dgenerate-ultralytics-headless 8.3.222__py3-none-any.whl → 8.3.225__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/METADATA +2 -2
- dgenerate_ultralytics_headless-8.3.225.dist-info/RECORD +286 -0
- tests/conftest.py +5 -8
- tests/test_cli.py +1 -8
- tests/test_python.py +1 -2
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +34 -49
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +5 -5
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/data/annotator.py +3 -4
- ultralytics/data/augment.py +244 -323
- ultralytics/data/base.py +12 -22
- ultralytics/data/build.py +47 -40
- ultralytics/data/converter.py +32 -42
- ultralytics/data/dataset.py +43 -71
- ultralytics/data/loaders.py +22 -34
- ultralytics/data/split.py +5 -6
- ultralytics/data/split_dota.py +8 -15
- ultralytics/data/utils.py +27 -36
- ultralytics/engine/exporter.py +49 -116
- ultralytics/engine/model.py +144 -180
- ultralytics/engine/predictor.py +18 -29
- ultralytics/engine/results.py +165 -231
- ultralytics/engine/trainer.py +11 -19
- ultralytics/engine/tuner.py +13 -23
- ultralytics/engine/validator.py +6 -10
- ultralytics/hub/__init__.py +7 -12
- ultralytics/hub/auth.py +6 -12
- ultralytics/hub/google/__init__.py +7 -10
- ultralytics/hub/session.py +15 -25
- ultralytics/hub/utils.py +3 -6
- ultralytics/models/fastsam/model.py +6 -8
- ultralytics/models/fastsam/predict.py +5 -10
- ultralytics/models/fastsam/utils.py +1 -2
- ultralytics/models/fastsam/val.py +2 -4
- ultralytics/models/nas/model.py +5 -8
- ultralytics/models/nas/predict.py +7 -9
- ultralytics/models/nas/val.py +1 -2
- ultralytics/models/rtdetr/model.py +5 -8
- ultralytics/models/rtdetr/predict.py +15 -18
- ultralytics/models/rtdetr/train.py +10 -13
- ultralytics/models/rtdetr/val.py +13 -20
- ultralytics/models/sam/amg.py +12 -18
- ultralytics/models/sam/build.py +6 -9
- ultralytics/models/sam/model.py +16 -23
- ultralytics/models/sam/modules/blocks.py +62 -84
- ultralytics/models/sam/modules/decoders.py +17 -24
- ultralytics/models/sam/modules/encoders.py +40 -56
- ultralytics/models/sam/modules/memory_attention.py +10 -16
- ultralytics/models/sam/modules/sam.py +41 -47
- ultralytics/models/sam/modules/tiny_encoder.py +64 -83
- ultralytics/models/sam/modules/transformer.py +17 -27
- ultralytics/models/sam/modules/utils.py +31 -42
- ultralytics/models/sam/predict.py +172 -209
- ultralytics/models/utils/loss.py +14 -26
- ultralytics/models/utils/ops.py +13 -17
- ultralytics/models/yolo/classify/predict.py +8 -11
- ultralytics/models/yolo/classify/train.py +8 -16
- ultralytics/models/yolo/classify/val.py +13 -20
- ultralytics/models/yolo/detect/predict.py +4 -8
- ultralytics/models/yolo/detect/train.py +11 -20
- ultralytics/models/yolo/detect/val.py +38 -48
- ultralytics/models/yolo/model.py +35 -47
- ultralytics/models/yolo/obb/predict.py +5 -8
- ultralytics/models/yolo/obb/train.py +11 -14
- ultralytics/models/yolo/obb/val.py +20 -28
- ultralytics/models/yolo/pose/predict.py +5 -8
- ultralytics/models/yolo/pose/train.py +4 -8
- ultralytics/models/yolo/pose/val.py +31 -39
- ultralytics/models/yolo/segment/predict.py +9 -14
- ultralytics/models/yolo/segment/train.py +3 -6
- ultralytics/models/yolo/segment/val.py +16 -26
- ultralytics/models/yolo/world/train.py +8 -14
- ultralytics/models/yolo/world/train_world.py +11 -16
- ultralytics/models/yolo/yoloe/predict.py +16 -23
- ultralytics/models/yolo/yoloe/train.py +30 -43
- ultralytics/models/yolo/yoloe/train_seg.py +5 -10
- ultralytics/models/yolo/yoloe/val.py +15 -20
- ultralytics/nn/autobackend.py +10 -18
- ultralytics/nn/modules/activation.py +4 -6
- ultralytics/nn/modules/block.py +99 -185
- ultralytics/nn/modules/conv.py +45 -90
- ultralytics/nn/modules/head.py +44 -98
- ultralytics/nn/modules/transformer.py +44 -76
- ultralytics/nn/modules/utils.py +14 -19
- ultralytics/nn/tasks.py +86 -146
- ultralytics/nn/text_model.py +25 -40
- ultralytics/solutions/ai_gym.py +10 -16
- ultralytics/solutions/analytics.py +7 -10
- ultralytics/solutions/config.py +4 -5
- ultralytics/solutions/distance_calculation.py +9 -12
- ultralytics/solutions/heatmap.py +7 -13
- ultralytics/solutions/instance_segmentation.py +5 -8
- ultralytics/solutions/object_blurrer.py +7 -10
