dgenerate-ultralytics-headless 8.3.222__py3-none-any.whl → 8.3.225__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/METADATA +2 -2
- dgenerate_ultralytics_headless-8.3.225.dist-info/RECORD +286 -0
- tests/conftest.py +5 -8
- tests/test_cli.py +1 -8
- tests/test_python.py +1 -2
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +34 -49
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +5 -5
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/data/annotator.py +3 -4
- ultralytics/data/augment.py +244 -323
- ultralytics/data/base.py +12 -22
- ultralytics/data/build.py +47 -40
- ultralytics/data/converter.py +32 -42
- ultralytics/data/dataset.py +43 -71
- ultralytics/data/loaders.py +22 -34
- ultralytics/data/split.py +5 -6
- ultralytics/data/split_dota.py +8 -15
- ultralytics/data/utils.py +27 -36
- ultralytics/engine/exporter.py +49 -116
- ultralytics/engine/model.py +144 -180
- ultralytics/engine/predictor.py +18 -29
- ultralytics/engine/results.py +165 -231
- ultralytics/engine/trainer.py +11 -19
- ultralytics/engine/tuner.py +13 -23
- ultralytics/engine/validator.py +6 -10
- ultralytics/hub/__init__.py +7 -12
- ultralytics/hub/auth.py +6 -12
- ultralytics/hub/google/__init__.py +7 -10
- ultralytics/hub/session.py +15 -25
- ultralytics/hub/utils.py +3 -6
- ultralytics/models/fastsam/model.py +6 -8
- ultralytics/models/fastsam/predict.py +5 -10
- ultralytics/models/fastsam/utils.py +1 -2
- ultralytics/models/fastsam/val.py +2 -4
- ultralytics/models/nas/model.py +5 -8
- ultralytics/models/nas/predict.py +7 -9
- ultralytics/models/nas/val.py +1 -2
- ultralytics/models/rtdetr/model.py +5 -8
- ultralytics/models/rtdetr/predict.py +15 -18
- ultralytics/models/rtdetr/train.py +10 -13
- ultralytics/models/rtdetr/val.py +13 -20
- ultralytics/models/sam/amg.py +12 -18
- ultralytics/models/sam/build.py +6 -9
- ultralytics/models/sam/model.py +16 -23
- ultralytics/models/sam/modules/blocks.py +62 -84
- ultralytics/models/sam/modules/decoders.py +17 -24
- ultralytics/models/sam/modules/encoders.py +40 -56
- ultralytics/models/sam/modules/memory_attention.py +10 -16
- ultralytics/models/sam/modules/sam.py +41 -47
- ultralytics/models/sam/modules/tiny_encoder.py +64 -83
- ultralytics/models/sam/modules/transformer.py +17 -27
- ultralytics/models/sam/modules/utils.py +31 -42
- ultralytics/models/sam/predict.py +172 -209
- ultralytics/models/utils/loss.py +14 -26
- ultralytics/models/utils/ops.py +13 -17
- ultralytics/models/yolo/classify/predict.py +8 -11
- ultralytics/models/yolo/classify/train.py +8 -16
- ultralytics/models/yolo/classify/val.py +13 -20
- ultralytics/models/yolo/detect/predict.py +4 -8
- ultralytics/models/yolo/detect/train.py +11 -20
- ultralytics/models/yolo/detect/val.py +38 -48
- ultralytics/models/yolo/model.py +35 -47
- ultralytics/models/yolo/obb/predict.py +5 -8
- ultralytics/models/yolo/obb/train.py +11 -14
- ultralytics/models/yolo/obb/val.py +20 -28
- ultralytics/models/yolo/pose/predict.py +5 -8
- ultralytics/models/yolo/pose/train.py +4 -8
- ultralytics/models/yolo/pose/val.py +31 -39
- ultralytics/models/yolo/segment/predict.py +9 -14
- ultralytics/models/yolo/segment/train.py +3 -6
- ultralytics/models/yolo/segment/val.py +16 -26
- ultralytics/models/yolo/world/train.py +8 -14
- ultralytics/models/yolo/world/train_world.py +11 -16
- ultralytics/models/yolo/yoloe/predict.py +16 -23
- ultralytics/models/yolo/yoloe/train.py +30 -43
- ultralytics/models/yolo/yoloe/train_seg.py +5 -10
- ultralytics/models/yolo/yoloe/val.py +15 -20
- ultralytics/nn/autobackend.py +10 -18
- ultralytics/nn/modules/activation.py +4 -6
- ultralytics/nn/modules/block.py +99 -185
- ultralytics/nn/modules/conv.py +45 -90
- ultralytics/nn/modules/head.py +44 -98
- ultralytics/nn/modules/transformer.py +44 -76
- ultralytics/nn/modules/utils.py +14 -19
- ultralytics/nn/tasks.py +86 -146
- ultralytics/nn/text_model.py +25 -40
