version for export; leave unset to use a tested default
90
+ workspace: # (float, optional) engine (TensorRT) only; workspace size in GiB, e.g. 4
91
+ nms: False # (bool) fuse NMS into exported model when backend supports; if True, conf/iou apply (agnostic_nms except coreml)
92
+
93
+ # Hyperparameters ------------------------------------------------------------------------------------------------------
94
+ lr0: 0.01 # (float) initial learning rate (SGD=1e-2, Adam/AdamW=1e-3)
95
+ lrf: 0.01 # (float) final LR fraction; final LR = lr0 * lrf
96
+ momentum: 0.937 # (float) SGD momentum or Adam beta1
97
+ weight_decay: 0.0005 # (float) weight decay (L2 regularization)
98
+ warmup_epochs: 3.0 # (float) warmup epochs (fractions allowed)
99
+ warmup_momentum: 0.8 # (float) initial momentum during warmup
100
+ warmup_bias_lr: 0.1 # (float) bias learning rate during warmup
101
+ box: 7.5 # (float) box loss gain
102
+ cls: 0.5 # (float) classification loss gain
103
+ dfl: 1.5 # (float) distribution focal loss gain
104
+ pose: 12.0 # (float) pose loss gain (pose tasks)
105
+ kobj: 1.0 # (float) keypoint objectness loss gain (pose tasks)
106
+ nbs: 64 # (int) nominal batch size used for loss normalization
107
+ hsv_h: 0.015 # (float) HSV hue augmentation fraction
108
+ hsv_s: 0.7 # (float) HSV saturation augmentation fraction
109
+ hsv_v: 0.4 # (float) HSV value (brightness) augmentation fraction
110
+ degrees: 0.0 # (float) rotation degrees (+/-)
111
+ translate: 0.1 # (float) translation fraction (+/-)
112
+ scale: 0.5 # (float) scale gain (+/-)
113
+ shear: 0.0 # (float) shear degrees (+/-)
114
+ perspective: 0.0 # (float) perspective fraction (0–0.001 typical)
115
+ flipud: 0.0 # (float) vertical flip probability
116
+ fliplr: 0.5 # (float) horizontal flip probability
117
+ bgr: 0.0 # (float) RGB↔BGR channel swap probability
118
+ mosaic: 1.0 # (float) mosaic augmentation probability
119
+ mixup: 0.0 # (float) MixUp augmentation probability
120
+ cutmix: 0.0 # (float) CutMix augmentation probability
121
+ copy_paste: 0.0 # (float) segmentation copy-paste probability
122
+ copy_paste_mode: flip # (str) copy-paste strategy for segmentation: flip or mixup
123
+ auto_augment: randaugment # (str) classification auto augmentation policy: randaugment, autoaugment, augmix
124
+ erasing: 0.4 # (float) random erasing probability for classification (0–0.9), <1.0
125
+
126
+ # Custom config.yaml ---------------------------------------------------------------------------------------------------
127
+ cfg: # (str, optional) path to a config.yaml that overrides defaults
128
+
129
+ # Tracker settings ------------------------------------------------------------------------------------------------------
130
+ tracker: botsort.yaml # (str) tracker config file: botsort.yaml or bytetrack.yaml
@@ -0,0 +1,17 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLO11-cls image classification model with ResNet18 backbone
4
+ # Model docs: https://docs.ultralytics.com/models/yolo11
5
+ # Task docs: https://docs.ultralytics.com/tasks/classify
6
+
7
+ # Parameters
8
+ nc: 1000 # number of classes
9
+
10
+ # ResNet18 backbone
11
+ backbone:
12
+ # [from, repeats, module, args]
13
+ - [-1, 1, TorchVision, [512, resnet18, DEFAULT, True, 2]] # truncate two layers from the end
14
+
15
+ # YOLO11n head
16
+ head:
17
+ - [-1, 1, Classify, [nc]] # Classify
@@ -0,0 +1,33 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLO11-cls image classification model
4
+ # Model docs: https://docs.ultralytics.com/models/yolo11
5
+ # Task docs: https://docs.ultralytics.com/tasks/classify
6
+
7
+ # Parameters
8
+ nc: 1000 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo11n-cls.yaml' will call yolo11-cls.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 86 layers, 1633584 parameters, 1633584 gradients, 0.5 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 86 layers, 5545488 parameters, 5545488 gradients, 1.6 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 106 layers, 10455696 parameters, 10455696 gradients, 5.0 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 176 layers, 12937104 parameters, 12937104 gradients, 6.2 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 176 layers, 28458544 parameters, 28458544 gradients, 13.7 GFLOPs
16
+
17
+ # YOLO11n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 2, C3k2, [512, True]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 2, C3k2, [1024, True]]
29
+ - [-1, 2, C2PSA, [1024]] # 9
30
+
31
+ # YOLO11n head
32
+ head:
33
+ - [-1, 1, Classify, [nc]] # Classify
@@ -0,0 +1,50 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLO11-obb Oriented Bounding Boxes (OBB) model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo11
5
+ # Task docs: https://docs.ultralytics.com/tasks/obb