- ultralytics/solutions/object_counter.py +8 -12
- ultralytics/solutions/object_cropper.py +5 -8
- ultralytics/solutions/parking_management.py +12 -14
- ultralytics/solutions/queue_management.py +4 -6
- ultralytics/solutions/region_counter.py +7 -10
- ultralytics/solutions/security_alarm.py +14 -19
- ultralytics/solutions/similarity_search.py +7 -12
- ultralytics/solutions/solutions.py +31 -53
- ultralytics/solutions/speed_estimation.py +6 -9
- ultralytics/solutions/streamlit_inference.py +2 -4
- ultralytics/solutions/trackzone.py +7 -10
- ultralytics/solutions/vision_eye.py +5 -8
- ultralytics/trackers/basetrack.py +2 -4
- ultralytics/trackers/bot_sort.py +6 -11
- ultralytics/trackers/byte_tracker.py +10 -15
- ultralytics/trackers/track.py +3 -6
- ultralytics/trackers/utils/gmc.py +6 -12
- ultralytics/trackers/utils/kalman_filter.py +35 -43
- ultralytics/trackers/utils/matching.py +6 -10
- ultralytics/utils/__init__.py +61 -100
- ultralytics/utils/autobatch.py +2 -4
- ultralytics/utils/autodevice.py +11 -13
- ultralytics/utils/benchmarks.py +25 -35
- ultralytics/utils/callbacks/base.py +8 -10
- ultralytics/utils/callbacks/clearml.py +2 -4
- ultralytics/utils/callbacks/comet.py +30 -44
- ultralytics/utils/callbacks/dvc.py +13 -18
- ultralytics/utils/callbacks/mlflow.py +4 -5
- ultralytics/utils/callbacks/neptune.py +4 -6
- ultralytics/utils/callbacks/raytune.py +3 -4
- ultralytics/utils/callbacks/tensorboard.py +4 -6
- ultralytics/utils/callbacks/wb.py +10 -13
- ultralytics/utils/checks.py +29 -56
- ultralytics/utils/cpu.py +1 -2
- ultralytics/utils/dist.py +8 -12
- ultralytics/utils/downloads.py +17 -27
- ultralytics/utils/errors.py +6 -8
- ultralytics/utils/events.py +2 -4
- ultralytics/utils/export/__init__.py +4 -239
- ultralytics/utils/export/engine.py +237 -0
- ultralytics/utils/export/imx.py +11 -17
- ultralytics/utils/export/tensorflow.py +217 -0
- ultralytics/utils/files.py +10 -15
- ultralytics/utils/git.py +5 -7
- ultralytics/utils/instance.py +30 -51
- ultralytics/utils/logger.py +11 -15
- ultralytics/utils/loss.py +8 -14
- ultralytics/utils/metrics.py +98 -138
- ultralytics/utils/nms.py +13 -16
- ultralytics/utils/ops.py +47 -74
- ultralytics/utils/patches.py +11 -18
- ultralytics/utils/plotting.py +29 -42
- ultralytics/utils/tal.py +25 -39
- ultralytics/utils/torch_utils.py +45 -73
- ultralytics/utils/tqdm.py +6 -8
- ultralytics/utils/triton.py +9 -12
- ultralytics/utils/tuner.py +1 -2
- dgenerate_ultralytics_headless-8.3.222.dist-info/RECORD +0 -283
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/top_level.txt +0 -0
ultralytics/data/dataset.py
CHANGED
|
@@ -47,8 +47,7 @@ DATASET_CACHE_VERSION = "1.0.3"
|
|
|
47
47
|
|
|
48
48
|
|
|
49
49
|
class YOLODataset(BaseDataset):
|
|
50
|
-
"""
|
|
51
|
-
Dataset class for loading object detection and/or segmentation labels in YOLO format.
|
|
50
|
+
"""Dataset class for loading object detection and/or segmentation labels in YOLO format.
|
|
52
51
|
|
|
53
52
|
This class supports loading data for object detection, segmentation, pose estimation, and oriented bounding box
|
|
54
53
|
(OBB) tasks using the YOLO format.
|
|
@@ -73,8 +72,7 @@ class YOLODataset(BaseDataset):
|
|
|
73
72
|
"""
|
|
74
73
|
|
|
75
74
|
def __init__(self, *args, data: dict | None = None, task: str = "detect", **kwargs):
|
|
76
|
-
"""
|
|
77
|
-
Initialize the YOLODataset.
|
|
75
|
+
"""Initialize the YOLODataset.
|
|
78
76
|
|
|
79
77
|
Args:
|
|
80
78
|
data (dict, optional): Dataset configuration dictionary.
|
|
@@ -90,8 +88,7 @@ class YOLODataset(BaseDataset):
|
|
|
90
88
|
super().__init__(*args, channels=self.data.get("channels", 3), **kwargs)
|
|
91
89
|
|
|
92
90
|
def cache_labels(self, path: Path = Path("./labels.cache")) -> dict:
|
|
93
|
-
"""
|
|
94
|
-
Cache dataset labels, check images and read shapes.
|
|
91
|
+
"""Cache dataset labels, check images and read shapes.
|
|
95
92
|
|
|
96
93
|
Args:
|
|
97
94
|
path (Path): Path where to save the cache file.
|
|
@@ -158,8 +155,7 @@ class YOLODataset(BaseDataset):
|
|
|
158
155
|
return x
|
|
159
156
|
|
|
160
157
|
def get_labels(self) -> list[dict]:
|
|
161
|
-
"""
|
|
162
|
-
Return dictionary of labels for YOLO training.