- ultralytics/solutions/ai_gym.py +10 -16
- ultralytics/solutions/analytics.py +7 -10
- ultralytics/solutions/config.py +4 -5
- ultralytics/solutions/distance_calculation.py +9 -12
- ultralytics/solutions/heatmap.py +7 -13
- ultralytics/solutions/instance_segmentation.py +5 -8
- ultralytics/solutions/object_blurrer.py +7 -10
- ultralytics/solutions/object_counter.py +8 -12
- ultralytics/solutions/object_cropper.py +5 -8
- ultralytics/solutions/parking_management.py +12 -14
- ultralytics/solutions/queue_management.py +4 -6
- ultralytics/solutions/region_counter.py +7 -10
- ultralytics/solutions/security_alarm.py +14 -19
- ultralytics/solutions/similarity_search.py +7 -12
- ultralytics/solutions/solutions.py +31 -53
- ultralytics/solutions/speed_estimation.py +6 -9
- ultralytics/solutions/streamlit_inference.py +2 -4
- ultralytics/solutions/trackzone.py +7 -10
- ultralytics/solutions/vision_eye.py +5 -8
- ultralytics/trackers/basetrack.py +2 -4
- ultralytics/trackers/bot_sort.py +6 -11
- ultralytics/trackers/byte_tracker.py +10 -15
- ultralytics/trackers/track.py +3 -6
- ultralytics/trackers/utils/gmc.py +6 -12
- ultralytics/trackers/utils/kalman_filter.py +35 -43
- ultralytics/trackers/utils/matching.py +6 -10
- ultralytics/utils/__init__.py +61 -100
- ultralytics/utils/autobatch.py +2 -4
- ultralytics/utils/autodevice.py +11 -13
- ultralytics/utils/benchmarks.py +25 -35
- ultralytics/utils/callbacks/base.py +8 -10
- ultralytics/utils/callbacks/clearml.py +2 -4
- ultralytics/utils/callbacks/comet.py +30 -44
- ultralytics/utils/callbacks/dvc.py +13 -18
- ultralytics/utils/callbacks/mlflow.py +4 -5
- ultralytics/utils/callbacks/neptune.py +4 -6
- ultralytics/utils/callbacks/raytune.py +3 -4
- ultralytics/utils/callbacks/tensorboard.py +4 -6
- ultralytics/utils/callbacks/wb.py +10 -13
- ultralytics/utils/checks.py +29 -56
- ultralytics/utils/cpu.py +1 -2
- ultralytics/utils/dist.py +8 -12
- ultralytics/utils/downloads.py +17 -27
- ultralytics/utils/errors.py +6 -8
- ultralytics/utils/events.py +2 -4
- ultralytics/utils/export/__init__.py +4 -239
- ultralytics/utils/export/engine.py +237 -0
- ultralytics/utils/export/imx.py +11 -17
- ultralytics/utils/export/tensorflow.py +217 -0
- ultralytics/utils/files.py +10 -15
- ultralytics/utils/git.py +5 -7
- ultralytics/utils/instance.py +30 -51
- ultralytics/utils/logger.py +11 -15
- ultralytics/utils/loss.py +8 -14
- ultralytics/utils/metrics.py +98 -138
- ultralytics/utils/nms.py +13 -16
- ultralytics/utils/ops.py +47 -74
- ultralytics/utils/patches.py +11 -18
- ultralytics/utils/plotting.py +29 -42
- ultralytics/utils/tal.py +25 -39
- ultralytics/utils/torch_utils.py +45 -73
- ultralytics/utils/tqdm.py +6 -8
- ultralytics/utils/triton.py +9 -12
- ultralytics/utils/tuner.py +1 -2
- dgenerate_ultralytics_headless-8.3.222.dist-info/RECORD +0 -283
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.222.dist-info → dgenerate_ultralytics_headless-8.3.225.dist-info}/top_level.txt +0 -0
|
@@ -1,242 +1,7 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
from
|
|
3
|
+
from .engine import onnx2engine, torch2onnx
|
|
4
|
+
from .imx import torch2imx
|
|
5
|
+
from .tensorflow import keras2pb, onnx2saved_model, pb2tfjs, tflite2edgetpu
|
|
4
6
|
|
|
5
|
-
|
|
6
|
-
from pathlib import Path
|
|
7
|
-
|
|
8
|
-
import torch
|
|
9
|
-
|
|
10
|
-
from ultralytics.utils import IS_JETSON, LOGGER
|
|
11
|
-
from ultralytics.utils.torch_utils import TORCH_2_4
|
|
12
|
-
|
|
13
|
-
from .imx import torch2imx # noqa
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
def torch2onnx(
|
|
17
|
-
torch_model: torch.nn.Module,
|
|
18
|
-
im: torch.Tensor,
|
|
19
|
-
onnx_file: str,
|
|
20
|
-
opset: int = 14,
|
|
21
|
-
input_names: list[str] = ["images"],
|
|
22
|
-
output_names: list[str] = ["output0"],
|
|
23
|
-
dynamic: bool | dict = False,
|
|
24
|
-
) -> None:
|
|
25
|
-
"""
|
|
26
|
-
Export a PyTorch model to ONNX format.
