dgenerate-ultralytics-headless 8.3.222__py3-none-any.whl → 8.3.225__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (158) hide show
  1. {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/METADATA +2 -2
  2. dgenerate_ultralytics_headless-8.3.225.dist-info/RECORD +286 -0
  3. tests/conftest.py +5 -8
  4. tests/test_cli.py +1 -8
  5. tests/test_python.py +1 -2
  6. ultralytics/__init__.py +1 -1
  7. ultralytics/cfg/__init__.py +34 -49
  8. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  9. ultralytics/cfg/datasets/kitti.yaml +27 -0
  10. ultralytics/cfg/datasets/lvis.yaml +5 -5
  11. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  12. ultralytics/data/annotator.py +3 -4
  13. ultralytics/data/augment.py +244 -323
  14. ultralytics/data/base.py +12 -22
  15. ultralytics/data/build.py +47 -40
  16. ultralytics/data/converter.py +32 -42
  17. ultralytics/data/dataset.py +43 -71
  18. ultralytics/data/loaders.py +22 -34
  19. ultralytics/data/split.py +5 -6
  20. ultralytics/data/split_dota.py +8 -15
  21. ultralytics/data/utils.py +27 -36
  22. ultralytics/engine/exporter.py +49 -116
  23. ultralytics/engine/model.py +144 -180
  24. ultralytics/engine/predictor.py +18 -29
  25. ultralytics/engine/results.py +165 -231
  26. ultralytics/engine/trainer.py +11 -19
  27. ultralytics/engine/tuner.py +13 -23
  28. ultralytics/engine/validator.py +6 -10
  29. ultralytics/hub/__init__.py +7 -12
  30. ultralytics/hub/auth.py +6 -12
  31. ultralytics/hub/google/__init__.py +7 -10
  32. ultralytics/hub/session.py +15 -25
  33. ultralytics/hub/utils.py +3 -6
  34. ultralytics/models/fastsam/model.py +6 -8
  35. ultralytics/models/fastsam/predict.py +5 -10
  36. ultralytics/models/fastsam/utils.py +1 -2
  37. ultralytics/models/fastsam/val.py +2 -4
  38. ultralytics/models/nas/model.py +5 -8
  39. ultralytics/models/nas/predict.py +7 -9
  40. ultralytics/models/nas/val.py +1 -2
  41. ultralytics/models/rtdetr/model.py +5 -8
  42. ultralytics/models/rtdetr/predict.py +15 -18
  43. ultralytics/models/rtdetr/train.py +10 -13
  44. ultralytics/models/rtdetr/val.py +13 -20
  45. ultralytics/models/sam/amg.py +12 -18
  46. ultralytics/models/sam/build.py +6 -9
  47. ultralytics/models/sam/model.py +16 -23
  48. ultralytics/models/sam/modules/blocks.py +62 -84
  49. ultralytics/models/sam/modules/decoders.py +17 -24
  50. ultralytics/models/sam/modules/encoders.py +40 -56
  51. ultralytics/models/sam/modules/memory_attention.py +10 -16
  52. ultralytics/models/sam/modules/sam.py +41 -47
  53. ultralytics/models/sam/modules/tiny_encoder.py +64 -83
  54. ultralytics/models/sam/modules/transformer.py +17 -27
  55. ultralytics/models/sam/modules/utils.py +31 -42
  56. ultralytics/models/sam/predict.py +172 -209
  57. ultralytics/models/utils/loss.py +14 -26
  58. ultralytics/models/utils/ops.py +13 -17
  59. ultralytics/models/yolo/classify/predict.py +8 -11
  60. ultralytics/models/yolo/classify/train.py +8 -16
  61. ultralytics/models/yolo/classify/val.py +13 -20
  62. ultralytics/models/yolo/detect/predict.py +4 -8
  63. ultralytics/models/yolo/detect/train.py +11 -20
  64. ultralytics/models/yolo/detect/val.py +38 -48
  65. ultralytics/models/yolo/model.py +35 -47
  66. ultralytics/models/yolo/obb/predict.py +5 -8
  67. ultralytics/models/yolo/obb/train.py +11 -14
  68. ultralytics/models/yolo/obb/val.py +20 -28
  69. ultralytics/models/yolo/pose/predict.py +5 -8
  70. ultralytics/models/yolo/pose/train.py +4 -8
  71. ultralytics/models/yolo/pose/val.py +31 -39
  72. ultralytics/models/yolo/segment/predict.py +9 -14
  73. ultralytics/models/yolo/segment/train.py +3 -6
  74. ultralytics/models/yolo/segment/val.py +16 -26
  75. ultralytics/models/yolo/world/train.py +8 -14
  76. ultralytics/models/yolo/world/train_world.py +11 -16
  77. ultralytics/models/yolo/yoloe/predict.py +16 -23
  78. ultralytics/models/yolo/yoloe/train.py +30 -43
  79. ultralytics/models/yolo/yoloe/train_seg.py +5 -10
  80. ultralytics/models/yolo/yoloe/val.py +15 -20
  81. ultralytics/nn/autobackend.py +10 -18
  82. ultralytics/nn/modules/activation.py +4 -6
  83. ultralytics/nn/modules/block.py +99 -185
  84. ultralytics/nn/modules/conv.py +45 -90
  85. ultralytics/nn/modules/head.py +44 -98
  86. ultralytics/nn/modules/transformer.py +44 -76
  87. ultralytics/nn/modules/utils.py +14 -19
  88. ultralytics/nn/tasks.py +86 -146
  89. ultralytics/nn/text_model.py +25 -40
  90. ultralytics/solutions/ai_gym.py +10 -16
  91. ultralytics/solutions/analytics.py +7 -10
  92. ultralytics/solutions/config.py +4 -5
  93. ultralytics/solutions/distance_calculation.py +9 -12
  94. ultralytics/solutions/heatmap.py +7 -13
  95. ultralytics/solutions/instance_segmentation.py +5 -8
  96. ultralytics/solutions/object_blurrer.py +7 -10
  97. ultralytics/solutions/object_counter.py +8 -12
  98. ultralytics/solutions/object_cropper.py +5 -8
  99. ultralytics/solutions/parking_management.py +12 -14
  100. ultralytics/solutions/queue_management.py +4 -6
  101. ultralytics/solutions/region_counter.py +7 -10
  102. ultralytics/solutions/security_alarm.py +14 -19
  103. ultralytics/solutions/similarity_search.py +7 -12
  104. ultralytics/solutions/solutions.py +31 -53
  105. ultralytics/solutions/speed_estimation.py +6 -9
  106. ultralytics/solutions/streamlit_inference.py +2 -4
  107. ultralytics/solutions/trackzone.py +7 -10
  108. ultralytics/solutions/vision_eye.py +5 -8
  109. ultralytics/trackers/basetrack.py +2 -4
  110. ultralytics/trackers/bot_sort.py +6 -11
  111. ultralytics/trackers/byte_tracker.py +10 -15
  112. ultralytics/trackers/track.py +3 -6
  113. ultralytics/trackers/utils/gmc.py +6 -12
  114. ultralytics/trackers/utils/kalman_filter.py +35 -43
  115. ultralytics/trackers/utils/matching.py +6 -10
  116. ultralytics/utils/__init__.py +61 -100
  117. ultralytics/utils/autobatch.py +2 -4
  118. ultralytics/utils/autodevice.py +11 -13
  119. ultralytics/utils/benchmarks.py +25 -35
  120. ultralytics/utils/callbacks/base.py +8 -10
  121. ultralytics/utils/callbacks/clearml.py +2 -4
  122. ultralytics/utils/callbacks/comet.py +30 -44
  123. ultralytics/utils/callbacks/dvc.py +13 -18
  124. ultralytics/utils/callbacks/mlflow.py +4 -5
  125. ultralytics/utils/callbacks/neptune.py +4 -6
  126. ultralytics/utils/callbacks/raytune.py +3 -4
  127. ultralytics/utils/callbacks/tensorboard.py +4 -6
  128. ultralytics/utils/callbacks/wb.py +10 -13
  129. ultralytics/utils/checks.py +29 -56
  130. ultralytics/utils/cpu.py +1 -2
  131. ultralytics/utils/dist.py +8 -12
  132. ultralytics/utils/downloads.py +17 -27
  133. ultralytics/utils/errors.py +6 -8
  134. ultralytics/utils/events.py +2 -4
  135. ultralytics/utils/export/__init__.py +4 -239
  136. ultralytics/utils/export/engine.py +237 -0
  137. ultralytics/utils/export/imx.py +11 -17
  138. ultralytics/utils/export/tensorflow.py +217 -0
  139. ultralytics/utils/files.py +10 -15
  140. ultralytics/utils/git.py +5 -7
  141. ultralytics/utils/instance.py +30 -51
  142. ultralytics/utils/logger.py +11 -15
  143. ultralytics/utils/loss.py +8 -14
  144. ultralytics/utils/metrics.py +98 -138
  145. ultralytics/utils/nms.py +13 -16
  146. ultralytics/utils/ops.py +47 -74
  147. ultralytics/utils/patches.py +11 -18
  148. ultralytics/utils/plotting.py +29 -42
  149. ultralytics/utils/tal.py +25 -39
  150. ultralytics/utils/torch_utils.py +45 -73
  151. ultralytics/utils/tqdm.py +6 -8
  152. ultralytics/utils/triton.py +9 -12
  153. ultralytics/utils/tuner.py +1 -2
  154. dgenerate_ultralytics_headless-8.3.222.dist-info/RECORD +0 -283
  155. {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/WHEEL +0 -0
  156. {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/entry_points.txt +0 -0
  157. {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/licenses/LICENSE +0 -0
  158. {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/top_level.txt +0 -0
@@ -56,15 +56,13 @@ __all__ = (
56
56
 