|
|
158
|
+
"""Return dictionary of labels for YOLO training.
|
|
163
159
|
|
|
164
160
|
This method loads labels from disk or cache, verifies their integrity, and prepares them for training.
|
|
165
161
|
|
|
@@ -208,8 +204,7 @@ class YOLODataset(BaseDataset):
|
|
|
208
204
|
return labels
|
|
209
205
|
|
|
210
206
|
def build_transforms(self, hyp: dict | None = None) -> Compose:
|
|
211
|
-
"""
|
|
212
|
-
Build and append transforms to the list.
|
|
207
|
+
"""Build and append transforms to the list.
|
|
213
208
|
|
|
214
209
|
Args:
|
|
215
210
|
hyp (dict, optional): Hyperparameters for transforms.
|
|
@@ -240,8 +235,7 @@ class YOLODataset(BaseDataset):
|
|
|
240
235
|
return transforms
|
|
241
236
|
|
|
242
237
|
def close_mosaic(self, hyp: dict) -> None:
|
|
243
|
-
"""
|
|
244
|
-
Disable mosaic, copy_paste, mixup and cutmix augmentations by setting their probabilities to 0.0.
|
|
238
|
+
"""Disable mosaic, copy_paste, mixup and cutmix augmentations by setting their probabilities to 0.0.
|
|
245
239
|
|
|
246
240
|
Args:
|
|
247
241
|
hyp (dict): Hyperparameters for transforms.
|
|
@@ -253,8 +247,7 @@ class YOLODataset(BaseDataset):
|
|
|
253
247
|
self.transforms = self.build_transforms(hyp)
|
|
254
248
|
|
|
255
249
|
def update_labels_info(self, label: dict) -> dict:
|
|
256
|
-
"""
|
|
257
|
-
Update label format for different tasks.
|
|
250
|
+
"""Update label format for different tasks.
|
|
258
251
|
|
|
259
252
|
Args:
|
|
260
253
|
label (dict): Label dictionary containing bboxes, segments, keypoints, etc.
|
|
@@ -262,7 +255,7 @@ class YOLODataset(BaseDataset):
|
|
|
262
255
|
Returns:
|
|
263
256
|
(dict): Updated label dictionary with instances.
|
|
264
257
|
|
|
265
|
-
|
|
258
|
+
Notes:
|
|
266
259
|
cls is not with bboxes now, classification and semantic segmentation need an independent cls label
|
|
267
260
|
Can also support classification and semantic segmentation by adding or removing dict keys there.
|
|
268
261
|
"""
|
|
@@ -287,8 +280,7 @@ class YOLODataset(BaseDataset):
|
|
|
287
280
|
|
|
288
281
|
@staticmethod
|
|
289
282
|
def collate_fn(batch: list[dict]) -> dict:
|
|
290
|
-
"""
|
|
291
|
-
Collate data samples into batches.
|
|
283
|
+
"""Collate data samples into batches.
|
|
292
284
|
|
|
293
285
|
Args:
|
|
294
286
|
batch (list[dict]): List of dictionaries containing sample data.
|
|
@@ -317,11 +309,10 @@ class YOLODataset(BaseDataset):
|
|
|
317
309
|
|
|
318
310
|
|
|
319
311
|
class YOLOMultiModalDataset(YOLODataset):
|
|
320
|
-
"""
|
|
321
|
-
Dataset class for loading object detection and/or segmentation labels in YOLO format with multi-modal support.
|
|
312
|
+
"""Dataset class for loading object detection and/or segmentation labels in YOLO format with multi-modal support.
|
|
322
313
|
|
|
323
|
-
This class extends YOLODataset to add text information for multi-modal model training, enabling models to
|
|
324
|
-
|
|
314
|
+
This class extends YOLODataset to add text information for multi-modal model training, enabling models to process
|
|
315
|
+
both image and text data.
|
|
325
316
|
|
|
326
317
|
Methods:
|
|
327
318
|
update_labels_info: Add text information for multi-modal model training.
|
|
@@ -334,8 +325,7 @@ class YOLOMultiModalDataset(YOLODataset):
|
|
|
334
325
|
"""
|
|
335
326
|
|
|
336
327
|
def __init__(self, *args, data: dict | None = None, task: str = "detect", **kwargs):
|
|
337
|
-
"""
|
|
338
|
-
Initialize a YOLOMultiModalDataset.
|
|
328
|
+
"""Initialize a YOLOMultiModalDataset.
|
|
339
329
|
|
|
340
330
|
Args:
|
|
341
331
|
data (dict, optional): Dataset configuration dictionary.
|
|
@@ -346,8 +336,7 @@ class YOLOMultiModalDataset(YOLODataset):
|
|
|
346
336
|
super().__init__(*args, data=data, task=task, **kwargs)
|
|
347
337
|
|
|
348
338
|
def update_labels_info(self, label: dict) -> dict:
|
|
349
|
-
"""
|
|
350
|
-
Add text information for multi-modal model training.
|
|
339
|
+
"""Add text information for multi-modal model training.
|
|
351
340
|
|
|
352
341
|
Args:
|
|
353
342
|
label (dict): Label dictionary containing bboxes, segments, keypoints, etc.
|
|
@@ -363,8 +352,7 @@ class YOLOMultiModalDataset(YOLODataset):
|
|
|
363
352
|
return labels
|
|
364
353
|
|
|
365
354
|
def build_transforms(self, hyp: dict | None = None) -> Compose:
|
|
366
|
-
"""
|
|
367
|
-
Enhance data transformations with optional text augmentation for multi-modal training.