|
|
27
|
-
|
|
28
|
-
Args:
|
|
29
|
-
torch_model (torch.nn.Module): The PyTorch model to export.
|
|
30
|
-
im (torch.Tensor): Example input tensor for the model.
|
|
31
|
-
onnx_file (str): Path to save the exported ONNX file.
|
|
32
|
-
opset (int): ONNX opset version to use for export.
|
|
33
|
-
input_names (list[str]): List of input tensor names.
|
|
34
|
-
output_names (list[str]): List of output tensor names.
|
|
35
|
-
dynamic (bool | dict, optional): Whether to enable dynamic axes.
|
|
36
|
-
|
|
37
|
-
Notes:
|
|
38
|
-
Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
|
|
39
|
-
"""
|
|
40
|
-
kwargs = {"dynamo": False} if TORCH_2_4 else {}
|
|
41
|
-
torch.onnx.export(
|
|
42
|
-
torch_model,
|
|
43
|
-
im,
|
|
44
|
-
onnx_file,
|
|
45
|
-
verbose=False,
|
|
46
|
-
opset_version=opset,
|
|
47
|
-
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
|
48
|
-
input_names=input_names,
|
|
49
|
-
output_names=output_names,
|
|
50
|
-
dynamic_axes=dynamic or None,
|
|
51
|
-
**kwargs,
|
|
52
|
-
)
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
def onnx2engine(
|
|
56
|
-
onnx_file: str,
|
|
57
|
-
engine_file: str | None = None,
|
|
58
|
-
workspace: int | None = None,
|
|
59
|
-
half: bool = False,
|
|
60
|
-
int8: bool = False,
|
|
61
|
-
dynamic: bool = False,
|
|
62
|
-
shape: tuple[int, int, int, int] = (1, 3, 640, 640),
|
|
63
|
-
dla: int | None = None,
|
|
64
|
-
dataset=None,
|
|
65
|
-
metadata: dict | None = None,
|
|
66
|
-
verbose: bool = False,
|
|
67
|
-
prefix: str = "",
|
|
68
|
-
) -> None:
|
|
69
|
-
"""
|
|
70
|
-
Export a YOLO model to TensorRT engine format.
|
|
71
|
-
|
|
72
|
-
Args:
|
|
73
|
-
onnx_file (str): Path to the ONNX file to be converted.
|
|
74
|
-
engine_file (str, optional): Path to save the generated TensorRT engine file.
|
|
75
|
-
workspace (int, optional): Workspace size in GB for TensorRT.
|
|
76
|
-
half (bool, optional): Enable FP16 precision.
|
|
77
|
-
int8 (bool, optional): Enable INT8 precision.
|
|
78
|
-
dynamic (bool, optional): Enable dynamic input shapes.
|
|
79
|
-
shape (tuple[int, int, int, int], optional): Input shape (batch, channels, height, width).
|
|
80
|
-
dla (int, optional): DLA core to use (Jetson devices only).
|
|
81
|
-
dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration.
|
|
82
|
-
metadata (dict, optional): Metadata to include in the engine file.
|
|
83
|
-
verbose (bool, optional): Enable verbose logging.
|
|
84
|
-
prefix (str, optional): Prefix for log messages.
|
|
85
|
-
|
|
86
|
-
Raises:
|
|
87
|
-
ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
|
|
88
|
-
RuntimeError: If the ONNX file cannot be parsed.
|
|
89
|
-
|
|
90
|
-
Notes:
|
|
91
|
-
TensorRT version compatibility is handled for workspace size and engine building.
|
|
92
|
-
INT8 calibration requires a dataset and generates a calibration cache.
|
|
93
|
-
Metadata is serialized and written to the engine file if provided.