57
57
 
58
58
  class DFL(nn.Module):
59
- """
60
- Integral module of Distribution Focal Loss (DFL).
59
+ """Integral module of Distribution Focal Loss (DFL).
61
60
 
62
61
  Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
63
62
  """
64
63
 
65
64
  def __init__(self, c1: int = 16):
66
- """
67
- Initialize a convolutional layer with a given number of input channels.
65
+ """Initialize a convolutional layer with a given number of input channels.
68
66
 
69
67
  Args:
70
68
  c1 (int): Number of input channels.
@@ -86,8 +84,7 @@ class Proto(nn.Module):
86
84
  """Ultralytics YOLO models mask Proto module for segmentation models."""
87
85
 
88
86
  def __init__(self, c1: int, c_: int = 256, c2: int = 32):
89
- """
90
- Initialize the Ultralytics YOLO models mask Proto module with specified number of protos and masks.
87
+ """Initialize the Ultralytics YOLO models mask Proto module with specified number of protos and masks.
91
88
 
92
89
  Args:
93
90
  c1 (int): Input channels.
@@ -106,15 +103,13 @@ class Proto(nn.Module):
106
103
 
107
104
 
108
105
  class HGStem(nn.Module):
109
- """
110
- StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
106
+ """StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
111
107
 
112
108
  https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
113
109
  """
114
110
 
115
111
  def __init__(self, c1: int, cm: int, c2: int):
116
- """
117
- Initialize the StemBlock of PPHGNetV2.
112
+ """Initialize the StemBlock of PPHGNetV2.
118
113
 
119
114
  Args:
120
115
  c1 (int): Input channels.
@@ -144,8 +139,7 @@ class HGStem(nn.Module):
144
139
 
145
140
 
146
141
  class HGBlock(nn.Module):
147
- """
148
- HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
142
+ """HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
149
143
 
150
144
  https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
151
145
  """
@@ -161,8 +155,7 @@ class HGBlock(nn.Module):
161
155
  shortcut: bool = False,
162
156
  act: nn.Module = nn.ReLU(),
163
157
  ):
164
- """
165
- Initialize HGBlock with specified parameters.
158
+ """Initialize HGBlock with specified parameters.
166
159
 