|
|
355
|
+
"""Enhance data transformations with optional text augmentation for multi-modal training.
|
|
368
356
|
|
|
369
357
|
Args:
|
|
370
358
|
hyp (dict, optional): Hyperparameters for transforms.
|
|
@@ -388,8 +376,7 @@ class YOLOMultiModalDataset(YOLODataset):
|
|
|
388
376
|
|
|
389
377
|
@property
|
|
390
378
|
def category_names(self):
|
|
391
|
-
"""
|
|
392
|
-
Return category names for the dataset.
|
|
379
|
+
"""Return category names for the dataset.
|
|
393
380
|
|
|
394
381
|
Returns:
|
|
395
382
|
(set[str]): List of class names.
|
|
@@ -418,11 +405,10 @@ class YOLOMultiModalDataset(YOLODataset):
|
|
|
418
405
|
|
|
419
406
|
|
|
420
407
|
class GroundingDataset(YOLODataset):
|
|
421
|
-
"""
|
|
422
|
-
Dataset class for object detection tasks using annotations from a JSON file in grounding format.
|
|
408
|
+
"""Dataset class for object detection tasks using annotations from a JSON file in grounding format.
|
|
423
409
|
|
|
424
|
-
This dataset is designed for grounding tasks where annotations are provided in a JSON file rather than
|
|
425
|
-
|
|
410
|
+
This dataset is designed for grounding tasks where annotations are provided in a JSON file rather than the standard
|
|
411
|
+
YOLO format text files.
|
|
426
412
|
|
|
427
413
|
Attributes:
|
|
428
414
|
json_file (str): Path to the JSON file containing annotations.
|
|
@@ -438,8 +424,7 @@ class GroundingDataset(YOLODataset):
|
|
|
438
424
|
"""
|
|
439
425
|
|
|
440
426
|
def __init__(self, *args, task: str = "detect", json_file: str = "", max_samples: int = 80, **kwargs):
|
|
441
|
-
"""
|
|
442
|
-
Initialize a GroundingDataset for object detection.
|
|
427
|
+
"""Initialize a GroundingDataset for object detection.
|
|
443
428
|
|
|
444
429
|
Args:
|
|
445
430
|
json_file (str): Path to the JSON file containing annotations.
|
|
@@ -454,8 +439,7 @@ class GroundingDataset(YOLODataset):
|
|
|
454
439
|
super().__init__(*args, task=task, data={"channels": 3}, **kwargs)
|
|
455
440
|
|
|
456
441
|
def get_img_files(self, img_path: str) -> list:
|
|
457
|
-
"""
|
|
458
|
-
The image files would be read in `get_labels` function, return empty list here.
|
|
442
|
+
"""The image files would be read in `get_labels` function, return empty list here.
|
|
459
443
|
|
|
460
444
|
Args:
|
|
461
445
|
img_path (str): Path to the directory containing images.
|
|
@@ -466,23 +450,21 @@ class GroundingDataset(YOLODataset):
|
|
|
466
450
|
return []
|
|
467
451
|
|
|
468
452
|
def verify_labels(self, labels: list[dict[str, Any]]) -> None:
|
|
469
|
-
"""
|
|
470
|
-
Verify the number of instances in the dataset matches expected counts.
|
|
453
|
+
"""Verify the number of instances in the dataset matches expected counts.
|
|
471
454
|
|
|
472
|
-
This method checks if the total number of bounding box instances in the provided
|
|
473
|
-
|
|
474
|
-
|
|
455
|
+
This method checks if the total number of bounding box instances in the provided labels matches the expected
|
|
456
|
+
count for known datasets. It performs validation against a predefined set of datasets with known instance
|
|
457
|
+
counts.
|
|
475
458
|
|
|
476
459
|
Args:
|
|
477
|
-
labels (list[dict[str, Any]]): List of label dictionaries, where each dictionary
|
|
478
|
-
|
|
479
|
-
|
|
460
|
+
labels (list[dict[str, Any]]): List of label dictionaries, where each dictionary contains dataset
|
|
461
|
+
annotations. Each label dict must have a 'bboxes' key with a numpy array or tensor containing bounding
|
|
462
|
+
box coordinates.
|
|
480
463
|
|
|
481
464
|
Raises:
|
|
482
|
-
AssertionError: If the actual instance count doesn't match the expected count
|
|
483
|
-
for a recognized dataset.
|
|
465
|
+
AssertionError: If the actual instance count doesn't match the expected count for a recognized dataset.
|
|
484
466
|
|
|
485
|
-
|
|
467
|
+
Notes:
|
|
486
468
|
For unrecognized datasets (those not in the predefined expected_counts),
|
|
487
469
|
a warning is logged and verification is skipped.
|
|
488
470
|
"""
|
|
@@ -501,8 +483,7 @@ class GroundingDataset(YOLODataset):
|
|
|
501
483
|
LOGGER.warning(f"Skipping instance count verification for unrecognized dataset '{self.json_file}'")
|
|
502
484
|
|
|
503
485
|
def cache_labels(self, path: Path = Path("./labels.cache")) -> dict[str, Any]:
|
|
504
|
-
"""
|
|
505
|
-
Load annotations from a JSON file, filter, and normalize bounding boxes for each image.
|
|
486
|
+
"""Load annotations from a JSON file, filter, and normalize bounding boxes for each image.
