dgenerate-ultralytics-headless 8.3.253__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dgenerate_ultralytics_headless-8.3.253.dist-info/METADATA +405 -0
- dgenerate_ultralytics_headless-8.3.253.dist-info/RECORD +299 -0
- dgenerate_ultralytics_headless-8.3.253.dist-info/WHEEL +5 -0
- dgenerate_ultralytics_headless-8.3.253.dist-info/entry_points.txt +3 -0
- dgenerate_ultralytics_headless-8.3.253.dist-info/licenses/LICENSE +661 -0
- dgenerate_ultralytics_headless-8.3.253.dist-info/top_level.txt +1 -0
- tests/__init__.py +23 -0
- tests/conftest.py +59 -0
- tests/test_cli.py +131 -0
- tests/test_cuda.py +216 -0
- tests/test_engine.py +157 -0
- tests/test_exports.py +309 -0
- tests/test_integrations.py +151 -0
- tests/test_python.py +777 -0
- tests/test_solutions.py +371 -0
- ultralytics/__init__.py +48 -0
- ultralytics/assets/bus.jpg +0 -0
- ultralytics/assets/zidane.jpg +0 -0
- ultralytics/cfg/__init__.py +1028 -0
- ultralytics/cfg/datasets/Argoverse.yaml +78 -0
- ultralytics/cfg/datasets/DOTAv1.5.yaml +37 -0
- ultralytics/cfg/datasets/DOTAv1.yaml +36 -0
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +68 -0
- ultralytics/cfg/datasets/HomeObjects-3K.yaml +32 -0
- ultralytics/cfg/datasets/ImageNet.yaml +2025 -0
- ultralytics/cfg/datasets/Objects365.yaml +447 -0
- ultralytics/cfg/datasets/SKU-110K.yaml +58 -0
- ultralytics/cfg/datasets/TT100K.yaml +346 -0
- ultralytics/cfg/datasets/VOC.yaml +102 -0
- ultralytics/cfg/datasets/VisDrone.yaml +87 -0
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +22 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +44 -0
- ultralytics/cfg/datasets/coco-pose.yaml +64 -0
- ultralytics/cfg/datasets/coco.yaml +118 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco128.yaml +101 -0
- ultralytics/cfg/datasets/coco8-grayscale.yaml +103 -0
- ultralytics/cfg/datasets/coco8-multispectral.yaml +104 -0
- ultralytics/cfg/datasets/coco8-pose.yaml +47 -0
- ultralytics/cfg/datasets/coco8-seg.yaml +101 -0
- ultralytics/cfg/datasets/coco8.yaml +101 -0
- ultralytics/cfg/datasets/construction-ppe.yaml +32 -0
- ultralytics/cfg/datasets/crack-seg.yaml +22 -0
- ultralytics/cfg/datasets/dog-pose.yaml +52 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +38 -0
- ultralytics/cfg/datasets/dota8.yaml +35 -0
- ultralytics/cfg/datasets/hand-keypoints.yaml +50 -0
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +1240 -0
- ultralytics/cfg/datasets/medical-pills.yaml +21 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +663 -0
- ultralytics/cfg/datasets/package-seg.yaml +22 -0
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +41 -0
- ultralytics/cfg/datasets/xView.yaml +155 -0
- ultralytics/cfg/default.yaml +130 -0
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +17 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +48 -0
- ultralytics/cfg/models/11/yoloe-11.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-cls.yaml +32 -0
- ultralytics/cfg/models/12/yolo12-obb.yaml +48 -0
- ultralytics/cfg/models/12/yolo12-pose.yaml +49 -0
- ultralytics/cfg/models/12/yolo12-seg.yaml +48 -0
- ultralytics/cfg/models/12/yolo12.yaml +48 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +53 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +45 -0
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +57 -0
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +49 -0
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +40 -0
- ultralytics/cfg/models/v3/yolov3.yaml +49 -0
- ultralytics/cfg/models/v5/yolov5-p6.yaml +62 -0
- ultralytics/cfg/models/v5/yolov5.yaml +51 -0
