dgenerate-ultralytics-headless 8.3.221__py3-none-any.whl → 8.3.223__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/METADATA +2 -2
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/RECORD +29 -27
- tests/test_python.py +5 -5
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/lvis.yaml +5 -5
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/data/base.py +1 -1
- ultralytics/data/utils.py +1 -1
- ultralytics/engine/exporter.py +46 -110
- ultralytics/engine/model.py +1 -1
- ultralytics/engine/trainer.py +1 -1
- ultralytics/models/rtdetr/val.py +1 -1
- ultralytics/models/yolo/classify/train.py +2 -2
- ultralytics/nn/autobackend.py +1 -1
- ultralytics/nn/modules/head.py +5 -30
- ultralytics/utils/__init__.py +4 -4
- ultralytics/utils/benchmarks.py +3 -1
- ultralytics/utils/export/__init__.py +4 -239
- ultralytics/utils/export/engine.py +240 -0
- ultralytics/utils/export/imx.py +39 -28
- ultralytics/utils/export/tensorflow.py +221 -0
- ultralytics/utils/metrics.py +2 -2
- ultralytics/utils/nms.py +4 -2
- ultralytics/utils/plotting.py +1 -1
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: dgenerate-ultralytics-headless
|
|
3
|
-
Version: 8.3.
|
|
3
|
+
Version: 8.3.223
|
|
4
4
|
Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
|
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
|
@@ -44,7 +44,7 @@ Requires-Dist: torch!=2.4.0,>=1.8.0; sys_platform == "win32"
|
|
|
44
44
|
Requires-Dist: torchvision>=0.9.0
|
|
45
45
|
Requires-Dist: psutil
|
|
46
46
|
Requires-Dist: polars
|
|
47
|
-
Requires-Dist: ultralytics-thop>=2.0.
|
|
47
|
+
Requires-Dist: ultralytics-thop>=2.0.18
|
|
48
48
|
Provides-Extra: dev
|
|
49
49
|
Requires-Dist: ipython; extra == "dev"
|
|
50
50
|
Requires-Dist: pytest; extra == "dev"
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
dgenerate_ultralytics_headless-8.3.
|
|
1
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
|
2
2
|
tests/__init__.py,sha256=bCox_hLdGRFYGLb2kd722VdNP2zEXNYNuLLYtqZSrbw,804
|
|
3
3
|
tests/conftest.py,sha256=oaqn_-8LH7R4YQAKKOiK3iuAfjmmLQ9-pL_IPj6xq-U,2333
|
|
4
4
|
tests/test_cli.py,sha256=zygPlaksok7Nwugp3aIudDSkOlzISvmDWfKNmpY3mSA,5844
|
|
@@ -6,9 +6,9 @@ tests/test_cuda.py,sha256=6zUSwu3xaYiO3RRNyDkNsuyeq47b1e9f6JNhPZVeDL4,8142
|
|
|
6
6
|
tests/test_engine.py,sha256=ER2DsHM0GfUG99AH1Q-Lpm4x36qxkfOzxmH6uYM75ds,5722
|
|
7
7
|
tests/test_exports.py,sha256=OMLio2uUhyqo8D8qB5xUwmk7Po2rMeAACRc8WYoxbj4,13147
|
|
8
8
|
tests/test_integrations.py,sha256=6QgSh9n0J04RdUYz08VeVOnKmf4S5MDEQ0chzS7jo_c,6220
|
|
9
|
-
tests/test_python.py,sha256=
|
|
9
|
+
tests/test_python.py,sha256=OChceQcDDAy07yACnmOoGfimRo_4YdyiMwukGEgozXA,27735
|
|
10
10
|
tests/test_solutions.py,sha256=j_PZZ5tMR1Y5ararY-OTXZr1hYJ7vEVr8H3w4O1tbQs,14153
|
|
11
|
-
ultralytics/__init__.py,sha256=
|
|
11
|
+
ultralytics/__init__.py,sha256=IFuXT77f7jmVOvOHnLjLEIrgQ-RfhI6Rq7ykdDC42GI,1302
|
|
12
12
|
ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
|
|
13
13
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
|
14
14
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
|
@@ -19,7 +19,7 @@ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=VZ_KKFX0H2YvlFVJ8JHcLWYBZ2xiQ6Z-RO
|
|
|
19
19
|
ultralytics/cfg/datasets/DOTAv1.yaml,sha256=JrDuYcQ0JU9lJlCA-dCkMNko_jaj6MAVGHjsfjeZ_u0,1181
|
|
20
20
|
ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=dnr_loeYSE6Eo_f7V1yubILsMRBMRm1ozyC5r7uT-iY,2144
|
|
21
21
|
ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=xEtSqEad-rtfGuIrERjjhdISggmPlvaX-315ZzKz50I,934
