dgenerate-ultralytics-headless 8.3.221__py3-none-any.whl → 8.3.223__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/METADATA +2 -2
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/RECORD +29 -27
- tests/test_python.py +5 -5
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/lvis.yaml +5 -5
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/data/base.py +1 -1
- ultralytics/data/utils.py +1 -1
- ultralytics/engine/exporter.py +46 -110
- ultralytics/engine/model.py +1 -1
- ultralytics/engine/trainer.py +1 -1
- ultralytics/models/rtdetr/val.py +1 -1
- ultralytics/models/yolo/classify/train.py +2 -2
- ultralytics/nn/autobackend.py +1 -1
- ultralytics/nn/modules/head.py +5 -30
- ultralytics/utils/__init__.py +4 -4
- ultralytics/utils/benchmarks.py +3 -1
- ultralytics/utils/export/__init__.py +4 -239
- ultralytics/utils/export/engine.py +240 -0
- ultralytics/utils/export/imx.py +39 -28
- ultralytics/utils/export/tensorflow.py +221 -0
- ultralytics/utils/metrics.py +2 -2
- ultralytics/utils/nms.py +4 -2
- ultralytics/utils/plotting.py +1 -1
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/top_level.txt +0 -0
ultralytics/utils/export/imx.py
CHANGED
|
@@ -6,6 +6,7 @@ import subprocess
|
|
|
6
6
|
import types
|
|
7
7
|
from pathlib import Path
|
|
8
8
|
|
|
9
|
+
import numpy as np
|
|
9
10
|
import torch
|
|
10
11
|
|
|
11
12
|
from ultralytics.nn.modules import Detect, Pose
|
|
@@ -13,6 +14,32 @@ from ultralytics.utils import LOGGER
|
|
|
13
14
|
from ultralytics.utils.tal import make_anchors
|
|
14
15
|
from ultralytics.utils.torch_utils import copy_attr
|
|
15
16
|
|
|
17
|
+
# Configuration for Model Compression Toolkit (MCT) quantization
|
|
18
|
+
MCT_CONFIG = {
|
|
19
|
+
"YOLO11": {
|
|
20
|
+
"detect": {
|
|
21
|
+
"layer_names": ["sub", "mul_2", "add_14", "cat_21"],
|
|
22
|
+
"weights_memory": 2585350.2439,
|
|
23
|
+
"n_layers": 238,
|
|
24
|
+
},
|
|
25
|
+
"pose": {
|
|
26
|
+
"layer_names": ["sub", "mul_2", "add_14", "cat_22", "cat_23", "mul_4", "add_15"],
|
|
27
|
+
"weights_memory": 2437771.67,
|
|
28
|
+
"n_layers": 257,
|
|
29
|
+
},
|
|
30
|
+
"classify": {"layer_names": [], "weights_memory": np.inf, "n_layers": 112},
|
|
31
|
+
},
|
|
32
|
+
"YOLOv8": {
|
|
33
|
+
"detect": {"layer_names": ["sub", "mul", "add_6", "cat_17"], "weights_memory": 2550540.8, "n_layers": 168},
|
|
34
|
+
"pose": {
|
|
35
|
+
"layer_names": ["add_7", "mul_2", "cat_19", "mul", "sub", "add_6", "cat_18"],
|
|
36
|
+
"weights_memory": 2482451.85,
|
|
37
|
+
"n_layers": 187,
|
|
38
|
+
},
|
|
39
|
+
"classify": {"layer_names": [], "weights_memory": np.inf, "n_layers": 73},
|
|
40
|
+
},
|
|
41
|
+
}
|
|
42
|
+
|
|
16
43
|
|
|
17
44
|
class FXModel(torch.nn.Module):
|
|
18
45
|
"""
|
|
@@ -200,30 +227,13 @@ def torch2imx(
|
|
|
200
227
|
tpc = get_target_platform_capabilities(tpc_version="4.0", device_type="imx500")
|
|
201
228
|
|
|
202
229
|
bit_cfg = mct.core.BitWidthConfig()
|
|
203
|
-
if "C2PSA" in model.__str__()
|
|
204
|
-
if model.task == "detect":
|
|
205
|
-
layer_names = ["sub", "mul_2", "add_14", "cat_21"]
|
|
206
|
-