- ultralytics/cfg/models/v6/yolov6.yaml +56 -0
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +48 -0
- ultralytics/cfg/models/v8/yoloe-v8.yaml +48 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +28 -0
- ultralytics/cfg/models/v8/yolov8-cls.yaml +32 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +58 -0
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-obb.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-p2.yaml +57 -0
- ultralytics/cfg/models/v8/yolov8-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +60 -0
- ultralytics/cfg/models/v8/yolov8-pose.yaml +50 -0
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +59 -0
- ultralytics/cfg/models/v8/yolov8-seg.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8-world.yaml +51 -0
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +49 -0
- ultralytics/cfg/models/v8/yolov8.yaml +49 -0
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/trackers/botsort.yaml +21 -0
- ultralytics/cfg/trackers/bytetrack.yaml +12 -0
- ultralytics/data/__init__.py +26 -0
- ultralytics/data/annotator.py +66 -0
- ultralytics/data/augment.py +2801 -0
- ultralytics/data/base.py +435 -0
- ultralytics/data/build.py +437 -0
- ultralytics/data/converter.py +855 -0
- ultralytics/data/dataset.py +834 -0
- ultralytics/data/loaders.py +704 -0
- ultralytics/data/scripts/download_weights.sh +18 -0
- ultralytics/data/scripts/get_coco.sh +61 -0
- ultralytics/data/scripts/get_coco128.sh +18 -0
- ultralytics/data/scripts/get_imagenet.sh +52 -0
- ultralytics/data/split.py +138 -0
- ultralytics/data/split_dota.py +344 -0
- ultralytics/data/utils.py +798 -0
- ultralytics/engine/__init__.py +1 -0
- ultralytics/engine/exporter.py +1580 -0
- ultralytics/engine/model.py +1125 -0
- ultralytics/engine/predictor.py +508 -0
- ultralytics/engine/results.py +1522 -0
- ultralytics/engine/trainer.py +977 -0
- ultralytics/engine/tuner.py +449 -0
- ultralytics/engine/validator.py +387 -0
- ultralytics/hub/__init__.py +166 -0
- ultralytics/hub/auth.py +151 -0
- ultralytics/hub/google/__init__.py +174 -0
- ultralytics/hub/session.py +422 -0
- ultralytics/hub/utils.py +162 -0
- ultralytics/models/__init__.py +9 -0
- ultralytics/models/fastsam/__init__.py +7 -0
- ultralytics/models/fastsam/model.py +79 -0
- ultralytics/models/fastsam/predict.py +169 -0
- ultralytics/models/fastsam/utils.py +23 -0
- ultralytics/models/fastsam/val.py +38 -0
- ultralytics/models/nas/__init__.py +7 -0
- ultralytics/models/nas/model.py +98 -0
- ultralytics/models/nas/predict.py +56 -0
- ultralytics/models/nas/val.py +38 -0
- ultralytics/models/rtdetr/__init__.py +7 -0
- ultralytics/models/rtdetr/model.py +63 -0
- ultralytics/models/rtdetr/predict.py +88 -0
- ultralytics/models/rtdetr/train.py +89 -0
- ultralytics/models/rtdetr/val.py +216 -0
- ultralytics/models/sam/__init__.py +25 -0
- ultralytics/models/sam/amg.py +275 -0
- ultralytics/models/sam/build.py +365 -0
- ultralytics/models/sam/build_sam3.py +377 -0
- ultralytics/models/sam/model.py +169 -0
- ultralytics/models/sam/modules/__init__.py +1 -0
- ultralytics/models/sam/modules/blocks.py +1067 -0
- ultralytics/models/sam/modules/decoders.py +495 -0
- ultralytics/models/sam/modules/encoders.py +794 -0
- ultralytics/models/sam/modules/memory_attention.py +298 -0
- ultralytics/models/sam/modules/sam.py +1160 -0
- ultralytics/models/sam/modules/tiny_encoder.py +979 -0
- ultralytics/models/sam/modules/transformer.py +344 -0
- ultralytics/models/sam/modules/utils.py +512 -0
- ultralytics/models/sam/predict.py +3940 -0