|
|
506
487
|
|
|
507
488
|
Args:
|
|
508
489
|
path (Path): Path where to save the cache file.
|
|
@@ -592,8 +573,7 @@ class GroundingDataset(YOLODataset):
|
|
|
592
573
|
return x
|
|
593
574
|
|
|
594
575
|
def get_labels(self) -> list[dict]:
|
|
595
|
-
"""
|
|
596
|
-
Load labels from cache or generate them from JSON file.
|
|
576
|
+
"""Load labels from cache or generate them from JSON file.
|
|
597
577
|
|
|
598
578
|
Returns:
|
|
599
579
|
(list[dict]): List of label dictionaries, each containing information about an image and its annotations.
|
|
@@ -614,8 +594,7 @@ class GroundingDataset(YOLODataset):
|
|
|
614
594
|
return labels
|
|
615
595
|
|
|
616
596
|
def build_transforms(self, hyp: dict | None = None) -> Compose:
|
|
617
|
-
"""
|
|
618
|
-
Configure augmentations for training with optional text loading.
|
|
597
|
+
"""Configure augmentations for training with optional text loading.
|
|
619
598
|
|
|
620
599
|
Args:
|
|
621
600
|
hyp (dict, optional): Hyperparameters for transforms.
|
|
@@ -661,11 +640,10 @@ class GroundingDataset(YOLODataset):
|
|
|
661
640
|
|
|
662
641
|
|
|
663
642
|
class YOLOConcatDataset(ConcatDataset):
|
|
664
|
-
"""
|
|
665
|
-
Dataset as a concatenation of multiple datasets.
|
|
643
|
+
"""Dataset as a concatenation of multiple datasets.
|
|
666
644
|
|
|
667
|
-
This class is useful to assemble different existing datasets for YOLO training, ensuring they use the same
|
|
668
|
-
|
|
645
|
+
This class is useful to assemble different existing datasets for YOLO training, ensuring they use the same collation
|
|
646
|
+
function.
|
|
669
647
|
|
|
670
648
|
Methods:
|
|
671
649
|
collate_fn: Static method that collates data samples into batches using YOLODataset's collation function.
|
|
@@ -678,8 +656,7 @@ class YOLOConcatDataset(ConcatDataset):
|
|
|
678
656
|
|
|
679
657
|
@staticmethod
|
|
680
658
|
def collate_fn(batch: list[dict]) -> dict:
|
|
681
|
-
"""
|
|
682
|
-
Collate data samples into batches.
|
|
659
|
+
"""Collate data samples into batches.
|
|
683
660
|
|
|
684
661
|
Args:
|
|
685
662
|
batch (list[dict]): List of dictionaries containing sample data.
|
|
@@ -690,8 +667,7 @@ class YOLOConcatDataset(ConcatDataset):
|
|
|
690
667
|
return YOLODataset.collate_fn(batch)
|
|
691
668
|
|
|
692
669
|
def close_mosaic(self, hyp: dict) -> None:
|
|
693
|
-
"""
|
|
694
|
-
Set mosaic, copy_paste and mixup options to 0.0 and build transformations.
|
|
670
|
+
"""Set mosaic, copy_paste and mixup options to 0.0 and build transformations.
|
|
695
671
|
|
|
696
672
|
Args:
|
|
697
673
|
hyp (dict): Hyperparameters for transforms.
|
|
@@ -712,8 +688,7 @@ class SemanticDataset(BaseDataset):
|
|
|
712
688
|
|
|
713
689
|
|
|
714
690
|
class ClassificationDataset:
|
|
715
|
-
"""
|
|
716
|
-
Dataset class for image classification tasks extending torchvision ImageFolder functionality.
|
|
691
|
+
"""Dataset class for image classification tasks extending torchvision ImageFolder functionality.
|
|
717
692
|
|
|
718
693
|
This class offers functionalities like image augmentation, caching, and verification. It's designed to efficiently
|
|
719
694
|
handle large datasets for training deep learning models, with optional image transformations and caching mechanisms
|
|
@@ -723,7 +698,7 @@ class ClassificationDataset:
|
|
|
723
698
|
cache_ram (bool): Indicates if caching in RAM is enabled.
|
|
724
699
|
cache_disk (bool): Indicates if caching on disk is enabled.
|
|
725
700
|
samples (list): A list of tuples, each containing the path to an image, its class index, path to its .npy cache
|
|
726
|
-
|
|
701
|
+
file (if caching on disk), and optionally the loaded image array (if caching in RAM).
|
|
727
702
|
torch_transforms (callable): PyTorch transforms to be applied to the images.
|
|
728
703
|
root (str): Root directory of the dataset.
|
|
729
704
|
prefix (str): Prefix for logging and cache filenames.
|
|
@@ -735,8 +710,7 @@ class ClassificationDataset:
|
|
|
735
710
|
"""
|
|
736
711
|
|
|
737
712
|
def __init__(self, root: str, args, augment: bool = False, prefix: str = ""):
|
|
738
|
-
"""
|
|
739
|
-
Initialize YOLO classification dataset with root directory, arguments, augmentations, and cache settings.
|
|
713
|
+
"""Initialize YOLO classification dataset with root directory, arguments, augmentations, and cache settings.
|
|
740
714
|
|
|
741
715
|
Args:
|
|
742
716
|
root (str): Path to the dataset directory where images are stored in a class-specific folder structure.