weights_memory = 2585350.2439
|
|
207
|
-
n_layers = 238 # 238 layers for fused YOLO11n
|
|
208
|
-
elif model.task == "pose":
|
|
209
|
-
layer_names = ["sub", "mul_2", "add_14", "cat_22", "cat_23", "mul_4", "add_15"]
|
|
210
|
-
weights_memory = 2437771.67
|
|
211
|
-
n_layers = 257 # 257 layers for fused YOLO11n-pose
|
|
212
|
-
else: # YOLOv8
|
|
213
|
-
if model.task == "detect":
|
|
214
|
-
layer_names = ["sub", "mul", "add_6", "cat_17"]
|
|
215
|
-
weights_memory = 2550540.8
|
|
216
|
-
n_layers = 168 # 168 layers for fused YOLOv8n
|
|
217
|
-
elif model.task == "pose":
|
|
218
|
-
layer_names = ["add_7", "mul_2", "cat_19", "mul", "sub", "add_6", "cat_18"]
|
|
219
|
-
weights_memory = 2482451.85
|
|
220
|
-
n_layers = 187 # 187 layers for fused YOLO11n-pose
|
|
230
|
+
mct_config = MCT_CONFIG["YOLO11" if "C2PSA" in model.__str__() else "YOLOv8"][model.task]
|
|
221
231
|
|
|
222
232
|
# Check if the model has the expected number of layers
|
|
223
|
-
if len(list(model.modules())) != n_layers:
|
|
233
|
+
if len(list(model.modules())) != mct_config["n_layers"]:
|
|
224
234
|
raise ValueError("IMX export only supported for YOLOv8n and YOLO11n models.")
|
|
225
235
|
|
|
226
|
-
for layer_name in layer_names:
|
|
236
|
+
for layer_name in mct_config["layer_names"]:
|
|
227
237
|
bit_cfg.set_manual_activation_bit_width([mct.core.common.network_editors.NodeNameFilter(layer_name)], 16)
|
|
228
238
|
|
|
229
239
|
config = mct.core.CoreConfig(
|
|
@@ -232,7 +242,7 @@ def torch2imx(
|
|
|
232
242
|
bit_width_config=bit_cfg,
|
|
233
243
|
)
|
|
234
244
|
|
|
235
|
-
resource_utilization = mct.core.ResourceUtilization(weights_memory=weights_memory)
|
|
245
|
+
resource_utilization = mct.core.ResourceUtilization(weights_memory=mct_config["weights_memory"])
|
|
236
246
|
|
|
237
247
|
quant_model = (
|
|
238
248
|
mct.gptq.pytorch_gradient_post_training_quantization( # Perform Gradient-Based Post Training Quantization
|
|
@@ -255,13 +265,14 @@ def torch2imx(
|
|
|
255
265
|
)[0]
|
|
256
266
|
)
|
|
257
267
|
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
268
|
+
if model.task != "classify":
|
|
269
|
+
quant_model = NMSWrapper(
|
|
270
|
+
model=quant_model,
|
|
271
|
+
score_threshold=conf or 0.001,
|
|
272
|
+
iou_threshold=iou,
|
|
273
|
+
max_detections=max_det,
|
|
274
|
+
task=model.task,
|
|
275
|
+
)
|
|
265
276
|
|
|
266
277
|
f = Path(str(file).replace(file.suffix, "_imx_model"))
|
|
267
278
|
f.mkdir(exist_ok=True)
|
|
@@ -0,0 +1,221 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
|
|
7
|
+
import numpy as np
|
|
8
|
+
import torch
|
|
9
|
+
|
|
10
|
+
from ultralytics.nn.modules import Detect, Pose
|
|
11
|
+
from ultralytics.utils import LOGGER
|
|
12
|
+
from ultralytics.utils.downloads import attempt_download_asset
|
|
13
|
+
from ultralytics.utils.files import spaces_in_path
|
|
14
|
+
from ultralytics.utils.tal import make_anchors
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def tf_wrapper(model: torch.nn.Module) -> torch.nn.Module:
|
|
18
|
+
"""A wrapper to add TensorFlow compatible inference methods to Detect and Pose layers."""