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +529 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +199 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +339 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/vitdet.py +547 -0
- ultralytics/models/sam/sam3/vl_combiner.py +160 -0
- ultralytics/models/utils/__init__.py +1 -0
- ultralytics/models/utils/loss.py +466 -0
- ultralytics/models/utils/ops.py +315 -0
- ultralytics/models/yolo/__init__.py +7 -0
- ultralytics/models/yolo/classify/__init__.py +7 -0
- ultralytics/models/yolo/classify/predict.py +90 -0
- ultralytics/models/yolo/classify/train.py +202 -0
- ultralytics/models/yolo/classify/val.py +216 -0
- ultralytics/models/yolo/detect/__init__.py +7 -0
- ultralytics/models/yolo/detect/predict.py +122 -0
- ultralytics/models/yolo/detect/train.py +227 -0
- ultralytics/models/yolo/detect/val.py +507 -0
- ultralytics/models/yolo/model.py +430 -0
- ultralytics/models/yolo/obb/__init__.py +7 -0
- ultralytics/models/yolo/obb/predict.py +56 -0
- ultralytics/models/yolo/obb/train.py +79 -0
- ultralytics/models/yolo/obb/val.py +302 -0
- ultralytics/models/yolo/pose/__init__.py +7 -0
- ultralytics/models/yolo/pose/predict.py +65 -0
- ultralytics/models/yolo/pose/train.py +110 -0
- ultralytics/models/yolo/pose/val.py +248 -0
- ultralytics/models/yolo/segment/__init__.py +7 -0
- ultralytics/models/yolo/segment/predict.py +109 -0
- ultralytics/models/yolo/segment/train.py +69 -0
- ultralytics/models/yolo/segment/val.py +307 -0
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +173 -0
- ultralytics/models/yolo/world/train_world.py +178 -0
- ultralytics/models/yolo/yoloe/__init__.py +22 -0
- ultralytics/models/yolo/yoloe/predict.py +162 -0
- ultralytics/models/yolo/yoloe/train.py +287 -0
- ultralytics/models/yolo/yoloe/train_seg.py +122 -0
- ultralytics/models/yolo/yoloe/val.py +206 -0
- ultralytics/nn/__init__.py +27 -0
- ultralytics/nn/autobackend.py +964 -0
- ultralytics/nn/modules/__init__.py +182 -0
- ultralytics/nn/modules/activation.py +54 -0
- ultralytics/nn/modules/block.py +1947 -0
- ultralytics/nn/modules/conv.py +669 -0
- ultralytics/nn/modules/head.py +1183 -0
- ultralytics/nn/modules/transformer.py +793 -0
- ultralytics/nn/modules/utils.py +159 -0
- ultralytics/nn/tasks.py +1768 -0
- ultralytics/nn/text_model.py +356 -0
- ultralytics/py.typed +1 -0
- ultralytics/solutions/__init__.py +41 -0
- ultralytics/solutions/ai_gym.py +108 -0
- ultralytics/solutions/analytics.py +264 -0
- ultralytics/solutions/config.py +107 -0
- ultralytics/solutions/distance_calculation.py +123 -0
- ultralytics/solutions/heatmap.py +125 -0
- ultralytics/solutions/instance_segmentation.py +86 -0
- ultralytics/solutions/object_blurrer.py +89 -0
- ultralytics/solutions/object_counter.py +190 -0
- ultralytics/solutions/object_cropper.py +87 -0
- ultralytics/solutions/parking_management.py +280 -0
- ultralytics/solutions/queue_management.py +93 -0
- ultralytics/solutions/region_counter.py +133 -0
- ultralytics/solutions/security_alarm.py +151 -0
- ultralytics/solutions/similarity_search.py +219 -0
- ultralytics/solutions/solutions.py +828 -0
- ultralytics/solutions/speed_estimation.py +114 -0
- ultralytics/solutions/streamlit_inference.py +260 -0
- ultralytics/solutions/templates/similarity-search.html +156 -0
- ultralytics/solutions/trackzone.py +88 -0
- ultralytics/solutions/vision_eye.py +67 -0
- ultralytics/trackers/__init__.py +7 -0
- ultralytics/trackers/basetrack.py +115 -0
- ultralytics/trackers/bot_sort.py +257 -0
- ultralytics/trackers/byte_tracker.py +469 -0
- ultralytics/trackers/track.py +116 -0