167
160
  Args:
168
161
  c1 (int): Input channels.
@@ -193,8 +186,7 @@ class SPP(nn.Module):
193
186
  """Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""
194
187
 
195
188
  def __init__(self, c1: int, c2: int, k: tuple[int, ...] = (5, 9, 13)):
196
- """
197
- Initialize the SPP layer with input/output channels and pooling kernel sizes.
189
+ """Initialize the SPP layer with input/output channels and pooling kernel sizes.
198
190
 
199
191
  Args:
200
192
  c1 (int): Input channels.
@@ -217,8 +209,7 @@ class SPPF(nn.Module):
217
209
  """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
218
210
 
219
211
  def __init__(self, c1: int, c2: int, k: int = 5):
220
- """
221
- Initialize the SPPF layer with given input/output channels and kernel size.
212
+ """Initialize the SPPF layer with given input/output channels and kernel size.
222
213
 
223
214
  Args:
224
215
  c1 (int): Input channels.
@@ -245,8 +236,7 @@ class C1(nn.Module):
245
236
  """CSP Bottleneck with 1 convolution."""
246
237
 
247
238
  def __init__(self, c1: int, c2: int, n: int = 1):
248
- """
249
- Initialize the CSP Bottleneck with 1 convolution.
239
+ """Initialize the CSP Bottleneck with 1 convolution.
250
240
 
251
241
  Args:
252
242
  c1 (int): Input channels.
@@ -267,8 +257,7 @@ class C2(nn.Module):
267
257
  """CSP Bottleneck with 2 convolutions."""
268
258
 
269
259
  def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
270
- """
271
- Initialize a CSP Bottleneck with 2 convolutions.
260
+ """Initialize a CSP Bottleneck with 2 convolutions.
272
261
 
273
262
  Args:
274
263
  c1 (int): Input channels.
@@ -295,8 +284,7 @@ class C2f(nn.Module):
295
284
  """Faster Implementation of CSP Bottleneck with 2 convolutions."""
296
285
 
297
286
  def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5):
298
- """
299
- Initialize a CSP bottleneck with 2 convolutions.
287
+ """Initialize a CSP bottleneck with 2 convolutions.
300
288
 
301
289
  Args:
302
290
  c1 (int): Input channels.
@@ -330,8 +318,7 @@ class C3(nn.Module):
330
318
  """CSP Bottleneck with 3 convolutions."""
331
319
 
332
320
  def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
333
- """
334
- Initialize the CSP Bottleneck with 3 convolutions.
321
+ """Initialize the CSP Bottleneck with 3 convolutions.
335
322
 
336
323
  Args:
337
324
  c1 (int): Input channels.
@@ -357,8 +344,7 @@ class C3x(C3):
357
344
  """C3 module with cross-convolutions."""
358
345
 
359
346
  def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
360
- """
361
- Initialize C3 module with cross-convolutions.
347
+ """Initialize C3 module with cross-convolutions.
362
348
 
363
349
  Args:
364
350
  c1 (int): Input channels.
@@ -377,8 +363,7 @@ class RepC3(nn.Module):
377
363
  """Rep C3."""
378
364
 
379
365
  def __init__(self, c1: int, c2: int, n: int = 3, e: float = 1.0):
380
- """
381
- Initialize CSP Bottleneck with a single convolution.
366
+ """Initialize CSP Bottleneck with a single convolution.
382
367
 
383
368
  Args:
384
369
  c1 (int): Input channels.
@@ -402,8 +387,7 @@ class C3TR(C3):
402
387
  """C3 module with TransformerBlock()."""
403
388
 
404
389
  def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
405
- """
406
- Initialize C3 module with TransformerBlock.
390
+ """Initialize C3 module with TransformerBlock.
407
391
 
408
392
  Args:
409
393
  c1 (int): Input channels.
@@ -422,8 +406,7 @@ class C3Ghost(C3):
422
406
  """C3 module with GhostBottleneck()."""
423
407
 
424
408
  def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
425
- """
426
- Initialize C3 module with GhostBottleneck.
409
+ """Initialize C3 module with GhostBottleneck.
427
410
 
428
411
  Args:
429
412
  c1 (int): Input channels.
@@ -442,8 +425,7 @@ class GhostBottleneck(nn.Module):
442
425
  """Ghost Bottleneck https://github.com/huawei-noah/Efficient-AI-Backbones."""
443
426
 
444
427
  def __init__(self, c1: int, c2: int, k: int = 3, s: int = 1):
445
- """
446
- Initialize Ghost Bottleneck module.
428
+ """Initialize Ghost Bottleneck module.
447
429
 
448
430
  Args:
449
431
  c1 (int): Input channels.
@@ -473,8 +455,7 @@ class Bottleneck(nn.Module):
473
455
  def __init__(
474
456
  self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: tuple[int, int] = (3, 3), e: float = 0.5
475
457
  ):
476
- """
477
- Initialize a standard bottleneck module.
458
+ """Initialize a standard bottleneck module.
478
459
 
479
460
  Args:
480
461
  c1 (int): Input channels.
@@ -499,8 +480,7 @@ class BottleneckCSP(nn.Module):
499
480
  """CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
500
481
 
501
482
  def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
502
- """
503
- Initialize CSP Bottleneck.
483
+ """Initialize CSP Bottleneck.
504
484
 
505
485
  Args:
506
486
  c1 (int): Input channels.
@@ -531,8 +511,7 @@ class ResNetBlock(nn.Module):
531
511
  """ResNet block with standard convolution layers."""
532
512
 
533
513
  def __init__(self, c1: int, c2: int, s: int = 1, e: int = 4):
534
- """
535
- Initialize ResNet block.
514
+ """Initialize ResNet block.
536
515
 
537
516
  Args:
538
517
  c1 (int): Input channels.
@@ -556,8 +535,7 @@ class ResNetLayer(nn.Module):
556
535
  """ResNet layer with multiple ResNet blocks."""
557
536
 