|
|
@@ -787,8 +761,7 @@ class ClassificationDataset:
|
|
|
787
761
|
)
|
|
788
762
|
|
|
789
763
|
def __getitem__(self, i: int) -> dict:
|
|
790
|
-
"""
|
|
791
|
-
Return subset of data and targets corresponding to given indices.
|
|
764
|
+
"""Return subset of data and targets corresponding to given indices.
|
|
792
765
|
|
|
793
766
|
Args:
|
|
794
767
|
i (int): Index of the sample to retrieve.
|
|
@@ -816,8 +789,7 @@ class ClassificationDataset:
|
|
|
816
789
|
return len(self.samples)
|
|
817
790
|
|
|
818
791
|
def verify_images(self) -> list[tuple]:
|
|
819
|
-
"""
|
|
820
|
-
Verify all images in dataset.
|
|
792
|
+
"""Verify all images in dataset.
|
|
821
793
|
|
|
822
794
|
Returns:
|
|
823
795
|
(list): List of valid samples after verification.
|
ultralytics/data/loaders.py
CHANGED
|
@@ -25,11 +25,10 @@ from ultralytics.utils.patches import imread
|
|
|
25
25
|
|
|
26
26
|
@dataclass
|
|
27
27
|
class SourceTypes:
|
|
28
|
-
"""
|
|
29
|
-
Class to represent various types of input sources for predictions.
|
|
28
|
+
"""Class to represent various types of input sources for predictions.
|
|
30
29
|
|
|
31
|
-
This class uses dataclass to define boolean flags for different types of input sources that can be used for
|
|
32
|
-
|
|
30
|
+
This class uses dataclass to define boolean flags for different types of input sources that can be used for making
|
|
31
|
+
predictions with YOLO models.
|
|
33
32
|
|
|
34
33
|
Attributes:
|
|
35
34
|
stream (bool): Flag indicating if the input source is a video stream.
|
|
@@ -52,11 +51,10 @@ class SourceTypes:
|
|
|
52
51
|
|
|
53
52
|
|
|
54
53
|
class LoadStreams:
|
|
55
|
-
"""
|
|
56
|
-
Stream Loader for various types of video streams.
|
|
54
|
+
"""Stream Loader for various types of video streams.
|
|
57
55
|
|
|
58
|
-
Supports RTSP, RTMP, HTTP, and TCP streams. This class handles the loading and processing of multiple video
|
|
59
|
-
|
|
56
|
+
Supports RTSP, RTMP, HTTP, and TCP streams. This class handles the loading and processing of multiple video streams
|
|
57
|
+
simultaneously, making it suitable for real-time video analysis tasks.
|
|
60
58
|
|
|
61
59
|
Attributes:
|
|
62
60
|
sources (list[str]): The source input paths or URLs for the video streams.
|
|
@@ -94,8 +92,7 @@ class LoadStreams:
|
|
|
94
92
|
"""
|
|
95
93
|
|
|
96
94
|
def __init__(self, sources: str = "file.streams", vid_stride: int = 1, buffer: bool = False, channels: int = 3):
|
|
97
|
-
"""
|
|
98
|
-
Initialize stream loader for multiple video sources, supporting various stream types.
|
|
95
|
+
"""Initialize stream loader for multiple video sources, supporting various stream types.
|
|
99
96
|
|
|
100
97
|
Args:
|
|
101
98
|
sources (str): Path to streams file or single stream URL.
|
|
@@ -227,11 +224,10 @@ class LoadStreams:
|
|
|
227
224
|
|
|
228
225
|
|
|
229
226
|
class LoadScreenshots:
|
|
230
|
-
"""
|
|
231
|
-
Ultralytics screenshot dataloader for capturing and processing screen images.
|
|
227
|
+
"""Ultralytics screenshot dataloader for capturing and processing screen images.
|
|
232
228
|
|
|
233
|
-
This class manages the loading of screenshot images for processing with YOLO. It is suitable for use with
|
|
234
|
-
|
|
229
|
+
This class manages the loading of screenshot images for processing with YOLO. It is suitable for use with `yolo
|
|
230
|
+
predict source=screen`.
|
|
235
231
|
|
|
236
232
|
Attributes:
|
|
237
233
|
source (str): The source input indicating which screen to capture.
|
|
@@ -259,8 +255,7 @@ class LoadScreenshots:
|
|
|
259
255
|
"""
|
|
260
256
|
|
|
261
257
|
def __init__(self, source: str, channels: int = 3):
|
|
262
|
-
"""
|
|
263
|
-
Initialize screenshot capture with specified screen and region parameters.
|
|
258
|
+
"""Initialize screenshot capture with specified screen and region parameters.
|
|
264
259
|
|
|
265
260
|
Args:
|
|
266
261
|
source (str): Screen capture source string in format "screen_num left top width height".
|
|
@@ -307,11 +302,10 @@ class LoadScreenshots:
|
|
|
307
302
|
|
|
308
303
|
|
|
309
304
|
class LoadImagesAndVideos:
|
|
310
|
-
"""
|
|
311
|
-
A class for loading and processing images and videos for YOLO object detection.
|
|
305
|
+
"""A class for loading and processing images and videos for YOLO object detection.
|
|
312
306
|
|
|
313
|
-
This class manages the loading and pre-processing of image and video data from various sources, including
|
|
314
|
-
|
|
307
|
+
This class manages the loading and pre-processing of image and video data from various sources, including single
|
|
308
|
+
image files, video files, and lists of image and video paths.