- ultralytics/trackers/utils/__init__.py +1 -0
- ultralytics/trackers/utils/gmc.py +339 -0
- ultralytics/trackers/utils/kalman_filter.py +482 -0
- ultralytics/trackers/utils/matching.py +154 -0
- ultralytics/utils/__init__.py +1450 -0
- ultralytics/utils/autobatch.py +118 -0
- ultralytics/utils/autodevice.py +205 -0
- ultralytics/utils/benchmarks.py +728 -0
- ultralytics/utils/callbacks/__init__.py +5 -0
- ultralytics/utils/callbacks/base.py +233 -0
- ultralytics/utils/callbacks/clearml.py +146 -0
- ultralytics/utils/callbacks/comet.py +625 -0
- ultralytics/utils/callbacks/dvc.py +197 -0
- ultralytics/utils/callbacks/hub.py +110 -0
- ultralytics/utils/callbacks/mlflow.py +134 -0
- ultralytics/utils/callbacks/neptune.py +126 -0
- ultralytics/utils/callbacks/platform.py +453 -0
- ultralytics/utils/callbacks/raytune.py +42 -0
- ultralytics/utils/callbacks/tensorboard.py +123 -0
- ultralytics/utils/callbacks/wb.py +188 -0
- ultralytics/utils/checks.py +1020 -0
- ultralytics/utils/cpu.py +85 -0
- ultralytics/utils/dist.py +123 -0
- ultralytics/utils/downloads.py +529 -0
- ultralytics/utils/errors.py +35 -0
- ultralytics/utils/events.py +113 -0
- ultralytics/utils/export/__init__.py +7 -0
- ultralytics/utils/export/engine.py +237 -0
- ultralytics/utils/export/imx.py +325 -0
- ultralytics/utils/export/tensorflow.py +231 -0
- ultralytics/utils/files.py +219 -0
- ultralytics/utils/git.py +137 -0
- ultralytics/utils/instance.py +484 -0
- ultralytics/utils/logger.py +506 -0
- ultralytics/utils/loss.py +849 -0
- ultralytics/utils/metrics.py +1563 -0
- ultralytics/utils/nms.py +337 -0
- ultralytics/utils/ops.py +664 -0
- ultralytics/utils/patches.py +201 -0
- ultralytics/utils/plotting.py +1047 -0
- ultralytics/utils/tal.py +404 -0
- ultralytics/utils/torch_utils.py +984 -0
- ultralytics/utils/tqdm.py +443 -0
- ultralytics/utils/triton.py +112 -0
- ultralytics/utils/tuner.py +168 -0
|
@@ -0,0 +1,447 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# Objects365 dataset https://www.objects365.org/ by Megvii
|
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
|
|
5
|
+
# Example usage: yolo train data=Objects365.yaml
|
|
6
|
+
# parent
|
|
7
|
+
# ├── ultralytics
|
|
8
|
+
# └── datasets
|
|
9
|
+
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
|
|
10
|
+
|
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
12
|
+
path: Objects365 # dataset root dir
|
|
13
|
+
train: images/train # train images (relative to 'path') 1742289 images
|
|
14
|
+
val: images/val # val images (relative to 'path') 80000 images
|
|
15
|
+
test: # test images (optional)
|
|
16
|
+
|
|
17
|
+
# Classes
|
|
18
|
+
names:
|
|
19
|
+
0: Person
|
|
20
|
+
1: Sneakers
|
|
21
|
+
2: Chair
|
|
22
|
+
3: Other Shoes
|
|
23
|
+
4: Hat
|
|
24
|
+
5: Car
|
|
25
|
+
6: Lamp
|
|
26
|
+
7: Glasses
|
|
27
|
+
8: Bottle
|
|
28
|
+
9: Desk
|
|
29
|
+
10: Cup
|
|
30
|
+
11: Street Lights
|
|
31
|
+
12: Cabinet/shelf
|
|
32
|
+
13: Handbag/Satchel
|
|
33
|
+
14: Bracelet
|
|
34
|
+
15: Plate
|
|
35
|
+
16: Picture/Frame
|
|
36
|
+
17: Helmet
|
|
37
|
+
18: Book
|
|
38
|
+
19: Gloves
|
|
39
|
+
20: Storage box
|
|
40
|
+
21: Boat
|
|
41
|
+
22: Leather Shoes
|
|
42
|
+
23: Flower
|
|
43
|
+
24: Bench
|
|
44
|
+
25: Potted Plant
|
|
45
|
+
26: Bowl/Basin
|
|
46
|
+
27: Flag
|
|
47
|
+
28: Pillow
|
|
48
|
+
29: Boots
|
|
49
|
+
30: Vase
|
|
50
|
+
31: Microphone
|
|
51
|
+
32: Necklace
|
|
52
|
+
33: Ring
|
|
53
|
+
34: SUV
|
|
54
|
+
35: Wine Glass
|
|
55
|
+
36: Belt
|
|
56
|
+
37: Monitor/TV
|
|
57
|
+
38: Backpack
|
|
58
|
+
39: Umbrella
|
|
59
|
+