558
537
  def __init__(self, c1: int, c2: int, s: int = 1, is_first: bool = False, n: int = 1, e: int = 4):
559
- """
560
- Initialize ResNet layer.
538
+ """Initialize ResNet layer.
561
539
 
562
540
  Args:
563
541
  c1 (int): Input channels.
@@ -588,8 +566,7 @@ class MaxSigmoidAttnBlock(nn.Module):
588
566
  """Max Sigmoid attention block."""
589
567
 
590
568
  def __init__(self, c1: int, c2: int, nh: int = 1, ec: int = 128, gc: int = 512, scale: bool = False):
591
- """
592
- Initialize MaxSigmoidAttnBlock.
569
+ """Initialize MaxSigmoidAttnBlock.
593
570
 
594
571
  Args:
595
572
  c1 (int): Input channels.
@@ -609,8 +586,7 @@ class MaxSigmoidAttnBlock(nn.Module):
609
586
  self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0
610
587
 
611
588
  def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
612
- """
613
- Forward pass of MaxSigmoidAttnBlock.
589
+ """Forward pass of MaxSigmoidAttnBlock.
614
590
 
615
591
  Args:
616
592
  x (torch.Tensor): Input tensor.
@@ -653,8 +629,7 @@ class C2fAttn(nn.Module):
653
629
  g: int = 1,
654
630
  e: float = 0.5,
655
631
  ):
656
- """
657
- Initialize C2f module with attention mechanism.
632
+ """Initialize C2f module with attention mechanism.
658
633
 
659
634
  Args:
660
635
  c1 (int): Input channels.
@@ -675,8 +650,7 @@ class C2fAttn(nn.Module):
675
650
  self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)
676
651
 
677
652
  def forward(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
678
- """
679
- Forward pass through C2f layer with attention.
653
+ """Forward pass through C2f layer with attention.
680
654
 
681
655
  Args:
682
656
  x (torch.Tensor): Input tensor.
@@ -691,8 +665,7 @@ class C2fAttn(nn.Module):
691
665
  return self.cv2(torch.cat(y, 1))
692
666
 
693
667
  def forward_split(self, x: torch.Tensor, guide: torch.Tensor) -> torch.Tensor:
694
- """
695
- Forward pass using split() instead of chunk().
668
+ """Forward pass using split() instead of chunk().
696
669
 
697
670
  Args:
698
671
  x (torch.Tensor): Input tensor.
@@ -713,8 +686,7 @@ class ImagePoolingAttn(nn.Module):
713
686
  def __init__(
714
687
  self, ec: int = 256, ch: tuple[int, ...] = (), ct: int = 512, nh: int = 8, k: int = 3, scale: bool = False
715
688
  ):
716
- """
717
- Initialize ImagePoolingAttn module.
689
+ """Initialize ImagePoolingAttn module.
718
690
 
719
691
  Args:
720
692
  ec (int): Embedding channels.
@@ -741,8 +713,7 @@ class ImagePoolingAttn(nn.Module):
741
713
  self.k = k
742
714
 
743
715
  def forward(self, x: list[torch.Tensor], text: torch.Tensor) -> torch.Tensor:
744
- """
745
- Forward pass of ImagePoolingAttn.
716
+ """Forward pass of ImagePoolingAttn.
746
717
 
747
718
  Args:
748
719
  x (list[torch.Tensor]): List of input feature maps.
@@ -785,8 +756,7 @@ class ContrastiveHead(nn.Module):
785
756
  self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())
786
757
 
787
758
  def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
788
- """
789
- Forward function of contrastive learning.
759
+ """Forward function of contrastive learning.
790
760
 
791
761
  Args:
792
762
  x (torch.Tensor): Image features.
@@ -802,16 +772,14 @@ class ContrastiveHead(nn.Module):
802
772
 
803
773
 
804
774
  class BNContrastiveHead(nn.Module):
805
- """
806
- Batch Norm Contrastive Head using batch norm instead of l2-normalization.
775
+ """Batch Norm Contrastive Head using batch norm instead of l2-normalization.
807
776
 
808
777
  Args:
809
778
  embed_dims (int): Embed dimensions of text and image features.
810
779
  """
811
780
 
812
781
  def __init__(self, embed_dims: int):
813
- """
814
- Initialize BNContrastiveHead.
782
+ """Initialize BNContrastiveHead.
815
783
 
816
784
  Args:
817
785
  embed_dims (int): Embedding dimensions for features.
@@ -835,8 +803,7 @@ class BNContrastiveHead(nn.Module):
835
803
  return x
836
804
 
837
805
  def forward(self, x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
838
- """
839
- Forward function of contrastive learning with batch normalization.
806
+ """Forward function of contrastive learning with batch normalization.
840
807
 
841
808
  Args:
842
809
  x (torch.Tensor): Image features.
@@ -858,8 +825,7 @@ class RepBottleneck(Bottleneck):
858
825
  def __init__(
859
826
  self, c1: int, c2: int, shortcut: bool = True, g: int = 1, k: tuple[int, int] = (3, 3), e: float = 0.5
860
827
  ):
861
- """
862
- Initialize RepBottleneck.
828
+ """Initialize RepBottleneck.
863
829
 
864
830
  Args:
865
831
  c1 (int): Input channels.
@@ -878,8 +844,7 @@ class RepCSP(C3):
878
844
  """Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction."""
879
845
 
880
846
  def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5):
881
- """
882
- Initialize RepCSP layer.
847
+ """Initialize RepCSP layer.
883
848
 
884
849
  Args:
885
850
  c1 (int): Input channels.
@@ -898,8 +863,7 @@ class RepNCSPELAN4(nn.Module):
898
863
  """CSP-ELAN."""
899
864
 
900
865
  def __init__(self, c1: int, c2: int, c3: int, c4: int, n: int = 1):
901
- """
902
- Initialize CSP-ELAN layer.
866
+ """Initialize CSP-ELAN layer.
903
867
 
904
868
  Args:
905
869
  c1 (int): Input channels.
@@ -932,8 +896,7 @@ class ELAN1(RepNCSPELAN4):
932
896
  """ELAN1 module with 4 convolutions."""
933
897
 