|
|
94
|
-
"""
|
|
95
|
-
import tensorrt as trt
|
|
96
|
-
|
|
97
|
-
engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
|
|
98
|
-
|
|
99
|
-
logger = trt.Logger(trt.Logger.INFO)
|
|
100
|
-
if verbose:
|
|
101
|
-
logger.min_severity = trt.Logger.Severity.VERBOSE
|
|
102
|
-
|
|
103
|
-
# Engine builder
|
|
104
|
-
builder = trt.Builder(logger)
|
|
105
|
-
config = builder.create_builder_config()
|
|
106
|
-
workspace_bytes = int((workspace or 0) * (1 << 30))
|
|
107
|
-
is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10 # is TensorRT >= 10
|
|
108
|
-
if is_trt10 and workspace_bytes > 0:
|
|
109
|
-
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace_bytes)
|
|
110
|
-
elif workspace_bytes > 0: # TensorRT versions 7, 8
|
|
111
|
-
config.max_workspace_size = workspace_bytes
|
|
112
|
-
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
|
113
|
-
network = builder.create_network(flag)
|
|
114
|
-
half = builder.platform_has_fast_fp16 and half
|
|
115
|
-
int8 = builder.platform_has_fast_int8 and int8
|
|
116
|
-
|
|
117
|
-
# Optionally switch to DLA if enabled
|
|
118
|
-
if dla is not None:
|
|
119
|
-
if not IS_JETSON:
|
|
120
|
-
raise ValueError("DLA is only available on NVIDIA Jetson devices")
|
|
121
|
-
LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
|
|
122
|
-
if not half and not int8:
|
|
123
|
-
raise ValueError(
|
|
124
|
-
"DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
|
|
125
|
-
)
|
|
126
|
-
config.default_device_type = trt.DeviceType.DLA
|
|
127
|
-
config.DLA_core = int(dla)
|
|
128
|
-
config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
|
|
129
|
-
|
|
130
|
-
# Read ONNX file
|
|
131
|
-
parser = trt.OnnxParser(network, logger)
|
|
132
|
-
if not parser.parse_from_file(onnx_file):
|
|
133
|
-
raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
|
|
134
|
-
|
|
135
|
-
# Network inputs
|
|
136
|
-
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
|
137
|
-
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
|
138
|
-
for inp in inputs:
|
|
139
|
-
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
|
140
|
-
for out in outputs:
|
|
141
|
-
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
|
142
|
-
|
|
143
|
-
if dynamic:
|
|
144
|
-
profile = builder.create_optimization_profile()
|
|
145
|
-
min_shape = (1, shape[1], 32, 32) # minimum input shape
|
|
146
|
-
max_shape = (*shape[:2], *(int(max(2, workspace or 2) * d) for d in shape[2:])) # max input shape
|
|
147
|
-
for inp in inputs:
|
|
148
|
-
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
|
|
149
|
-
config.add_optimization_profile(profile)
|
|
150
|
-
if int8:
|
|
151
|
-
config.set_calibration_profile(profile)
|
|
152
|
-
|
|
153
|
-
LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
|
|
154
|
-
if int8:
|
|
155
|
-
config.set_flag(trt.BuilderFlag.INT8)
|
|
156
|
-
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
|
|
157
|
-
|
|
158
|
-
class EngineCalibrator(trt.IInt8Calibrator):
|
|
159
|
-
"""
|
|
160
|
-
Custom INT8 calibrator for TensorRT engine optimization.
|
|
161
|
-
|
|
162
|
-
This calibrator provides the necessary interface for TensorRT to perform INT8 quantization calibration
|
|
163
|
-
using a dataset. It handles batch generation, caching, and calibration algorithm selection.
|
|
164
|
-
|
|
165
|
-
Attributes:
|
|
166
|
-
dataset: Dataset for calibration.
|
|
167
|
-
data_iter: Iterator over the calibration dataset.
|
|
168
|
-
algo (trt.CalibrationAlgoType): Calibration algorithm type.
|
|
169
|
-
batch (int): Batch size for calibration.
|
|
170
|
-
cache (Path): Path to save the calibration cache.
|
|
171
|
-
|
|
172
|
-
Methods:
|
|
173
|
-
get_algorithm: Get the calibration algorithm to use.
|
|
174
|
-
get_batch_size: Get the batch size to use for calibration.
|
|
175
|
-
get_batch: Get the next batch to use for calibration.
|
|
176
|
-
read_calibration_cache: Use existing cache instead of calibrating again.
|
|
177
|
-
write_calibration_cache: Write calibration cache to disk.
|
|
178
|
-
"""
|
|
179
|
-
|
|
180
|
-
def __init__(
|
|
181
|
-
self,
|
|
182
|
-
dataset, # ultralytics.data.build.InfiniteDataLoader
|
|
183
|
-
cache: str = "",
|
|
184
|
-
) -> None:
|
|
185
|
-
"""Initialize the INT8 calibrator with dataset and cache path."""
|
|
186
|
-
trt.IInt8Calibrator.__init__(self)
|
|
187
|
-
self.dataset = dataset
|
|
188
|
-
self.data_iter = iter(dataset)
|
|
189
|
-
self.algo = (
|
|
190
|
-
trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2 # DLA quantization needs ENTROPY_CALIBRATION_2
|
|
191
|
-
if dla is not None
|
|
192
|
-
else trt.CalibrationAlgoType.MINMAX_CALIBRATION
|
|
193
|
-
)
|
|
194
|
-
self.batch = dataset.batch_size
|
|
195
|
-
self.cache = Path(cache)
|
|
196
|
-
|
|
197
|
-
def get_algorithm(self) -> trt.CalibrationAlgoType:
|
|
198
|
-
"""Get the calibration algorithm to use."""
|
|
199
|
-
return self.algo
|
|
200
|
-
|
|
201
|
-
def get_batch_size(self) -> int:
|
|
202
|
-
"""Get the batch size to use for calibration."""
|
|
203
|
-
return self.batch or 1
|
|
204
|
-
|
|
205
|
-
def get_batch(self, names) -> list[int] | None:
|
|
206
|
-
"""Get the next batch to use for calibration, as a list of device memory pointers."""