40: Traffic Light
|
|
60
|
+
41: Speaker
|
|
61
|
+
42: Watch
|
|
62
|
+
43: Tie
|
|
63
|
+
44: Trash bin Can
|
|
64
|
+
45: Slippers
|
|
65
|
+
46: Bicycle
|
|
66
|
+
47: Stool
|
|
67
|
+
48: Barrel/bucket
|
|
68
|
+
49: Van
|
|
69
|
+
50: Couch
|
|
70
|
+
51: Sandals
|
|
71
|
+
52: Basket
|
|
72
|
+
53: Drum
|
|
73
|
+
54: Pen/Pencil
|
|
74
|
+
55: Bus
|
|
75
|
+
56: Wild Bird
|
|
76
|
+
57: High Heels
|
|
77
|
+
58: Motorcycle
|
|
78
|
+
59: Guitar
|
|
79
|
+
60: Carpet
|
|
80
|
+
61: Cell Phone
|
|
81
|
+
62: Bread
|
|
82
|
+
63: Camera
|
|
83
|
+
64: Canned
|
|
84
|
+
65: Truck
|
|
85
|
+
66: Traffic cone
|
|
86
|
+
67: Cymbal
|
|
87
|
+
68: Lifesaver
|
|
88
|
+
69: Towel
|
|
89
|
+
70: Stuffed Toy
|
|
90
|
+
71: Candle
|
|
91
|
+
72: Sailboat
|
|
92
|
+
73: Laptop
|
|
93
|
+
74: Awning
|
|
94
|
+
75: Bed
|
|
95
|
+
76: Faucet
|
|
96
|
+
77: Tent
|
|
97
|
+
78: Horse
|
|
98
|
+
79: Mirror
|
|
99
|
+
80: Power outlet
|
|
100
|
+
81: Sink
|
|
101
|
+
82: Apple
|
|
102
|
+
83: Air Conditioner
|
|
103
|
+
84: Knife
|
|
104
|
+
85: Hockey Stick
|
|
105
|
+
86: Paddle
|
|
106
|
+
87: Pickup Truck
|
|
107
|
+
88: Fork
|
|
108
|
+
89: Traffic Sign
|
|
109
|
+
90: Balloon
|
|
110
|
+
91: Tripod
|
|
111
|
+
92: Dog
|
|
112
|
+
93: Spoon
|
|
113
|
+
94: Clock
|
|
114
|
+
95: Pot
|
|
115
|
+
96: Cow
|
|
116
|
+
97: Cake
|
|
117
|
+
98: Dining Table
|
|
118
|
+
99: Sheep
|
|
119
|
+
100: Hanger
|
|
120
|
+
101: Blackboard/Whiteboard
|
|
121
|
+
102: Napkin
|
|
122
|
+
103: Other Fish
|
|
123
|
+
104: Orange/Tangerine
|
|
124
|
+
105: Toiletry
|
|
125
|
+
106: Keyboard
|
|
126
|
+
107: Tomato
|
|
127
|
+
108: Lantern
|
|
128
|
+
109: Machinery Vehicle
|
|
129
|
+
110: Fan
|
|
130
|
+
111: Green Vegetables
|
|
131
|
+
112: Banana
|
|
132
|
+
113: Baseball Glove
|
|
133
|
+
114: Airplane
|
|
134
|
+
115: Mouse
|
|
135
|
+
116: Train
|
|
136
|
+
117: Pumpkin
|
|
137
|
+
118: Soccer
|
|
138
|
+
119: Skiboard
|
|
139
|
+
120: Luggage
|
|
140
|
+
121: Nightstand
|
|
141
|
+
122: Tea pot
|
|
142
|
+
123: Telephone
|
|
143
|
+
124: Trolley
|
|
144
|
+
125: Head Phone
|
|
145
|
+
126: Sports Car
|
|
146
|
+
127: Stop Sign
|
|
147
|
+
128: Dessert
|
|
148
|
+
129: Scooter
|
|
149
|
+
130: Stroller
|
|
150
|
+
131: Crane
|
|
151
|
+
132: Remote
|
|
152
|
+
133: Refrigerator
|
|
153
|
+
134: Oven
|
|
154
|
+
135: Lemon
|
|
155
|
+
136: Duck
|
|
156
|
+
137: Baseball Bat
|
|
157
|
+
138: Surveillance Camera
|
|
158
|
+
139: Cat
|
|
159
|
+
140: Jug
|
|
160
|
+
141: Broccoli
|
|
161
|
+
142: Piano
|
|
162
|
+
143: Pizza
|
|
163
|
+
144: Elephant
|
|
164
|
+
145: Skateboard
|
|
165
|
+
146: Surfboard
|
|
166
|
+
147: Gun
|
|
167
|
+
148: Skating and Skiing shoes
|
|
168
|
+
149: Gas stove
|
|
169
|
+
150: Donut
|
|
170
|
+
151: Bow Tie
|
|
171
|
+
152: Carrot
|
|
172
|
+
153: Toilet
|
|
173
|
+
154: Kite
|
|
174
|
+
155: Strawberry
|
|
175
|
+
156: Other Balls
|
|
176
|
+
157: Shovel
|
|
177
|
+
158: Pepper
|
|
178
|
+
159: Computer Box
|
|
179
|
+
160: Toilet Paper
|
|
180
|
+
161: Cleaning Products
|
|
181
|
+
162: Chopsticks
|
|
182
|
+
163: Microwave
|
|
183
|
+
164: Pigeon
|
|
184
|
+
165: Baseball
|
|
185
|
+
166: Cutting/chopping Board
|
|
186
|
+
167: Coffee Table
|
|
187
|
+
168: Side Table
|
|
188
|
+
169: Scissors
|
|
189
|
+
170: Marker
|
|
190
|
+
171: Pie
|
|
191
|
+
172: Ladder
|
|
192
|
+
173: Snowboard
|
|
193
|
+
174: Cookies
|
|
194
|
+
175: Radiator
|
|
195
|
+
176: Fire Hydrant
|
|
196
|
+
177: Basketball
|
|
197
|
+
178: Zebra
|
|
198
|
+
179: Grape
|
|
199
|
+
180: Giraffe
|
|
200
|
+
181: Potato
|
|
201
|
+