|
|
19
|
+
for m in model.modules():
|
|
20
|
+
if not isinstance(m, Detect):
|
|
21
|
+
continue
|
|
22
|
+
import types
|
|
23
|
+
|
|
24
|
+
m._inference = types.MethodType(_tf_inference, m)
|
|
25
|
+
if type(m) is Pose:
|
|
26
|
+
m.kpts_decode = types.MethodType(tf_kpts_decode, m)
|
|
27
|
+
return model
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def _tf_inference(self, x: list[torch.Tensor]) -> tuple[torch.Tensor]:
|
|
31
|
+
"""Decode boxes and cls scores for tf object detection."""
|
|
32
|
+
shape = x[0].shape # BCHW
|
|
33
|
+
x_cat = torch.cat([xi.view(x[0].shape[0], self.no, -1) for xi in x], 2)
|
|
34
|
+
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
|
35
|
+
if self.dynamic or self.shape != shape:
|
|
36
|
+
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
|
37
|
+
self.shape = shape
|
|
38
|
+
grid_h, grid_w = shape[2], shape[3]
|
|
39
|
+
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
|
40
|
+
norm = self.strides / (self.stride[0] * grid_size)
|
|
41
|
+
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
|
42
|
+
return torch.cat((dbox, cls.sigmoid()), 1)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def tf_kpts_decode(self, bs: int, kpts: torch.Tensor) -> torch.Tensor:
|
|
46
|
+
"""Decode keypoints for tf pose estimation."""
|
|
47
|
+
ndim = self.kpt_shape[1]
|
|
48
|
+
# required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
|
|
49
|
+
# Precompute normalization factor to increase numerical stability
|
|
50
|
+
y = kpts.view(bs, *self.kpt_shape, -1)
|
|
51
|
+
grid_h, grid_w = self.shape[2], self.shape[3]
|
|
52
|
+
grid_size = torch.tensor([grid_w, grid_h], device=y.device).reshape(1, 2, 1)
|
|
53
|
+
norm = self.strides / (self.stride[0] * grid_size)
|
|
54
|
+
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * norm
|
|
55
|
+
if ndim == 3:
|
|
56
|
+
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
|
|
57
|
+
return a.view(bs, self.nk, -1)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def onnx2saved_model(
|
|
61
|
+
onnx_file: str,
|
|
62
|
+
output_dir: Path,
|
|
63
|
+
int8: bool = False,
|
|
64
|
+
images: np.ndarray = None,
|
|
65
|
+
disable_group_convolution: bool = False,
|
|
66
|
+
prefix="",
|
|
67
|
+
):
|
|
68
|
+
"""
|
|
69
|
+
Convert a ONNX model to TensorFlow SavedModel format via ONNX.
|
|
70
|
+
|
|
71
|
+
Args:
|
|
72
|
+
onnx_file (str): ONNX file path.
|
|
73
|
+
output_dir (Path): Output directory path for the SavedModel.
|
|
74
|
+
int8 (bool, optional): Enable INT8 quantization. Defaults to False.
|
|
75
|
+
images (np.ndarray, optional): Calibration images for INT8 quantization in BHWC format.
|
|
76
|
+
disable_group_convolution (bool, optional): Disable group convolution optimization. Defaults to False.
|
|
77
|
+
prefix (str, optional): Logging prefix. Defaults to "".