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo11n-obb.yaml' will call yolo11-obb.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 196 layers, 2695747 parameters, 2695731 gradients, 6.9 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 196 layers, 9744931 parameters, 9744915 gradients, 22.7 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 246 layers, 20963523 parameters, 20963507 gradients, 72.2 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 372 layers, 26220995 parameters, 26220979 gradients, 91.3 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 372 layers, 58875331 parameters, 58875315 gradients, 204.3 GFLOPs
16
+
17
+ # YOLO11n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 2, C3k2, [512, True]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 2, C3k2, [1024, True]]
29
+ - [-1, 1, SPPF, [1024, 5]] # 9
30
+ - [-1, 2, C2PSA, [1024]] # 10
31
+
32
+ # YOLO11n head
33
+ head:
34
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
35
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
36
+ - [-1, 2, C3k2, [512, False]] # 13
37
+
38
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
39
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
40
+ - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
41
+
42
+ - [-1, 1, Conv, [256, 3, 2]]
43
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
44
+ - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
45
+
46
+ - [-1, 1, Conv, [512, 3, 2]]
47
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
48
+ - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
49
+
50
+ - [[16, 19, 22], 1, OBB, [nc, 1]] # Detect(P3, P4, P5)
@@ -0,0 +1,51 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLO11-pose keypoints/pose estimation model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo11
5
+ # Task docs: https://docs.ultralytics.com/tasks/pose
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
10
+ scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11-pose.yaml with scale 'n'
11
+ # [depth, width, max_channels]
12
+ n: [0.50, 0.25, 1024] # summary: 196 layers, 2908507 parameters, 2908491 gradients, 7.7 GFLOPs
13
+ s: [0.50, 0.50, 1024] # summary: 196 layers, 9948811 parameters, 9948795 gradients, 23.5 GFLOPs
14
+ m: [0.50, 1.00, 512] # summary: 246 layers, 20973273 parameters, 20973257 gradients, 72.3 GFLOPs
15
+ l: [1.00, 1.00, 512] # summary: 372 layers, 26230745 parameters, 26230729 gradients, 91.4 GFLOPs
16
+ x: [1.00, 1.50, 512] # summary: 372 layers, 58889881 parameters, 58889865 gradients, 204.3 GFLOPs
17
+
18
+ # YOLO11n backbone
19
+ backbone:
20
+ # [from, repeats, module, args]
21
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
22
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
23
+ - [-1, 2, C3k2, [256, False, 0.25]]
24
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
25
+ - [-1, 2, C3k2, [512, False, 0.25]]
26
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
27
+ - [-1, 2, C3k2, [512, True]]
28
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
29
+ - [-1, 2, C3k2, [1024, True]]
30
+ - [-1, 1, SPPF, [1024, 5]] # 9
31
+ - [-1, 2, C2PSA, [1024]] # 10
32
+
33
+ # YOLO11n head
34
+ head:
35
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
36
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
37
+ - [-1, 2, C3k2, [512, False]] # 13
38
+
39
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
40
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
41
+ - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
42
+
43
+ - [-1, 1, Conv, [256, 3, 2]]
44
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
45
+ - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
46
+
47
+ - [-1, 1, Conv, [512, 3, 2]]
48
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
49
+ - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
50
+
51
+ - [[16, 19, 22], 1, Pose, [nc, kpt_shape]] # Detect(P3, P4, P5)
@@ -0,0 +1,50 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLO11-seg instance segmentation model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo11
5
+ # Task docs: https://docs.ultralytics.com/tasks/segment
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo11n-seg.yaml' will call yolo11-seg.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 203 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 203 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 253 layers, 22420896 parameters, 22420880 gradients, 123.9 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 379 layers, 27678368 parameters, 27678352 gradients, 143.0 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 379 layers, 62142656 parameters, 62142640 gradients, 320.2 GFLOPs
16
+
17
+ # YOLO11n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 2, C3k2, [512, True]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 2, C3k2, [1024, True]]
29
+ - [-1, 1, SPPF, [1024, 5]] # 9
30
+ - [-1, 2, C2PSA, [1024]] # 10
31
+
32
+ # YOLO11n head
33
+ head:
34
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
35
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
36
+ - [-1, 2, C3k2, [512, False]] # 13
37
+
38
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