182: Sausage
|
|
202
|
+
183: Tricycle
|
|
203
|
+
184: Violin
|
|
204
|
+
185: Egg
|
|
205
|
+
186: Fire Extinguisher
|
|
206
|
+
187: Candy
|
|
207
|
+
188: Fire Truck
|
|
208
|
+
189: Billiards
|
|
209
|
+
190: Converter
|
|
210
|
+
191: Bathtub
|
|
211
|
+
192: Wheelchair
|
|
212
|
+
193: Golf Club
|
|
213
|
+
194: Briefcase
|
|
214
|
+
195: Cucumber
|
|
215
|
+
196: Cigar/Cigarette
|
|
216
|
+
197: Paint Brush
|
|
217
|
+
198: Pear
|
|
218
|
+
199: Heavy Truck
|
|
219
|
+
200: Hamburger
|
|
220
|
+
201: Extractor
|
|
221
|
+
202: Extension Cord
|
|
222
|
+
203: Tong
|
|
223
|
+
204: Tennis Racket
|
|
224
|
+
205: Folder
|
|
225
|
+
206: American Football
|
|
226
|
+
207: earphone
|
|
227
|
+
208: Mask
|
|
228
|
+
209: Kettle
|
|
229
|
+
210: Tennis
|
|
230
|
+
211: Ship
|
|
231
|
+
212: Swing
|
|
232
|
+
213: Coffee Machine
|
|
233
|
+
214: Slide
|
|
234
|
+
215: Carriage
|
|
235
|
+
216: Onion
|
|
236
|
+
217: Green beans
|
|
237
|
+
218: Projector
|
|
238
|
+
219: Frisbee
|
|
239
|
+
220: Washing Machine/Drying Machine
|
|
240
|
+
221: Chicken
|
|
241
|
+
222: Printer
|
|
242
|
+
223: Watermelon
|
|
243
|
+
224: Saxophone
|
|
244
|
+
225: Tissue
|
|
245
|
+
226: Toothbrush
|
|
246
|
+
227: Ice cream
|
|
247
|
+
228: Hot-air balloon
|
|
248
|
+
229: Cello
|
|
249
|
+
230: French Fries
|
|
250
|
+
231: Scale
|
|
251
|
+
232: Trophy
|
|
252
|
+
233: Cabbage
|
|
253
|
+
234: Hot dog
|
|
254
|
+
235: Blender
|
|
255
|
+
236: Peach
|
|
256
|
+
237: Rice
|
|
257
|
+
238: Wallet/Purse
|
|
258
|
+
239: Volleyball
|
|
259
|
+
240: Deer
|
|
260
|
+
241: Goose
|
|
261
|
+
242: Tape
|
|
262
|
+
243: Tablet
|
|
263
|
+
244: Cosmetics
|
|
264
|
+
245: Trumpet
|
|
265
|
+
246: Pineapple
|
|
266
|
+
247: Golf Ball
|
|
267
|
+
248: Ambulance
|
|
268
|
+
249: Parking meter
|
|
269
|
+
250: Mango
|
|
270
|
+
251: Key
|
|
271
|
+
252: Hurdle
|
|
272
|
+
253: Fishing Rod
|
|
273
|
+
254: Medal
|
|
274
|
+
255: Flute
|
|
275
|
+
256: Brush
|
|
276
|
+
257: Penguin
|
|
277
|
+
258: Megaphone
|
|
278
|
+
259: Corn
|
|
279
|
+
260: Lettuce
|
|
280
|
+
261: Garlic
|
|
281
|
+
262: Swan
|
|
282
|
+
263: Helicopter
|
|
283
|
+
264: Green Onion
|
|
284
|
+
265: Sandwich
|
|
285
|
+
266: Nuts
|
|
286
|
+
267: Speed Limit Sign
|
|
287
|
+
268: Induction Cooker
|
|
288
|
+
269: Broom
|
|
289
|
+
270: Trombone
|
|
290
|
+
271: Plum
|
|
291
|
+
272: Rickshaw
|
|
292
|
+
273: Goldfish
|
|
293
|
+
274: Kiwi fruit
|
|
294
|
+
275: Router/modem
|
|
295
|
+
276: Poker Card
|
|
296
|
+
277: Toaster
|
|
297
|
+
278: Shrimp
|
|
298
|
+
279: Sushi
|
|
299
|
+
280: Cheese
|
|
300
|
+
281: Notepaper
|
|
301
|
+
282: Cherry
|
|
302
|
+
283: Pliers
|
|
303
|
+
284: CD
|
|
304
|
+
285: Pasta
|
|
305
|
+
286: Hammer
|
|
306
|
+
287: Cue
|
|
307
|
+
288: Avocado
|
|
308
|
+
289: Hami melon
|
|
309
|
+
290: Flask
|
|
310
|
+
291: Mushroom
|
|
311
|
+
292: Screwdriver
|
|
312
|
+
293: Soap
|
|
313
|
+
294: Recorder
|
|
314
|
+
295: Bear
|
|
315
|
+
296: Eggplant
|
|
316
|
+
297: Board Eraser
|
|
317
|
+
298: Coconut
|
|
318
|
+
299: Tape Measure/Ruler
|
|
319
|
+
300: Pig
|
|
320
|
+
301: Showerhead
|
|
321
|
+
302: Globe
|
|
322
|
+
303: Chips
|
|
323
|
+
304: Steak
|
|
324
|
+
305: Crosswalk Sign
|
|
325
|
+
306: Stapler
|
|
326
|
+
307: Camel
|
|
327
|
+
308: Formula 1
|
|
328
|
+
309: Pomegranate
|
|
329
|
+
310: Dishwasher
|
|
330
|
+
311: Crab
|
|
331
|
+
312: Hoverboard
|
|
332
|
+
313: Meatball
|
|
333
|
+
314: Rice Cooker
|
|
334
|
+
315: Tuba
|
|
335
|
+
316: Calculator
|
|
336
|
+
317: Papaya
|
|
337
|
+
318: Antelope
|
|
338
|
+
319: Parrot