|
|
207
|
-
try:
|
|
208
|
-
im0s = next(self.data_iter)["img"] / 255.0
|
|
209
|
-
im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
|
|
210
|
-
return [int(im0s.data_ptr())]
|
|
211
|
-
except StopIteration:
|
|
212
|
-
# Return None to signal to TensorRT there is no calibration data remaining
|
|
213
|
-
return None
|
|
214
|
-
|
|
215
|
-
def read_calibration_cache(self) -> bytes | None:
|
|
216
|
-
"""Use existing cache instead of calibrating again, otherwise, implicitly return None."""
|
|
217
|
-
if self.cache.exists() and self.cache.suffix == ".cache":
|
|
218
|
-
return self.cache.read_bytes()
|
|
219
|
-
|
|
220
|
-
def write_calibration_cache(self, cache: bytes) -> None:
|
|
221
|
-
"""Write calibration cache to disk."""
|
|
222
|
-
_ = self.cache.write_bytes(cache)
|
|
223
|
-
|
|
224
|
-
# Load dataset w/ builder (for batching) and calibrate
|
|
225
|
-
config.int8_calibrator = EngineCalibrator(
|
|
226
|
-
dataset=dataset,
|
|
227
|
-
cache=str(Path(onnx_file).with_suffix(".cache")),
|
|
228
|
-
)
|
|
229
|
-
|
|
230
|
-
elif half:
|
|
231
|
-
config.set_flag(trt.BuilderFlag.FP16)
|
|
232
|
-
|
|
233
|
-
# Write file
|
|
234
|
-
build = builder.build_serialized_network if is_trt10 else builder.build_engine
|
|
235
|
-
with build(network, config) as engine, open(engine_file, "wb") as t:
|
|
236
|
-
# Metadata
|
|
237
|
-
if metadata is not None:
|
|
238
|
-
meta = json.dumps(metadata)
|
|
239
|
-
t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
|
|
240
|
-
t.write(meta.encode())
|
|
241
|
-
# Model
|
|
242
|
-
t.write(engine if is_trt10 else engine.serialize())
|
|
7
|
+
__all__ = ["keras2pb", "onnx2engine", "onnx2saved_model", "pb2tfjs", "tflite2edgetpu", "torch2imx", "torch2onnx"]
|
|
@@ -0,0 +1,237 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import json
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
|
|
10
|
+
from ultralytics.utils import IS_JETSON, LOGGER
|
|
11
|
+
from ultralytics.utils.torch_utils import TORCH_2_4
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def torch2onnx(
|
|
15
|
+
torch_model: torch.nn.Module,
|
|
16
|
+
im: torch.Tensor,
|
|
17
|
+
onnx_file: str,
|
|
18
|
+
opset: int = 14,
|
|
19
|
+
input_names: list[str] = ["images"],
|
|
20
|
+
output_names: list[str] = ["output0"],
|
|
21
|
+
dynamic: bool | dict = False,
|
|
22
|
+
) -> None:
|
|
23
|
+
"""Export a PyTorch model to ONNX format.
|
|
24
|
+
|
|
25
|
+
Args:
|
|
26
|
+
torch_model (torch.nn.Module): The PyTorch model to export.
|
|
27
|
+
im (torch.Tensor): Example input tensor for the model.
|
|
28
|
+
onnx_file (str): Path to save the exported ONNX file.
|
|
29
|
+
opset (int): ONNX opset version to use for export.
|
|
30
|
+
input_names (list[str]): List of input tensor names.
|
|
31
|
+
output_names (list[str]): List of output tensor names.
|
|
32
|
+
dynamic (bool | dict, optional): Whether to enable dynamic axes.
|
|
33
|
+
|
|
34
|
+
Notes:
|
|
35
|
+
Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
|
|
36
|
+
"""
|
|
37
|
+
kwargs = {"dynamo": False} if TORCH_2_4 else {}
|
|
38
|
+
torch.onnx.export(
|
|
39
|
+
torch_model,
|
|
40
|
+
im,
|
|
41
|
+
onnx_file,
|
|
42
|
+
verbose=False,
|
|
43
|
+
opset_version=opset,
|
|
44
|
+
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
|
45
|
+
input_names=input_names,
|
|
46
|
+
output_names=output_names,
|
|
47
|
+
dynamic_axes=dynamic or None,
|
|
48
|
+
**kwargs,
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def onnx2engine(
|
|
53
|
+
onnx_file: str,
|
|
54
|
+
engine_file: str | None = None,
|
|
55
|
+
workspace: int | None = None,
|
|
56
|
+
half: bool = False,
|
|
57
|
+
int8: bool = False,
|
|
58
|
+
dynamic: bool = False,
|
|
59
|
+
shape: tuple[int, int, int, int] = (1, 3, 640, 640),
|
|
60
|
+
dla: int | None = None,
|
|
61
|
+
dataset=None,
|
|
62
|
+
metadata: dict | None = None,
|
|
63
|
+
verbose: bool = False,
|
|
64
|
+
prefix: str = "",
|
|
65
|
+
) -> None:
|
|
66
|
+
"""Export a YOLO model to TensorRT engine format.