934
898
  def __init__(self, c1: int, c2: int, c3: int, c4: int):
935
- """
936
- Initialize ELAN1 layer.
899
+ """Initialize ELAN1 layer.
937
900
 
938
901
  Args:
939
902
  c1 (int): Input channels.
@@ -953,8 +916,7 @@ class AConv(nn.Module):
953
916
  """AConv."""
954
917
 
955
918
  def __init__(self, c1: int, c2: int):
956
- """
957
- Initialize AConv module.
919
+ """Initialize AConv module.
958
920
 
959
921
  Args:
960
922
  c1 (int): Input channels.
@@ -973,8 +935,7 @@ class ADown(nn.Module):
973
935
  """ADown."""
974
936
 
975
937
  def __init__(self, c1: int, c2: int):
976
- """
977
- Initialize ADown module.
938
+ """Initialize ADown module.
978
939
 
979
940
  Args:
980
941
  c1 (int): Input channels.
@@ -999,8 +960,7 @@ class SPPELAN(nn.Module):
999
960
  """SPP-ELAN."""
1000
961
 
1001
962
  def __init__(self, c1: int, c2: int, c3: int, k: int = 5):
1002
- """
1003
- Initialize SPP-ELAN block.
963
+ """Initialize SPP-ELAN block.
1004
964
 
1005
965
  Args:
1006
966
  c1 (int): Input channels.
@@ -1027,8 +987,7 @@ class CBLinear(nn.Module):
1027
987
  """CBLinear."""
1028
988
 
1029
989
  def __init__(self, c1: int, c2s: list[int], k: int = 1, s: int = 1, p: int | None = None, g: int = 1):
1030
- """
1031
- Initialize CBLinear module.
990
+ """Initialize CBLinear module.
1032
991
 
1033
992
  Args:
1034
993
  c1 (int): Input channels.
@@ -1051,8 +1010,7 @@ class CBFuse(nn.Module):
1051
1010
  """CBFuse."""
1052
1011
 
1053
1012
  def __init__(self, idx: list[int]):
1054
- """
1055
- Initialize CBFuse module.
1013
+ """Initialize CBFuse module.
1056
1014
 
1057
1015
  Args:
1058
1016
  idx (list[int]): Indices for feature selection.
@@ -1061,8 +1019,7 @@ class CBFuse(nn.Module):
1061
1019
  self.idx = idx
1062
1020
 
1063
1021
  def forward(self, xs: list[torch.Tensor]) -> torch.Tensor:
1064
- """
1065
- Forward pass through CBFuse layer.
1022
+ """Forward pass through CBFuse layer.
1066
1023
 
1067
1024
  Args:
1068
1025
  xs (list[torch.Tensor]): List of input tensors.
@@ -1079,8 +1036,7 @@ class C3f(nn.Module):
1079
1036
  """Faster Implementation of CSP Bottleneck with 2 convolutions."""
1080
1037
 
1081
1038
  def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = False, g: int = 1, e: float = 0.5):
1082
- """
1083
- Initialize CSP bottleneck layer with two convolutions.
1039
+ """Initialize CSP bottleneck layer with two convolutions.
1084
1040
 
1085
1041
  Args:
1086
1042
  c1 (int): Input channels.
@@ -1110,8 +1066,7 @@ class C3k2(C2f):
1110
1066
  def __init__(
1111
1067
  self, c1: int, c2: int, n: int = 1, c3k: bool = False, e: float = 0.5, g: int = 1, shortcut: bool = True
1112
1068
  ):
1113
- """
1114
- Initialize C3k2 module.
1069
+ """Initialize C3k2 module.
1115
1070
 
1116
1071
  Args:
1117
1072
  c1 (int): Input channels.
@@ -1132,8 +1087,7 @@ class C3k(C3):
1132
1087
  """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
1133
1088
 
1134
1089
  def __init__(self, c1: int, c2: int, n: int = 1, shortcut: bool = True, g: int = 1, e: float = 0.5, k: int = 3):
1135
- """
1136
- Initialize C3k module.
1090
+ """Initialize C3k module.
1137
1091
 
1138
1092
  Args:
1139
1093
  c1 (int): Input channels.
@@ -1154,8 +1108,7 @@ class RepVGGDW(torch.nn.Module):
1154
1108
  """RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture."""
1155
1109
 
1156
1110
  def __init__(self, ed: int) -> None:
1157
- """
1158
- Initialize RepVGGDW module.
1111
+ """Initialize RepVGGDW module.
1159
1112
 
1160
1113
  Args:
1161
1114
  ed (int): Input and output channels.
@@ -1167,8 +1120,7 @@ class RepVGGDW(torch.nn.Module):
1167
1120
  self.act = nn.SiLU()
1168
1121
 
1169
1122
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1170
- """
1171
- Perform a forward pass of the RepVGGDW block.
1123
+ """Perform a forward pass of the RepVGGDW block.
1172
1124
 
1173
1125
  Args:
1174
1126
  x (torch.Tensor): Input tensor.
@@ -1179,8 +1131,7 @@ class RepVGGDW(torch.nn.Module):
1179
1131
  return self.act(self.conv(x) + self.conv1(x))
1180
1132
 
1181
1133
  def forward_fuse(self, x: torch.Tensor) -> torch.Tensor:
1182
- """
1183
- Perform a forward pass of the RepVGGDW block without fusing the convolutions.
1134
+ """Perform a forward pass of the RepVGGDW block without fusing the convolutions.
1184
1135
 
1185
1136
  Args:
1186
1137
  x (torch.Tensor): Input tensor.
@@ -1192,8 +1143,7 @@ class RepVGGDW(torch.nn.Module):
1192
1143
 
1193
1144
  @torch.no_grad()
1194
1145
  def fuse(self):
1195
- """
1196
- Fuse the convolutional layers in the RepVGGDW block.
1146
+ """Fuse the convolutional layers in the RepVGGDW block.
1197
1147
 