|
|
339
|
+
320: Seal
|
|
340
|
+
321: Butterfly
|
|
341
|
+
322: Dumbbell
|
|
342
|
+
323: Donkey
|
|
343
|
+
324: Lion
|
|
344
|
+
325: Urinal
|
|
345
|
+
326: Dolphin
|
|
346
|
+
327: Electric Drill
|
|
347
|
+
328: Hair Dryer
|
|
348
|
+
329: Egg tart
|
|
349
|
+
330: Jellyfish
|
|
350
|
+
331: Treadmill
|
|
351
|
+
332: Lighter
|
|
352
|
+
333: Grapefruit
|
|
353
|
+
334: Game board
|
|
354
|
+
335: Mop
|
|
355
|
+
336: Radish
|
|
356
|
+
337: Baozi
|
|
357
|
+
338: Target
|
|
358
|
+
339: French
|
|
359
|
+
340: Spring Rolls
|
|
360
|
+
341: Monkey
|
|
361
|
+
342: Rabbit
|
|
362
|
+
343: Pencil Case
|
|
363
|
+
344: Yak
|
|
364
|
+
345: Red Cabbage
|
|
365
|
+
346: Binoculars
|
|
366
|
+
347: Asparagus
|
|
367
|
+
348: Barbell
|
|
368
|
+
349: Scallop
|
|
369
|
+
350: Noddles
|
|
370
|
+
351: Comb
|
|
371
|
+
352: Dumpling
|
|
372
|
+
353: Oyster
|
|
373
|
+
354: Table Tennis paddle
|
|
374
|
+
355: Cosmetics Brush/Eyeliner Pencil
|
|
375
|
+
356: Chainsaw
|
|
376
|
+
357: Eraser
|
|
377
|
+
358: Lobster
|
|
378
|
+
359: Durian
|
|
379
|
+
360: Okra
|
|
380
|
+
361: Lipstick
|
|
381
|
+
362: Cosmetics Mirror
|
|
382
|
+
363: Curling
|
|
383
|
+
364: Table Tennis
|
|
384
|
+
|
|
385
|
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
|
386
|
+
download: |
|
|
387
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
388
|
+
from pathlib import Path
|
|
389
|
+
|
|
390
|
+
import numpy as np
|
|
391
|
+
|
|
392
|
+
from ultralytics.utils import TQDM
|
|
393
|
+
from ultralytics.utils.checks import check_requirements
|
|
394
|
+
from ultralytics.utils.downloads import download
|
|
395
|
+
from ultralytics.utils.ops import xyxy2xywhn
|
|
396
|
+
|
|
397
|
+
check_requirements("faster-coco-eval")
|
|
398
|
+
from faster_coco_eval import COCO
|
|
399
|
+
|
|
400
|
+
# Train, Val Splits
|
|
401
|
+
dir = Path(yaml["path"])
|
|
402
|
+
for split, patches in [("train", 50 + 1), ("val", 43 + 1)]:
|
|
403
|
+
print(f"Processing {split} in {patches} patches ...")
|
|
404
|
+
images, labels = dir / "images" / split, dir / "labels" / split
|
|
405
|
+
images.mkdir(parents=True, exist_ok=True)
|
|
406
|
+
labels.mkdir(parents=True, exist_ok=True)
|
|
407
|
+
|
|
408
|
+
# Download
|
|
409
|
+
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
|
|
410
|
+
if split == "train":
|
|
411
|
+
download([f"{url}zhiyuan_objv2_{split}.tar.gz"], dir=dir) # annotations json
|
|
412
|
+
download([f"{url}patch{i}.tar.gz" for i in range(patches)], dir=images, threads=17) # 51 patches / 17 threads = 3
|
|
413
|
+
elif split == "val":
|
|
414
|
+
download([f"{url}zhiyuan_objv2_{split}.json"], dir=dir) # annotations json
|
|
415
|
+
download([f"{url}images/v1/patch{i}.tar.gz" for i in range(15 + 1)], dir=images, threads=16)
|
|
416
|
+
download([f"{url}images/v2/patch{i}.tar.gz" for i in range(16, patches)], dir=images, threads=16)
|
|
417
|
+
|
|
418
|
+
# Move
|
|
419
|
+
files = list(images.rglob("*.jpg"))
|
|
420
|
+
with ThreadPoolExecutor(max_workers=16) as executor:
|
|
421
|
+
list(TQDM(executor.map(lambda f: f.rename(images / f.name), files), total=len(files), desc=f"Moving {split} images"))
|
|
422
|
+
|
|
423
|
+
# Labels
|
|
424
|
+
coco = COCO(dir / f"zhiyuan_objv2_{split}.json")
|
|
425
|
+
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
|
|
426
|
+
for cid, cat in enumerate(names):
|
|
427
|
+
catIds = coco.getCatIds(catNms=[cat])
|
|
428
|
+
imgIds = coco.getImgIds(catIds=catIds)
|
|
429
|
+
|
|
430
|
+
def process_annotation(im):
|
|
431
|
+
"""Process and write annotations for a single image."""