|
|
315
309
|
|
|
316
310
|
Attributes:
|
|
317
311
|
files (list[str]): List of image and video file paths.
|
|
@@ -347,8 +341,7 @@ class LoadImagesAndVideos:
|
|
|
347
341
|
"""
|
|
348
342
|
|
|
349
343
|
def __init__(self, path: str | Path | list, batch: int = 1, vid_stride: int = 1, channels: int = 3):
|
|
350
|
-
"""
|
|
351
|
-
Initialize dataloader for images and videos, supporting various input formats.
|
|
344
|
+
"""Initialize dataloader for images and videos, supporting various input formats.
|
|
352
345
|
|
|
353
346
|
Args:
|
|
354
347
|
path (str | Path | list): Path to images/videos, directory, or list of paths.
|
|
@@ -490,8 +483,7 @@ class LoadImagesAndVideos:
|
|
|
490
483
|
|
|
491
484
|
|
|
492
485
|
class LoadPilAndNumpy:
|
|
493
|
-
"""
|
|
494
|
-
Load images from PIL and Numpy arrays for batch processing.
|
|
486
|
+
"""Load images from PIL and Numpy arrays for batch processing.
|
|
495
487
|
|
|
496
488
|
This class manages loading and pre-processing of image data from both PIL and Numpy formats. It performs basic
|
|
497
489
|
validation and format conversion to ensure that the images are in the required format for downstream processing.
|
|
@@ -517,8 +509,7 @@ class LoadPilAndNumpy:
|
|
|
517
509
|
"""
|
|
518
510
|
|
|
519
511
|
def __init__(self, im0: Image.Image | np.ndarray | list, channels: int = 3):
|
|
520
|
-
"""
|
|
521
|
-
Initialize a loader for PIL and Numpy images, converting inputs to a standardized format.
|
|
512
|
+
"""Initialize a loader for PIL and Numpy images, converting inputs to a standardized format.
|
|
522
513
|
|
|
523
514
|
Args:
|
|
524
515
|
im0 (PIL.Image.Image | np.ndarray | list): Single image or list of images in PIL or numpy format.
|
|
@@ -564,11 +555,10 @@ class LoadPilAndNumpy:
|
|
|
564
555
|
|
|
565
556
|
|
|
566
557
|
class LoadTensor:
|
|
567
|
-
"""
|
|
568
|
-
A class for loading and processing tensor data for object detection tasks.
|
|
558
|
+
"""A class for loading and processing tensor data for object detection tasks.
|
|
569
559
|
|
|
570
|
-
This class handles the loading and pre-processing of image data from PyTorch tensors, preparing them for
|
|
571
|
-
|
|
560
|
+
This class handles the loading and pre-processing of image data from PyTorch tensors, preparing them for further
|
|
561
|
+
processing in object detection pipelines.
|
|
572
562
|
|
|
573
563
|
Attributes:
|
|
574
564
|
im0 (torch.Tensor): The input tensor containing the image(s) with shape (B, C, H, W).
|
|
@@ -588,8 +578,7 @@ class LoadTensor:
|
|
|
588
578
|
"""
|
|
589
579
|
|
|
590
580
|
def __init__(self, im0: torch.Tensor) -> None:
|
|
591
|
-
"""
|
|
592
|
-
Initialize LoadTensor object for processing torch.Tensor image data.
|
|
581
|
+
"""Initialize LoadTensor object for processing torch.Tensor image data.
|
|
593
582
|
|
|
594
583
|
Args:
|
|
595
584
|
im0 (torch.Tensor): Input tensor with shape (B, C, H, W).
|
|
@@ -656,8 +645,7 @@ def autocast_list(source: list[Any]) -> list[Image.Image | np.ndarray]:
|
|
|
656
645
|
|
|
657
646
|
|
|
658
647
|
def get_best_youtube_url(url: str, method: str = "pytube") -> str | None:
|
|
659
|
-
"""
|
|
660
|
-
Retrieve the URL of the best quality MP4 video stream from a given YouTube video.
|
|
648
|
+
"""Retrieve the URL of the best quality MP4 video stream from a given YouTube video.
|
|
661
649
|
|
|
662
650
|
Args:
|
|
663
651
|
url (str): The URL of the YouTube video.
|
ultralytics/data/split.py
CHANGED
|
@@ -11,11 +11,10 @@ from ultralytics.utils import DATASETS_DIR, LOGGER, TQDM
|
|
|
11
11
|
|
|
12
12
|
|
|
13
13
|
def split_classify_dataset(source_dir: str | Path, train_ratio: float = 0.8) -> Path:
|
|
14
|
-
"""
|
|
15
|
-
Split classification dataset into train and val directories in a new directory.
|
|
14
|
+
"""Split classification dataset into train and val directories in a new directory.
|
|
16
15
|
|
|
17
|
-
Creates a new directory '{source_dir}_split' with train/val subdirectories, preserving the original class
|
|
18
|
-
|
|
16
|
+
Creates a new directory '{source_dir}_split' with train/val subdirectories, preserving the original class structure
|
|
17
|
+
with an 80/20 split by default.