1198
1148
  This method fuses the convolutional layers and updates the weights and biases accordingly.
1199
1149
  """
@@ -1218,8 +1168,7 @@ class RepVGGDW(torch.nn.Module):
1218
1168
 
1219
1169
 
1220
1170
  class CIB(nn.Module):
1221
- """
1222
- Conditional Identity Block (CIB) module.
1171
+ """Conditional Identity Block (CIB) module.
1223
1172
 
1224
1173
  Args:
1225
1174
  c1 (int): Number of input channels.
@@ -1230,8 +1179,7 @@ class CIB(nn.Module):
1230
1179
  """
1231
1180
 
1232
1181
  def __init__(self, c1: int, c2: int, shortcut: bool = True, e: float = 0.5, lk: bool = False):
1233
- """
1234
- Initialize the CIB module.
1182
+ """Initialize the CIB module.
1235
1183
 
1236
1184
  Args:
1237
1185
  c1 (int): Input channels.
@@ -1253,8 +1201,7 @@ class CIB(nn.Module):
1253
1201
  self.add = shortcut and c1 == c2
1254
1202
 
1255
1203
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1256
- """
1257
- Forward pass of the CIB module.
1204
+ """Forward pass of the CIB module.
1258
1205
 
1259
1206
  Args:
1260
1207
  x (torch.Tensor): Input tensor.
@@ -1266,8 +1213,7 @@ class CIB(nn.Module):
1266
1213
 
1267
1214
 
1268
1215
  class C2fCIB(C2f):
1269
- """
1270
- C2fCIB class represents a convolutional block with C2f and CIB modules.
1216
+ """C2fCIB class represents a convolutional block with C2f and CIB modules.
1271
1217
 
1272
1218
  Args:
1273
1219
  c1 (int): Number of input channels.
@@ -1282,8 +1228,7 @@ class C2fCIB(C2f):
1282
1228
  def __init__(
1283
1229
  self, c1: int, c2: int, n: int = 1, shortcut: bool = False, lk: bool = False, g: int = 1, e: float = 0.5
1284
1230
  ):
1285
- """
1286
- Initialize C2fCIB module.
1231
+ """Initialize C2fCIB module.
1287
1232
 
1288
1233
  Args:
1289
1234
  c1 (int): Input channels.
@@ -1299,8 +1244,7 @@ class C2fCIB(C2f):
1299
1244
 
1300
1245
 
1301
1246
  class Attention(nn.Module):
1302
- """
1303
- Attention module that performs self-attention on the input tensor.
1247
+ """Attention module that performs self-attention on the input tensor.
1304
1248
 
1305
1249
  Args:
1306
1250
  dim (int): The input tensor dimension.
@@ -1318,8 +1262,7 @@ class Attention(nn.Module):
1318
1262
  """
1319
1263
 
1320
1264
  def __init__(self, dim: int, num_heads: int = 8, attn_ratio: float = 0.5):
1321
- """
1322
- Initialize multi-head attention module.
1265
+ """Initialize multi-head attention module.
1323
1266
 
1324
1267
  Args:
1325
1268
  dim (int): Input dimension.
@@ -1338,8 +1281,7 @@ class Attention(nn.Module):
1338
1281
  self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)
1339
1282
 
1340
1283
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1341
- """
1342
- Forward pass of the Attention module.
1284
+ """Forward pass of the Attention module.
1343
1285
 
1344
1286
  Args:
1345
1287
  x (torch.Tensor): The input tensor.
@@ -1362,8 +1304,7 @@ class Attention(nn.Module):
1362
1304
 
1363
1305
 
1364
1306
  class PSABlock(nn.Module):
1365
- """
1366
- PSABlock class implementing a Position-Sensitive Attention block for neural networks.
1307
+ """PSABlock class implementing a Position-Sensitive Attention block for neural networks.
1367
1308
 
1368
1309
  This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers
1369
1310
  with optional shortcut connections.
@@ -1384,8 +1325,7 @@ class PSABlock(nn.Module):
1384
1325
  """
1385
1326
 
1386
1327
  def __init__(self, c: int, attn_ratio: float = 0.5, num_heads: int = 4, shortcut: bool = True) -> None:
1387
- """
1388
- Initialize the PSABlock.
1328
+ """Initialize the PSABlock.
1389
1329
 
1390
1330
  Args:
1391
1331
  c (int): Input and output channels.
@@ -1400,8 +1340,7 @@ class PSABlock(nn.Module):
1400
1340
  self.add = shortcut
1401
1341
 
1402
1342
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1403
- """
1404
- Execute a forward pass through PSABlock.
1343
+ """Execute a forward pass through PSABlock.
1405
1344
 
1406
1345
  Args:
1407
1346
  x (torch.Tensor): Input tensor.
@@ -1415,8 +1354,7 @@ class PSABlock(nn.Module):
1415
1354
 
1416
1355
 
1417
1356
  class PSA(nn.Module):
1418
- """
1419
- PSA class for implementing Position-Sensitive Attention in neural networks.
1357
+ """PSA class for implementing Position-Sensitive Attention in neural networks.
1420
1358
 
1421
1359
  This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to
1422
1360
  input tensors, enhancing feature extraction and processing capabilities.
@@ -1439,8 +1377,7 @@ class PSA(nn.Module):
1439
1377
  """
1440
1378
 
1441
1379
  def __init__(self, c1: int, c2: int, e: float = 0.5):
1442
- """
1443
- Initialize PSA module.
1380
+ """Initialize PSA module.
1444
1381
 
1445
1382
  Args:
1446
1383
  c1 (int): Input channels.
@@ -1457,8 +1394,7 @@ class PSA(nn.Module):
1457
1394
  self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))
1458
1395
 
1459
1396
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1460
- """
1461
- Execute forward pass in PSA module.
1397
+ """Execute forward pass in PSA module.
1462
1398
 
1463
1399
  Args:
1464
1400
  x (torch.Tensor): Input tensor.
@@ -1473,8 +1409,7 @@ class PSA(nn.Module):
1473
1409
 