|
|
67
|
+
|
|
68
|
+
Args:
|
|
69
|
+
onnx_file (str): Path to the ONNX file to be converted.
|
|
70
|
+
engine_file (str, optional): Path to save the generated TensorRT engine file.
|
|
71
|
+
workspace (int, optional): Workspace size in GB for TensorRT.
|
|
72
|
+
half (bool, optional): Enable FP16 precision.
|
|
73
|
+
int8 (bool, optional): Enable INT8 precision.
|
|
74
|
+
dynamic (bool, optional): Enable dynamic input shapes.
|
|
75
|
+
shape (tuple[int, int, int, int], optional): Input shape (batch, channels, height, width).
|
|
76
|
+
dla (int, optional): DLA core to use (Jetson devices only).
|
|
77
|
+
dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration.
|
|
78
|
+
metadata (dict, optional): Metadata to include in the engine file.
|
|
79
|
+
verbose (bool, optional): Enable verbose logging.
|
|
80
|
+
prefix (str, optional): Prefix for log messages.
|
|
81
|
+
|
|
82
|
+
Raises:
|
|
83
|
+
ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
|
|
84
|
+
RuntimeError: If the ONNX file cannot be parsed.
|
|
85
|
+
|
|
86
|
+
Notes:
|
|
87
|
+
TensorRT version compatibility is handled for workspace size and engine building.
|
|
88
|
+
INT8 calibration requires a dataset and generates a calibration cache.
|
|
89
|
+
Metadata is serialized and written to the engine file if provided.
|
|
90
|
+
"""
|
|
91
|
+
import tensorrt as trt
|
|
92
|
+
|
|
93
|
+
engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
|
|
94
|
+
|
|
95
|
+
logger = trt.Logger(trt.Logger.INFO)
|
|
96
|
+
if verbose:
|
|
97
|
+
logger.min_severity = trt.Logger.Severity.VERBOSE
|
|
98
|
+
|
|
99
|
+
# Engine builder
|
|
100
|
+
builder = trt.Builder(logger)
|
|
101
|
+
config = builder.create_builder_config()
|
|
102
|
+
workspace_bytes = int((workspace or 0) * (1 << 30))
|
|
103
|
+
is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10 # is TensorRT >= 10
|
|
104
|
+
if is_trt10 and workspace_bytes > 0:
|
|
105
|
+
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace_bytes)
|
|
106
|
+
elif workspace_bytes > 0: # TensorRT versions 7, 8
|
|
107
|
+
config.max_workspace_size = workspace_bytes
|
|
108
|
+
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
|
109
|
+
network = builder.create_network(flag)
|
|
110
|
+
half = builder.platform_has_fast_fp16 and half
|
|
111
|
+
int8 = builder.platform_has_fast_int8 and int8
|
|
112
|
+
|
|
113
|
+
# Optionally switch to DLA if enabled
|
|
114
|
+
if dla is not None:
|
|
115
|
+
if not IS_JETSON:
|
|
116
|
+
raise ValueError("DLA is only available on NVIDIA Jetson devices")
|
|
117
|
+
LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
|
|
118
|
+
if not half and not int8:
|
|
119
|
+
raise ValueError(
|
|
120
|
+
"DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
|
|
121
|
+
)
|
|
122
|
+
config.default_device_type = trt.DeviceType.DLA
|
|
123
|
+
config.DLA_core = int(dla)
|
|
124
|
+
config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
|
|
125
|
+
|
|
126
|
+
# Read ONNX file
|
|
127
|
+
parser = trt.OnnxParser(network, logger)
|
|
128
|
+
if not parser.parse_from_file(onnx_file):
|
|
129
|
+
raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
|
|
130
|
+
|
|
131
|
+
# Network inputs
|
|
132
|
+
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
|
133
|
+
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
|
134
|
+
for inp in inputs:
|
|
135
|
+
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
|
136
|
+
for out in outputs:
|
|
137
|
+
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
|
138
|
+
|
|
139
|
+
if dynamic:
|
|
140
|
+
profile = builder.create_optimization_profile()
|
|
141
|
+
min_shape = (1, shape[1], 32, 32) # minimum input shape
|
|
142
|
+
max_shape = (*shape[:2], *(int(max(2, workspace or 2) * d) for d in shape[2:])) # max input shape
|
|
143
|
+
for inp in inputs:
|
|
144
|
+
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
|
|
145
|
+
config.add_optimization_profile(profile)
|
|
146
|
+
if int8:
|
|
147
|
+
config.set_calibration_profile(profile)
|
|
148
|
+
|
|
149
|
+
LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
|
|
150
|
+
if int8:
|
|
151
|
+
config.set_flag(trt.BuilderFlag.INT8)
|
|
152
|
+
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
|
|
153
|
+
|
|
154
|
+
class EngineCalibrator(trt.IInt8Calibrator):
|
|
155
|
+
"""Custom INT8 calibrator for TensorRT engine optimization.