|
|
19
18
|
|
|
20
19
|
Directory structure:
|
|
21
20
|
Before:
|
|
@@ -101,8 +100,8 @@ def autosplit(
|
|
|
101
100
|
weights: tuple[float, float, float] = (0.9, 0.1, 0.0),
|
|
102
101
|
annotated_only: bool = False,
|
|
103
102
|
) -> None:
|
|
104
|
-
"""
|
|
105
|
-
|
|
103
|
+
"""Automatically split a dataset into train/val/test splits and save the resulting splits into autosplit_*.txt
|
|
104
|
+
files.
|
|
106
105
|
|
|
107
106
|
Args:
|
|
108
107
|
path (Path): Path to images directory.
|
ultralytics/data/split_dota.py
CHANGED
|
@@ -18,8 +18,7 @@ from ultralytics.utils.checks import check_requirements
|
|
|
18
18
|
|
|
19
19
|
|
|
20
20
|
def bbox_iof(polygon1: np.ndarray, bbox2: np.ndarray, eps: float = 1e-6) -> np.ndarray:
|
|
21
|
-
"""
|
|
22
|
-
Calculate Intersection over Foreground (IoF) between polygons and bounding boxes.
|
|
21
|
+
"""Calculate Intersection over Foreground (IoF) between polygons and bounding boxes.
|
|
23
22
|
|
|
24
23
|
Args:
|
|
25
24
|
polygon1 (np.ndarray): Polygon coordinates with shape (N, 8).
|
|
@@ -65,8 +64,7 @@ def bbox_iof(polygon1: np.ndarray, bbox2: np.ndarray, eps: float = 1e-6) -> np.n
|
|
|
65
64
|
|
|
66
65
|
|
|
67
66
|
def load_yolo_dota(data_root: str, split: str = "train") -> list[dict[str, Any]]:
|
|
68
|
-
"""
|
|
69
|
-
Load DOTA dataset annotations and image information.
|
|
67
|
+
"""Load DOTA dataset annotations and image information.
|
|
70
68
|
|
|
71
69
|
Args:
|
|
72
70
|
data_root (str): Data root directory.
|
|
@@ -107,8 +105,7 @@ def get_windows(
|
|
|
107
105
|
im_rate_thr: float = 0.6,
|
|
108
106
|
eps: float = 0.01,
|
|
109
107
|
) -> np.ndarray:
|
|
110
|
-
"""
|
|
111
|
-
Get the coordinates of sliding windows for image cropping.
|
|
108
|
+
"""Get the coordinates of sliding windows for image cropping.
|
|
112
109
|
|
|
113
110
|
Args:
|
|
114
111
|
im_size (tuple[int, int]): Original image size, (H, W).
|
|
@@ -118,7 +115,7 @@ def get_windows(
|
|
|
118
115
|
eps (float, optional): Epsilon value for math operations.
|
|
119
116
|
|
|
120
117
|
Returns:
|
|
121
|
-
(np.ndarray): Array of window coordinates
|
|
118
|
+
(np.ndarray): Array of window coordinates of shape (N, 4) where each row is [x_start, y_start, x_stop, y_stop].
|
|
122
119
|
"""
|
|
123
120
|
h, w = im_size
|
|
124
121
|
windows = []
|
|
@@ -175,8 +172,7 @@ def crop_and_save(
|
|
|
175
172
|
lb_dir: str,
|
|
176
173
|
allow_background_images: bool = True,
|
|
177
174
|
) -> None:
|
|
178
|
-
"""
|
|
179
|
-
Crop images and save new labels for each window.
|
|
175
|
+
"""Crop images and save new labels for each window.
|
|
180
176
|
|
|
181
177
|
Args:
|
|
182
178
|
anno (dict[str, Any]): Annotation dict, including 'filepath', 'label', 'ori_size' as its keys.
|
|
@@ -226,8 +222,7 @@ def split_images_and_labels(
|
|
|
226
222
|
crop_sizes: tuple[int, ...] = (1024,),
|
|
227
223
|
gaps: tuple[int, ...] = (200,),
|
|
228
224
|
) -> None:
|
|
229
|
-
"""
|
|
230
|
-
Split both images and labels for a given dataset split.
|
|
225
|
+
"""Split both images and labels for a given dataset split.
|
|
231
226
|
|
|
232
227
|
Args:
|
|
233
228
|
data_root (str): Root directory of the dataset.
|
|
@@ -265,8 +260,7 @@ def split_images_and_labels(
|
|
|
265
260
|
def split_trainval(
|
|
266
261
|
data_root: str, save_dir: str, crop_size: int = 1024, gap: int = 200, rates: tuple[float, ...] = (1.0,)
|
|
267
262
|
) -> None:
|
|
268
|
-
"""
|
|
269
|
-
Split train and val sets of DOTA dataset with multiple scaling rates.
|
|
263
|
+
"""Split train and val sets of DOTA dataset with multiple scaling rates.
|
|
270
264
|
|
|
271
265
|
Args:
|
|
272
266
|
data_root (str): Root directory of the dataset.
|
|
@@ -304,8 +298,7 @@ def split_trainval(
|
|
|
304
298
|
def split_test(
|
|
305
299
|
data_root: str, save_dir: str, crop_size: int = 1024, gap: int = 200, rates: tuple[float, ...] = (1.0,)
|
|
306
300
|
) -> None:
|
|
307
|
-
"""
|
|
308
|
-
Split test set of DOTA dataset, labels are not included within this set.
|
|
301
|
+
"""Split test set of DOTA dataset, labels are not included within this set.
|
|
309
302
|
|
|
310
303
|
Args:
|
|
311
304
|
data_root (str): Root directory of the dataset.
|