|
|
78
|
+
|
|
79
|
+
Returns:
|
|
80
|
+
(keras.Model): Converted Keras model.
|
|
81
|
+
|
|
82
|
+
Note:
|
|
83
|
+
Requires onnx2tf package. Downloads calibration data if INT8 quantization is enabled.
|
|
84
|
+
Removes temporary files and renames quantized models after conversion.
|
|
85
|
+
"""
|
|
86
|
+
# Pre-download calibration file to fix https://github.com/PINTO0309/onnx2tf/issues/545
|
|
87
|
+
onnx2tf_file = Path("calibration_image_sample_data_20x128x128x3_float32.npy")
|
|
88
|
+
if not onnx2tf_file.exists():
|
|
89
|
+
attempt_download_asset(f"{onnx2tf_file}.zip", unzip=True, delete=True)
|
|
90
|
+
np_data = None
|
|
91
|
+
if int8:
|
|
92
|
+
tmp_file = output_dir / "tmp_tflite_int8_calibration_images.npy" # int8 calibration images file
|
|
93
|
+
if images is not None:
|
|
94
|
+
output_dir.mkdir()
|
|
95
|
+
np.save(str(tmp_file), images) # BHWC
|
|
96
|
+
np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]]
|
|
97
|
+
|
|
98
|
+
import onnx2tf # scoped for after ONNX export for reduced conflict during import
|
|
99
|
+
|
|
100
|
+
LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...")
|
|
101
|
+
keras_model = onnx2tf.convert(
|
|
102
|
+
input_onnx_file_path=onnx_file,
|
|
103
|
+
output_folder_path=str(output_dir),
|
|
104
|
+
not_use_onnxsim=True,
|
|
105
|
+
verbosity="error", # note INT8-FP16 activation bug https://github.com/ultralytics/ultralytics/issues/15873
|
|
106
|
+
output_integer_quantized_tflite=int8,
|
|
107
|
+
custom_input_op_name_np_data_path=np_data,
|
|
108
|
+
enable_batchmatmul_unfold=True and not int8, # fix lower no. of detected objects on GPU delegate
|
|
109
|
+
output_signaturedefs=True, # fix error with Attention block group convolution
|
|
110
|
+
disable_group_convolution=disable_group_convolution, # fix error with group convolution
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
# Remove/rename TFLite models
|
|
114
|
+
if int8:
|
|
115
|
+
tmp_file.unlink(missing_ok=True)
|
|
116
|
+
for file in output_dir.rglob("*_dynamic_range_quant.tflite"):
|
|
117
|
+
file.rename(file.with_name(file.stem.replace("_dynamic_range_quant", "_int8") + file.suffix))
|
|
118
|
+
for file in output_dir.rglob("*_integer_quant_with_int16_act.tflite"):
|
|
119
|
+
file.unlink() # delete extra fp16 activation TFLite files
|
|
120
|
+
return keras_model
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
def keras2pb(keras_model, file: Path, prefix=""):
|
|
124
|
+
"""
|
|
125
|
+
Convert a Keras model to TensorFlow GraphDef (.pb) format.
|
|
126
|
+
|
|
127
|
+
Args:
|
|
128
|
+
keras_model(tf_keras): Keras model to convert to frozen graph format.
|
|
129
|
+
file (Path): Output file path (suffix will be changed to .pb).
|
|
130
|
+
prefix (str, optional): Logging prefix. Defaults to "".
|
|
131
|
+
|
|
132
|
+
Note:
|
|
133
|
+
Creates a frozen graph by converting variables to constants for inference optimization.