1474
1410
 
1475
1411
  class C2PSA(nn.Module):
1476
- """
1477
- C2PSA module with attention mechanism for enhanced feature extraction and processing.
1412
+ """C2PSA module with attention mechanism for enhanced feature extraction and processing.
1478
1413
 
1479
1414
  This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
1480
1415
  capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.
@@ -1488,18 +1423,17 @@ class C2PSA(nn.Module):
1488
1423
  Methods:
1489
1424
  forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.
1490
1425
 
1491
- Notes:
1492
- This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
1493
-
1494
1426
  Examples:
1495
1427
  >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
1496
1428
  >>> input_tensor = torch.randn(1, 256, 64, 64)
1497
1429
  >>> output_tensor = c2psa(input_tensor)
1430
+
1431
+ Notes:
1432
+ This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
1498
1433
  """
1499
1434
 
1500
1435
  def __init__(self, c1: int, c2: int, n: int = 1, e: float = 0.5):
1501
- """
1502
- Initialize C2PSA module.
1436
+ """Initialize C2PSA module.
1503
1437
 
1504
1438
  Args:
1505
1439
  c1 (int): Input channels.
@@ -1516,8 +1450,7 @@ class C2PSA(nn.Module):
1516
1450
  self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
1517
1451
 
1518
1452
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1519
- """
1520
- Process the input tensor through a series of PSA blocks.
1453
+ """Process the input tensor through a series of PSA blocks.
1521
1454
 
1522
1455
  Args:
1523
1456
  x (torch.Tensor): Input tensor.
@@ -1531,10 +1464,10 @@ class C2PSA(nn.Module):
1531
1464
 
1532
1465
 
1533
1466
  class C2fPSA(C2f):
1534
- """
1535
- C2fPSA module with enhanced feature extraction using PSA blocks.
1467
+ """C2fPSA module with enhanced feature extraction using PSA blocks.
1536
1468
 
1537
- This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction.
1469
+ This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature
1470
+ extraction.
1538
1471
 
1539
1472
  Attributes:
1540
1473
  c (int): Number of hidden channels.
@@ -1556,8 +1489,7 @@ class C2fPSA(C2f):
1556
1489
  """
1557
1490
 
1558
1491
  def __init__(self, c1: int, c2: int, n: int = 1, e: float = 0.5):
1559
- """
1560
- Initialize C2fPSA module.
1492
+ """Initialize C2fPSA module.
1561
1493
 
1562
1494
  Args:
1563
1495
  c1 (int): Input channels.
@@ -1571,8 +1503,7 @@ class C2fPSA(C2f):
1571
1503
 
1572
1504
 
1573
1505
  class SCDown(nn.Module):
1574
- """
1575
- SCDown module for downsampling with separable convolutions.
1506
+ """SCDown module for downsampling with separable convolutions.
1576
1507
 
1577
1508
  This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in
1578
1509
  efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information.
@@ -1595,8 +1526,7 @@ class SCDown(nn.Module):
1595
1526
  """
1596
1527
 
1597
1528
  def __init__(self, c1: int, c2: int, k: int, s: int):
1598
- """
1599
- Initialize SCDown module.
1529
+ """Initialize SCDown module.
1600
1530
 
1601
1531
  Args:
1602
1532
  c1 (int): Input channels.
@@ -1609,8 +1539,7 @@ class SCDown(nn.Module):
1609
1539
  self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)
1610
1540
 
1611
1541
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1612
- """
1613
- Apply convolution and downsampling to the input tensor.
1542
+ """Apply convolution and downsampling to the input tensor.
1614
1543
 
1615
1544
  Args:
1616
1545
  x (torch.Tensor): Input tensor.
@@ -1622,27 +1551,26 @@ class SCDown(nn.Module):
1622
1551
 
1623
1552
 
1624
1553
  class TorchVision(nn.Module):
1625
- """
1626
- TorchVision module to allow loading any torchvision model.
1554
+ """TorchVision module to allow loading any torchvision model.
1627
1555
 
1628
- This class provides a way to load a model from the torchvision library, optionally load pre-trained weights, and customize the model by truncating or unwrapping layers.
1629
-
1630
- Attributes:
1631
- m (nn.Module): The loaded torchvision model, possibly truncated and unwrapped.
1556
+ This class provides a way to load a model from the torchvision library, optionally load pre-trained weights, and
1557
+ customize the model by truncating or unwrapping layers.
1632
1558
 
1633
1559
  Args:
1634
1560
  model (str): Name of the torchvision model to load.
1635
1561
  weights (str, optional): Pre-trained weights to load. Default is "DEFAULT".
1636
- unwrap (bool, optional): If True, unwraps the model to a sequential containing all but the last `truncate` layers. Default is True.
1562
+ unwrap (bool, optional): Unwraps the model to a sequential containing all but the last `truncate` layers.
1637
1563
  truncate (int, optional): Number of layers to truncate from the end if `unwrap` is True. Default is 2.
1638
1564
  split (bool, optional): Returns output from intermediate child modules as list. Default is False.
1565
+
1566
+ Attributes:
1567
+ m (nn.Module): The loaded torchvision model, possibly truncated and unwrapped.
1639
1568
  """
1640
1569
 
1641
1570
  def __init__(
1642
1571
  self, model: str, weights: str = "DEFAULT", unwrap: bool = True, truncate: int = 2, split: bool = False
1643
1572
  ):
1644
- """
1645
- Load the model and weights from torchvision.
1573
+ """Load the model and weights from torchvision.
1646
1574
 
1647
1575
  Args:
1648
1576
  model (str): Name of the torchvision model to load.
@@ -1669,8 +1597,7 @@ class TorchVision(nn.Module):
1669
1597
  self.m.head = self.m.heads = nn.Identity()
1670
1598
 
1671
1599
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1672
- """
1673
- Forward pass through the model.
1600
+ """Forward pass through the model.
1674
1601
 
1675
1602
  Args:
1676
1603
  x (torch.Tensor): Input tensor.
@@ -1687,8 +1614,7 @@ class TorchVision(nn.Module):
1687
1614
 