|
|
156
|
+
|
|
157
|
+
This calibrator provides the necessary interface for TensorRT to perform INT8 quantization calibration using
|
|
158
|
+
a dataset. It handles batch generation, caching, and calibration algorithm selection.
|
|
159
|
+
|
|
160
|
+
Attributes:
|
|
161
|
+
dataset: Dataset for calibration.
|
|
162
|
+
data_iter: Iterator over the calibration dataset.
|
|
163
|
+
algo (trt.CalibrationAlgoType): Calibration algorithm type.
|
|
164
|
+
batch (int): Batch size for calibration.
|
|
165
|
+
cache (Path): Path to save the calibration cache.
|
|
166
|
+
|
|
167
|
+
Methods:
|
|
168
|
+
get_algorithm: Get the calibration algorithm to use.
|
|
169
|
+
get_batch_size: Get the batch size to use for calibration.
|
|
170
|
+
get_batch: Get the next batch to use for calibration.
|
|
171
|
+
read_calibration_cache: Use existing cache instead of calibrating again.
|
|
172
|
+
write_calibration_cache: Write calibration cache to disk.
|
|
173
|
+
"""
|
|
174
|
+
|
|
175
|
+
def __init__(
|
|
176
|
+
self,
|
|
177
|
+
dataset, # ultralytics.data.build.InfiniteDataLoader
|
|
178
|
+
cache: str = "",
|
|
179
|
+
) -> None:
|
|
180
|
+
"""Initialize the INT8 calibrator with dataset and cache path."""
|
|
181
|
+
trt.IInt8Calibrator.__init__(self)
|
|
182
|
+
self.dataset = dataset
|
|
183
|
+
self.data_iter = iter(dataset)
|
|
184
|
+
self.algo = (
|
|
185
|
+
trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2 # DLA quantization needs ENTROPY_CALIBRATION_2
|
|
186
|
+
if dla is not None
|
|
187
|
+
else trt.CalibrationAlgoType.MINMAX_CALIBRATION
|
|
188
|
+
)
|
|
189
|
+
self.batch = dataset.batch_size
|
|
190
|
+
self.cache = Path(cache)
|
|
191
|
+
|
|
192
|
+
def get_algorithm(self) -> trt.CalibrationAlgoType:
|
|
193
|
+
"""Get the calibration algorithm to use."""
|
|
194
|
+
return self.algo
|
|
195
|
+
|
|
196
|
+
def get_batch_size(self) -> int:
|
|
197
|
+
"""Get the batch size to use for calibration."""
|
|
198
|
+
return self.batch or 1
|
|
199
|
+
|
|
200
|
+
def get_batch(self, names) -> list[int] | None:
|
|
201
|
+
"""Get the next batch to use for calibration, as a list of device memory pointers."""
|
|
202
|
+
try:
|
|
203
|
+
im0s = next(self.data_iter)["img"] / 255.0
|
|
204
|
+
im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
|
|
205
|
+
return [int(im0s.data_ptr())]
|
|
206
|
+
except StopIteration:
|
|
207
|
+
# Return None to signal to TensorRT there is no calibration data remaining
|
|
208
|
+
return None
|
|
209
|
+
|
|
210
|
+
def read_calibration_cache(self) -> bytes | None:
|
|
211
|
+
"""Use existing cache instead of calibrating again, otherwise, implicitly return None."""
|
|
212
|
+
if self.cache.exists() and self.cache.suffix == ".cache":
|
|
213
|
+
return self.cache.read_bytes()
|
|
214
|
+
|
|
215
|
+
def write_calibration_cache(self, cache: bytes) -> None:
|
|
216
|
+
"""Write calibration cache to disk."""
|
|
217
|
+
_ = self.cache.write_bytes(cache)
|
|
218
|
+
|
|
219
|
+
# Load dataset w/ builder (for batching) and calibrate
|
|
220
|
+
config.int8_calibrator = EngineCalibrator(
|
|
221
|
+
dataset=dataset,
|
|
222
|
+
cache=str(Path(onnx_file).with_suffix(".cache")),
|
|
223
|
+
)
|
|
224
|
+
|
|
225
|
+
elif half:
|
|
226
|
+
config.set_flag(trt.BuilderFlag.FP16)
|
|
227
|
+
|
|
228
|
+
# Write file
|
|
229
|
+
build = builder.build_serialized_network if is_trt10 else builder.build_engine
|
|
230
|
+
with build(network, config) as engine, open(engine_file, "wb") as t:
|
|
231
|
+
# Metadata
|
|
232
|
+
if metadata is not None:
|
|
233
|
+
meta = json.dumps(metadata)
|
|
234
|
+
t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
|
|
235
|
+
t.write(meta.encode())
|
|
236
|
+
# Model
|
|
237
|
+
t.write(engine if is_trt10 else engine.serialize())
|
ultralytics/utils/export/imx.py
CHANGED
|
@@ -42,8 +42,7 @@ MCT_CONFIG = {
|
|
|
42
42
|
|
|
43
43
|
|
|
44
44
|
class FXModel(torch.nn.Module):
|
|
45
|
-
"""
|
|
46
|
-
A custom model class for torch.fx compatibility.