|
|
134
|
+
"""
|
|
135
|
+
import tensorflow as tf
|
|
136
|
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
|
137
|
+
|
|
138
|
+
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
|
|
139
|
+
m = tf.function(lambda x: keras_model(x)) # full model
|
|
140
|
+
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
|
141
|
+
frozen_func = convert_variables_to_constants_v2(m)
|
|
142
|
+
frozen_func.graph.as_graph_def()
|
|
143
|
+
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(file.parent), name=file.name, as_text=False)
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def tflite2edgetpu(tflite_file: str | Path, output_dir: str | Path, prefix: str = ""):
|
|
147
|
+
"""
|
|
148
|
+
Convert a TensorFlow Lite model to Edge TPU format using the Edge TPU compiler.
|
|
149
|
+
|
|
150
|
+
Args:
|
|
151
|
+
tflite_file (str | Path): Path to the input TensorFlow Lite (.tflite) model file.
|
|
152
|
+
output_dir (str | Path): Output directory path for the compiled Edge TPU model.
|
|
153
|
+
prefix (str, optional): Logging prefix. Defaults to "".
|
|
154
|
+
|
|
155
|
+
Note:
|
|
156
|
+
Requires the Edge TPU compiler to be installed. The function compiles the TFLite model
|
|
157
|
+
for optimal performance on Google's Edge TPU hardware accelerator.
|
|
158
|
+
"""
|
|
159
|
+
import subprocess
|
|
160
|
+
|
|
161
|
+
cmd = (
|
|
162
|
+
"edgetpu_compiler "
|
|
163
|
+
f'--out_dir "{output_dir}" '
|
|
164
|
+
"--show_operations "
|
|
165
|
+
"--search_delegate "
|
|
166
|
+
"--delegate_search_step 30 "
|
|
167
|
+
"--timeout_sec 180 "
|
|
168
|
+
f'"{tflite_file}"'
|
|
169
|
+
)
|
|
170
|
+
LOGGER.info(f"{prefix} running '{cmd}'")
|
|
171
|
+
subprocess.run(cmd, shell=True)
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
def pb2tfjs(pb_file: str, output_dir: str, half: bool = False, int8: bool = False, prefix: str = ""):
|
|
175
|
+
"""
|
|
176
|
+
Convert a TensorFlow GraphDef (.pb) model to TensorFlow.js format.
|
|
177
|
+
|
|
178
|
+
Args:
|
|
179
|
+
pb_file (str): Path to the input TensorFlow GraphDef (.pb) model file.
|
|
180
|
+
output_dir (str): Output directory path for the converted TensorFlow.js model.
|
|
181
|
+
half (bool, optional): Enable FP16 quantization. Defaults to False.
|
|
182
|
+
int8 (bool, optional): Enable INT8 quantization. Defaults to False.
|
|
183
|
+
prefix (str, optional): Logging prefix. Defaults to "".
|
|
184
|
+
|
|
185
|
+
Note:
|
|
186
|
+
Requires tensorflowjs package. Uses tensorflowjs_converter command-line tool for conversion.
|
|
187
|
+
Handles spaces in file paths and warns if output directory contains spaces.
|
|
188
|
+
"""
|
|
189
|
+
import subprocess
|
|
190
|
+
|
|
191
|
+
import tensorflow as tf
|
|
192
|
+
import tensorflowjs as tfjs
|
|
193
|
+
|
|
194
|
+
LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
|
|
195
|
+
|
|
196
|
+
gd = tf.Graph().as_graph_def() # TF GraphDef
|
|
197
|
+
with open(pb_file, "rb") as file:
|
|
198
|
+
gd.ParseFromString(file.read())
|
|
199
|
+
outputs = ",".join(gd_outputs(gd))
|
|
200
|
+
LOGGER.info(f"\n{prefix} output node names: {outputs}")
|
|
201
|
+
|
|
202
|
+
quantization = "--quantize_float16" if half else "--quantize_uint8" if int8 else ""
|
|
203
|
+
with spaces_in_path(pb_file) as fpb_, spaces_in_path(output_dir) as f_: # exporter can not handle spaces in path
|
|
204
|
+
cmd = (
|
|
205
|
+
"tensorflowjs_converter "
|
|
206
|
+
f'--input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"'
|
|
207
|
+
)
|
|
208
|
+
LOGGER.info(f"{prefix} running '{cmd}'")
|
|
209
|
+
subprocess.run(cmd, shell=True)
|
|
210
|
+
|
|
211
|
+
if " " in output_dir:
|
|
212
|
+
LOGGER.warning(f"{prefix} your model may not work correctly with spaces in path '{output_dir}'.")