1688
1615
 
1689
1616
  class AAttn(nn.Module):
1690
- """
1691
- Area-attention module for YOLO models, providing efficient attention mechanisms.
1617
+ """Area-attention module for YOLO models, providing efficient attention mechanisms.
1692
1618
 
1693
1619
  This module implements an area-based attention mechanism that processes input features in a spatially-aware manner,
1694
1620
  making it particularly effective for object detection tasks.
@@ -1713,8 +1639,7 @@ class AAttn(nn.Module):
1713
1639
  """
1714
1640
 
1715
1641
  def __init__(self, dim: int, num_heads: int, area: int = 1):
1716
- """
1717
- Initialize an Area-attention module for YOLO models.
1642
+ """Initialize an Area-attention module for YOLO models.
1718
1643
 
1719
1644
  Args:
1720
1645
  dim (int): Number of hidden channels.
@@ -1733,8 +1658,7 @@ class AAttn(nn.Module):
1733
1658
  self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False)
1734
1659
 
1735
1660
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1736
- """
1737
- Process the input tensor through the area-attention.
1661
+ """Process the input tensor through the area-attention.
1738
1662
 
1739
1663
  Args:
1740
1664
  x (torch.Tensor): Input tensor.
@@ -1773,8 +1697,7 @@ class AAttn(nn.Module):
1773
1697
 
1774
1698
 
1775
1699
  class ABlock(nn.Module):
1776
- """
1777
- Area-attention block module for efficient feature extraction in YOLO models.
1700
+ """Area-attention block module for efficient feature extraction in YOLO models.
1778
1701
 
1779
1702
  This module implements an area-attention mechanism combined with a feed-forward network for processing feature maps.
1780
1703
  It uses a novel area-based attention approach that is more efficient than traditional self-attention while
@@ -1797,8 +1720,7 @@ class ABlock(nn.Module):
1797
1720
  """
1798
1721
 
1799
1722
  def __init__(self, dim: int, num_heads: int, mlp_ratio: float = 1.2, area: int = 1):
1800
- """
1801
- Initialize an Area-attention block module.
1723
+ """Initialize an Area-attention block module.
1802
1724
 
1803
1725
  Args:
1804
1726
  dim (int): Number of input channels.
@@ -1815,8 +1737,7 @@ class ABlock(nn.Module):
1815
1737
  self.apply(self._init_weights)
1816
1738
 
1817
1739
  def _init_weights(self, m: nn.Module):
1818
- """
1819
- Initialize weights using a truncated normal distribution.
1740
+ """Initialize weights using a truncated normal distribution.
1820
1741
 
1821
1742
  Args:
1822
1743
  m (nn.Module): Module to initialize.
@@ -1827,8 +1748,7 @@ class ABlock(nn.Module):
1827
1748
  nn.init.constant_(m.bias, 0)
1828
1749
 
1829
1750
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1830
- """
1831
- Forward pass through ABlock.
1751
+ """Forward pass through ABlock.
1832
1752
 
1833
1753
  Args:
1834
1754
  x (torch.Tensor): Input tensor.
@@ -1841,8 +1761,7 @@ class ABlock(nn.Module):
1841
1761
 
1842
1762
 
1843
1763
  class A2C2f(nn.Module):
1844
- """
1845
- Area-Attention C2f module for enhanced feature extraction with area-based attention mechanisms.
1764
+ """Area-Attention C2f module for enhanced feature extraction with area-based attention mechanisms.
1846
1765
 
1847
1766
  This module extends the C2f architecture by incorporating area-attention and ABlock layers for improved feature
1848
1767
  processing. It supports both area-attention and standard convolution modes.
@@ -1877,8 +1796,7 @@ class A2C2f(nn.Module):
1877
1796
  g: int = 1,
1878
1797
  shortcut: bool = True,
1879
1798
  ):
1880
- """
1881
- Initialize Area-Attention C2f module.
1799
+ """Initialize Area-Attention C2f module.
1882
1800
 
1883
1801
  Args:
1884
1802
  c1 (int): Number of input channels.
@@ -1908,8 +1826,7 @@ class A2C2f(nn.Module):
1908
1826
  )
1909
1827
 
1910
1828
  def forward(self, x: torch.Tensor) -> torch.Tensor:
1911
- """
1912
- Forward pass through A2C2f layer.
1829
+ """Forward pass through A2C2f layer.
1913
1830
 
1914
1831
  Args:
1915
1832
  x (torch.Tensor): Input tensor.
@@ -1929,8 +1846,7 @@ class SwiGLUFFN(nn.Module):
1929
1846
  """SwiGLU Feed-Forward Network for transformer-based architectures."""
1930
1847
 
1931
1848
  def __init__(self, gc: int, ec: int, e: int = 4) -> None:
1932
- """
1933
- Initialize SwiGLU FFN with input dimension, output dimension, and expansion factor.
1849
+ """Initialize SwiGLU FFN with input dimension, output dimension, and expansion factor.
1934
1850
 
1935
1851
  Args:
1936
1852
  gc (int): Guide channels.
@@ -1953,8 +1869,7 @@ class Residual(nn.Module):
1953
1869
  """Residual connection wrapper for neural network modules."""
1954
1870
 
1955
1871
  def __init__(self, m: nn.Module) -> None:
1956
- """
1957
- Initialize residual module with the wrapped module.
1872
+ """Initialize residual module with the wrapped module.
1958
1873
 
1959
1874
  Args:
1960
1875
  m (nn.Module): Module to wrap with residual connection.
@@ -1975,8 +1890,7 @@ class SAVPE(nn.Module):
1975
1890
  """Spatial-Aware Visual Prompt Embedding module for feature enhancement."""
1976
1891
 
1977
1892
  def __init__(self, ch: list[int], c3: int, embed: int):
1978
- """
1979
- Initialize SAVPE module with channels, intermediate channels, and embedding dimension.
1893
+ """Initialize SAVPE module with channels, intermediate channels, and embedding dimension.
1980
1894
 
1981
1895
  Args:
1982
1896
  ch (list[int]): List of input channel dimensions.