|
|
45
|
+
"""A custom model class for torch.fx compatibility.
|
|
47
46
|
|
|
48
47
|
This class extends `torch.nn.Module` and is designed to ensure compatibility with torch.fx for tracing and graph
|
|
49
48
|
manipulation. It copies attributes from an existing model and explicitly sets the model attribute to ensure proper
|
|
@@ -54,8 +53,7 @@ class FXModel(torch.nn.Module):
|
|
|
54
53
|
"""
|
|
55
54
|
|
|
56
55
|
def __init__(self, model, imgsz=(640, 640)):
|
|
57
|
-
"""
|
|
58
|
-
Initialize the FXModel.
|
|
56
|
+
"""Initialize the FXModel.
|
|
59
57
|
|
|
60
58
|
Args:
|
|
61
59
|
model (nn.Module): The original model to wrap for torch.fx compatibility.
|
|
@@ -68,8 +66,7 @@ class FXModel(torch.nn.Module):
|
|
|
68
66
|
self.imgsz = imgsz
|
|
69
67
|
|
|
70
68
|
def forward(self, x):
|
|
71
|
-
"""
|
|
72
|
-
Forward pass through the model.
|
|
69
|
+
"""Forward pass through the model.
|
|
73
70
|
|
|
74
71
|
This method performs the forward pass through the model, handling the dependencies between layers and saving
|
|
75
72
|
intermediate outputs.
|
|
@@ -128,8 +125,7 @@ class NMSWrapper(torch.nn.Module):
|
|
|
128
125
|
max_detections: int = 300,
|
|
129
126
|
task: str = "detect",
|
|
130
127
|
):
|
|
131
|
-
"""
|
|
132
|
-
Initialize NMSWrapper with PyTorch Module and NMS parameters.
|
|
128
|
+
"""Initialize NMSWrapper with PyTorch Module and NMS parameters.
|
|
133
129
|
|
|
134
130
|
Args:
|
|
135
131
|
model (torch.nn.Module): Model instance.
|
|
@@ -177,12 +173,10 @@ def torch2imx(
|
|
|
177
173
|
dataset=None,
|
|
178
174
|
prefix: str = "",
|
|
179
175
|
):
|
|
180
|
-
"""
|
|
181
|
-
Export YOLO model to IMX format for deployment on Sony IMX500 devices.
|
|
176
|
+
"""Export YOLO model to IMX format for deployment on Sony IMX500 devices.
|
|
182
177
|
|
|
183
|
-
This function quantizes a YOLO model using Model Compression Toolkit (MCT) and exports it
|
|
184
|
-
|
|
185
|
-
models for detection and pose estimation tasks.
|
|
178
|
+
This function quantizes a YOLO model using Model Compression Toolkit (MCT) and exports it to IMX format compatible
|
|
179
|
+
with Sony IMX500 edge devices. It supports both YOLOv8n and YOLO11n models for detection and pose estimation tasks.
|
|
186
180
|
|
|
187
181
|
Args:
|
|
188
182
|
model (torch.nn.Module): The YOLO model to export. Must be YOLOv8n or YOLO11n.
|
|
@@ -191,8 +185,8 @@ def torch2imx(
|
|
|
191
185
|
iou (float): IoU threshold for NMS post-processing.
|
|
192
186
|
max_det (int): Maximum number of detections to return.
|
|
193
187
|
metadata (dict | None, optional): Metadata to embed in the ONNX model. Defaults to None.
|
|
194
|
-
gptq (bool, optional): Whether to use Gradient-Based Post Training Quantization.
|
|
195
|
-
|
|
188
|
+
gptq (bool, optional): Whether to use Gradient-Based Post Training Quantization. If False, uses standard Post
|
|
189
|
+
Training Quantization. Defaults to False.
|
|
196
190
|
dataset (optional): Representative dataset for quantization calibration. Defaults to None.
|
|
197
191
|
prefix (str, optional): Logging prefix string. Defaults to "".
|
|
198
192
|
|
|
@@ -202,12 +196,12 @@ def torch2imx(
|
|
|
202
196
|
Raises:
|
|
203
197
|
ValueError: If the model is not a supported YOLOv8n or YOLO11n variant.
|
|
204
198
|
|
|
205
|
-
|
|
199
|
+
Examples:
|
|
206
200
|
>>> from ultralytics import YOLO
|
|
207
201
|
>>> model = YOLO("yolo11n.pt")
|
|
208
202
|
>>> path, _ = export_imx(model, "model.imx", conf=0.25, iou=0.45, max_det=300)
|
|
209
203
|
|
|
210
|
-
|
|
204
|
+
Notes:
|
|
211
205
|
- Requires model_compression_toolkit, onnx, edgemdt_tpc, and sony_custom_layers packages
|
|
212
206
|
- Only supports YOLOv8n and YOLO11n models (detection and pose tasks)
|
|
213
207
|
- Output includes quantized ONNX model, IMX binary, and labels.txt file
|