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
def gd_outputs(gd):
|
|
216
|
+
"""Return TensorFlow GraphDef model output node names."""
|
|
217
|
+
name_list, input_list = [], []
|
|
218
|
+
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
|
|
219
|
+
name_list.append(node.name)
|
|
220
|
+
input_list.extend(node.input)
|
|
221
|
+
return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
|
ultralytics/utils/metrics.py
CHANGED
|
@@ -663,7 +663,7 @@ def plot_pr_curve(
|
|
|
663
663
|
for i, y in enumerate(py.T):
|
|
664
664
|
ax.plot(px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}") # plot(recall, precision)
|
|
665
665
|
else:
|
|
666
|
-
ax.plot(px, py, linewidth=1, color="
|
|
666
|
+
ax.plot(px, py, linewidth=1, color="gray") # plot(recall, precision)
|
|
667
667
|
|
|
668
668
|
ax.plot(px, py.mean(1), linewidth=3, color="blue", label=f"all classes {ap[:, 0].mean():.3f} mAP@0.5")
|
|
669
669
|
ax.set_xlabel("Recall")
|
|
@@ -708,7 +708,7 @@ def plot_mc_curve(
|
|
|
708
708
|
for i, y in enumerate(py):
|
|
709
709
|
ax.plot(px, y, linewidth=1, label=f"{names[i]}") # plot(confidence, metric)
|
|
710
710
|
else:
|
|
711
|
-
ax.plot(px, py.T, linewidth=1, color="
|
|
711
|
+
ax.plot(px, py.T, linewidth=1, color="gray") # plot(confidence, metric)
|
|
712
712
|
|
|
713
713
|
y = smooth(py.mean(0), 0.1)
|
|
714
714
|
ax.plot(px, y, linewidth=3, color="blue", label=f"all classes {y.max():.2f} at {px[y.argmax()]:.3f}")
|
ultralytics/utils/nms.py
CHANGED
|
@@ -231,9 +231,11 @@ class TorchNMS:
|
|
|
231
231
|
upper_mask = row_idx < col_idx
|
|
232
232
|
ious = ious * upper_mask
|
|
233
233
|
# Zeroing these scores ensures the additional indices would not affect the final results
|
|
234
|
-
scores[
|
|
234
|
+
scores_ = scores[sorted_idx]
|
|
235
|
+
scores_[~((ious >= iou_threshold).sum(0) <= 0)] = 0
|
|
236
|
+
scores[sorted_idx] = scores_ # update original tensor for NMSModel
|
|
235
237
|
# NOTE: return indices with fixed length to avoid TFLite reshape error
|
|
236
|
-
pick = torch.topk(
|
|
238
|
+
pick = torch.topk(scores_, scores_.shape[0]).indices
|
|
237
239
|
return sorted_idx[pick]
|
|
238
240
|
|
|
239
241
|
@staticmethod
|
ultralytics/utils/plotting.py
CHANGED
|
@@ -722,7 +722,7 @@ def plot_images(
|
|
|
722
722
|
convert tensor inputs to numpy arrays for processing.
|
|
723
723
|
|
|
724
724
|
Channel Support:
|
|
725
|
-
- 1 channel:
|
|
725
|
+
- 1 channel: Grayscale
|
|
726
726
|
- 2 channels: Third channel added as zeros
|
|
727
727
|
- 3 channels: Used as-is (standard RGB)
|
|
728
728
|
- 4+ channels: Cropped to first 3 channels
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|