39
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
40
+ - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
41
+
42
+ - [-1, 1, Conv, [256, 3, 2]]
43
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
44
+ - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
45
+
46
+ - [-1, 1, Conv, [512, 3, 2]]
47
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
48
+ - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
49
+
50
+ - [[16, 19, 22], 1, Segment, [nc, 32, 256]] # Detect(P3, P4, P5)
@@ -0,0 +1,50 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLO11 object detection model with P3/8 - P5/32 outputs
4
+ # Model docs: https://docs.ultralytics.com/models/yolo11
5
+ # Task docs: https://docs.ultralytics.com/tasks/detect
6
+
7
+ # Parameters
8
+ nc: 80 # number of classes
9
+ scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
10
+ # [depth, width, max_channels]
11
+ n: [0.50, 0.25, 1024] # summary: 181 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
12
+ s: [0.50, 0.50, 1024] # summary: 181 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
13
+ m: [0.50, 1.00, 512] # summary: 231 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
14
+ l: [1.00, 1.00, 512] # summary: 357 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
15
+ x: [1.00, 1.50, 512] # summary: 357 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
16
+
17
+ # YOLO11n backbone
18
+ backbone:
19
+ # [from, repeats, module, args]
20
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
21
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
22
+ - [-1, 2, C3k2, [256, False, 0.25]]
23
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
24
+ - [-1, 2, C3k2, [512, False, 0.25]]
25
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
26
+ - [-1, 2, C3k2, [512, True]]
27
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
28
+ - [-1, 2, C3k2, [1024, True]]
29
+ - [-1, 1, SPPF, [1024, 5]] # 9
30
+ - [-1, 2, C2PSA, [1024]] # 10
31
+
32
+ # YOLO11n head
33
+ head:
34
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
35
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
36
+ - [-1, 2, C3k2, [512, False]] # 13
37
+
38
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
39
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
40
+ - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
41
+
42
+ - [-1, 1, Conv, [256, 3, 2]]
43
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
44
+ - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
45
+
46
+ - [-1, 1, Conv, [512, 3, 2]]
47
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
48
+ - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
49
+
50
+ - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -0,0 +1,48 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Ultralytics YOLOE-11-seg instance segmentation model. For usage examples, see https://docs.ultralytics.com/tasks/segment
4
+
5
+ # Parameters
6
+ nc: 80 # number of classes
7
+ scales: # model compound scaling constants, i.e. 'model=yoloe-11n-seg.yaml' will call yoloe-11-seg.yaml with scale 'n'
8
+ # [depth, width, max_channels]
9
+ n: [0.50, 0.25, 1024] # summary: 355 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPs
10
+ s: [0.50, 0.50, 1024] # summary: 355 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPs
11
+ m: [0.50, 1.00, 512] # summary: 445 layers, 22420896 parameters, 22420880 gradients, 123.9 GFLOPs
12
+ l: [1.00, 1.00, 512] # summary: 667 layers, 27678368 parameters, 27678352 gradients, 143.0 GFLOPs
13
+ x: [1.00, 1.50, 512] # summary: 667 layers, 62142656 parameters, 62142640 gradients, 320.2 GFLOPs
14
+
15
+ # YOLO11n backbone
16
+ backbone:
17
+ # [from, repeats, module, args]
18
+ - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
19
+ - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
20
+ - [-1, 2, C3k2, [256, False, 0.25]]
21
+ - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
22
+ - [-1, 2, C3k2, [512, False, 0.25]]
23
+ - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
24
+ - [-1, 2, C3k2, [512, True]]
25
+ - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
26
+ - [-1, 2, C3k2, [1024, True]]
27
+ - [-1, 1, SPPF, [1024, 5]] # 9
28
+ - [-1, 2, C2PSA, [1024]] # 10
29
+
30
+ # YOLO11n head
31
+ head:
32
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
33
+ - [[-1, 6], 1, Concat, [1]] # cat backbone P4
34
+ - [-1, 2, C3k2, [512, False]] # 13
35
+
36
+ - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
37
+ - [[-1, 4], 1, Concat, [1]] # cat backbone P3
38
+ - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
39
+
40
+ - [-1, 1, Conv, [256, 3, 2]]
41
+ - [[-1, 13], 1, Concat, [1]] # cat head P4
42
+ - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
43
+
44
+ - [-1, 1, Conv, [512, 3, 2]]
45
+ - [[-1, 10], 1, Concat, [1]] # cat head P5
46
+ - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
47
+
48
+ - [[16, 19, 22], 1, YOLOESegment, [nc, 32, 256, 512, True]] # Detect(P3, P4, P5)