|
|
432
|
+
try:
|
|
433
|
+
width, height = im["width"], im["height"]
|
|
434
|
+
path = Path(im["file_name"])
|
|
435
|
+
with open(labels / path.with_suffix(".txt").name, "a", encoding="utf-8") as file:
|
|
436
|
+
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
|
|
437
|
+
for a in coco.loadAnns(annIds):
|
|
438
|
+
x, y, w, h = a["bbox"] # bounding box in xywh (xy top-left corner)
|
|
439
|
+
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
|
|
440
|
+
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
|
|
441
|
+
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
|
|
442
|
+
except Exception as e:
|
|
443
|
+
print(e)
|
|
444
|
+
|
|
445
|
+
images_list = coco.loadImgs(imgIds)
|
|
446
|
+
with ThreadPoolExecutor(max_workers=16) as executor:
|
|
447
|
+
list(TQDM(executor.map(process_annotation, images_list), total=len(images_list), desc=f"Class {cid + 1}/{len(names)} {cat}"))
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
|
|
4
|
+
# Documentation: https://docs.ultralytics.com/datasets/detect/sku-110k/
|
|
5
|
+
# Example usage: yolo train data=SKU-110K.yaml
|
|
6
|
+
# parent
|
|
7
|
+
# ├── ultralytics
|
|
8
|
+
# └── datasets
|
|
9
|
+
# └── SKU-110K ← downloads here (13.6 GB)
|
|
10
|
+
|
|
11
|
+
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
12
|
+
path: SKU-110K # dataset root dir
|
|
13
|
+
train: train.txt # train images (relative to 'path') 8219 images
|
|
14
|
+
val: val.txt # val images (relative to 'path') 588 images
|
|
15
|
+
test: test.txt # test images (optional) 2936 images
|
|
16
|
+
|
|
17
|
+
# Classes
|
|
18
|
+
names:
|
|
19
|
+
0: object
|
|
20
|
+
|
|
21
|
+
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
|
22
|
+
download: |
|
|
23
|
+
import shutil
|
|
24
|
+
from pathlib import Path
|
|
25
|
+
|
|
26
|
+
import numpy as np
|
|
27
|
+
import polars as pl
|
|
28
|
+
|
|
29
|
+
from ultralytics.utils import TQDM
|
|
30
|
+
from ultralytics.utils.downloads import download
|
|
31
|
+
from ultralytics.utils.ops import xyxy2xywh
|
|
32
|
+
|
|
33
|
+
# Download
|
|
34
|
+
dir = Path(yaml["path"]) # dataset root dir
|
|
35
|
+
parent = Path(dir.parent) # download dir
|
|
36
|
+
urls = ["http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz"]
|
|
37
|
+
download(urls, dir=parent)
|
|
38
|
+
|
|
39
|
+
# Rename directories
|
|
40
|
+
if dir.exists():
|
|
41
|
+
shutil.rmtree(dir)
|
|
42
|
+
(parent / "SKU110K_fixed").rename(dir) # rename dir
|
|
43
|
+
(dir / "labels").mkdir(parents=True, exist_ok=True) # create labels dir
|
|
44
|
+
|
|
45
|
+
# Convert labels
|
|
46
|
+
names = "image", "x1", "y1", "x2", "y2", "class", "image_width", "image_height" # column names
|
|
47
|
+
for d in "annotations_train.csv", "annotations_val.csv", "annotations_test.csv":
|
|
48
|
+
x = pl.read_csv(dir / "annotations" / d, has_header=False, new_columns=names, infer_schema_length=None).to_numpy() # annotations
|
|
49
|
+
images, unique_images = x[:, 0], np.unique(x[:, 0])
|
|
50
|
+
with open((dir / d).with_suffix(".txt").__str__().replace("annotations_", ""), "w", encoding="utf-8") as f:
|
|
51
|
+
f.writelines(f"./images/{s}\n" for s in unique_images)
|
|
52
|
+
for im in TQDM(unique_images, desc=f"Converting {dir / d}"):
|
|
53
|
+
cls = 0 # single-class dataset
|
|
54
|
+
with open((dir / "labels" / im).with_suffix(".txt"), "a", encoding="utf-8") as f:
|
|
55
|
+
for r in x[images == im]:
|
|
56
|
+
w, h = r[6], r[7] # image width, height
|
|
57
|
+
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
|
|
58
|
+
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
|