|
|
22
|
-
ultralytics/cfg/datasets/ImageNet.yaml,sha256=
|
|
22
|
+
ultralytics/cfg/datasets/ImageNet.yaml,sha256=N9NHhIgnlNIBqZZbzQZAW3aCnz6RSXQABnopaDs5BmE,42529
|
|
23
23
|
ultralytics/cfg/datasets/Objects365.yaml,sha256=8Bl-NAm0mlMW8EfMsz39JZo-HCvmp0ejJXaMeoHTpqw,9649
|
|
24
24
|
ultralytics/cfg/datasets/SKU-110K.yaml,sha256=xvRkq3SdDOwBA91U85bln7HTXkod5MvFX6pt1PxTjJE,2609
|
|
25
25
|
ultralytics/cfg/datasets/VOC.yaml,sha256=84BaL-iwG03M_W9hNzjgEQi918dZgSHbCgf9DShjwLA,3747
|
|
@@ -42,9 +42,9 @@ ultralytics/cfg/datasets/dog-pose.yaml,sha256=BI-2S3_cSVyV2Gfzbs_3GzvivRlikT0ANj
|
|
|
42
42
|
ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=2lMBi1Q3_pc0auK00yX80oF7oUMo0bUlwjkOrp33hvs,1216
|
|
43
43
|
ultralytics/cfg/datasets/dota8.yaml,sha256=5n4h_4zdrtUSkmH5DHJ-JLPvfiATcieIkgP3NeOP5nI,1060
|
|
44
44
|
ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=NglEDsfNRe0DaYnwy7n6hYUxEAjV-V2NZBUbj1qJaag,1365
|
|
45
|
-
ultralytics/cfg/datasets/lvis.yaml,sha256=
|
|
45
|
+
ultralytics/cfg/datasets/lvis.yaml,sha256=RescdwAJ8EU1o7Sm0YlxYsGbQFNU1p-LFbFKYEt5MhE,29596
|
|
46
46
|
ultralytics/cfg/datasets/medical-pills.yaml,sha256=RK7iQFpDDkUS6EsEGqlbFjoohi3cgSsUIbsk7UItyds,792
|
|
47
|
-
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=
|
|
47
|
+
ultralytics/cfg/datasets/open-images-v7.yaml,sha256=2fVFmb8UEYH-LkX0z5GlYp__U0_GDqVgVqzmnfFerm8,12116
|
|
48
48
|
ultralytics/cfg/datasets/package-seg.yaml,sha256=V4uyTDWWzgft24y9HJWuELKuZ5AndAHXbanxMI6T8GU,849
|
|
49
49
|
ultralytics/cfg/datasets/signature.yaml,sha256=gBvU3715gVxVAafI_yaYczGX3kfEfA4BttbiMkgOXNk,774
|
|
50
50
|
ultralytics/cfg/datasets/tiger-pose.yaml,sha256=bJ7nBTDQwXRHtlg3xmo4C2bOpPn_r4l8-DezSWMYNcU,1196
|
|
@@ -109,24 +109,24 @@ ultralytics/cfg/trackers/bytetrack.yaml,sha256=7LS1ObP5u7BUFcmeY6L2m3bRuPUktnpJs
|
|
|
109
109
|
ultralytics/data/__init__.py,sha256=ToR8zl0JhBHy42ZvV7zIwO_F3lbi5oNlGQNPK3dlddU,644
|
|
110
110
|
ultralytics/data/annotator.py,sha256=f15TCDEM8SuuzHiFB8oyhTy9vfywKmPTLSPAgsZQP9I,2990
|
|
111
111
|
ultralytics/data/augment.py,sha256=XGnatX9V8mdTCeVRvFt6I_NVng02N9-sWQgqHZd57Mk,132918
|
|
112
|
-
ultralytics/data/base.py,sha256=
|
|
112
|
+
ultralytics/data/base.py,sha256=JHu6T6P_29kR_83IxXQdMhEDNW--VOXNvHxMuzSQqtA,19661
|
|
113
113
|
ultralytics/data/build.py,sha256=a-Gs2JbZS9k59CpJaax7kby-PuZOeK1NYV4mq4KRFA0,16688
|
|
114
114
|
ultralytics/data/converter.py,sha256=EPVgUY8que3TaQo6Sxx-OOUIZulVNBaw1MIdGBUZECs,31963
|
|
115
115
|
ultralytics/data/dataset.py,sha256=HQ3r6Slu4LHSNXnRCiOgbs2zC2E2uAQkYnHZhV3JGdE,36772
|
|
116
116
|
ultralytics/data/loaders.py,sha256=lTnKDRtwZ9IRpZbH2BO8WVHlDuKeTp5ExVBvbUDbdMA,31732
|
|
117
117
|
ultralytics/data/split.py,sha256=5ubnL_wsEutFQOj4I4K01L9UpZrrO_vO3HrydSLJyIY,5107
|
|
118
118
|
ultralytics/data/split_dota.py,sha256=Lz04qVufTvHn4cTyo3VkqoIM93rb-Ymr8uOIXeSsaJI,12910
|
|
119
|
-
ultralytics/data/utils.py,sha256=
|
|
119
|
+
ultralytics/data/utils.py,sha256=kaLibRb80PB_KCLxNGL8H6X-7x_KUq-RGn-yoi1UU8c,36930
|
|
120
120
|
ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
|
|
121
121
|
ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
|
|
122
122
|
ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
|
|
123
123
|
ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
|
|
124
124
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
|
125
|
-
ultralytics/engine/exporter.py,sha256=
|
|
126
|
-
ultralytics/engine/model.py,sha256=
|
|
125
|
+
ultralytics/engine/exporter.py,sha256=89hggNbcH7zFAG8QJmShoHFZMvn0SpHF_yTEJ4CMbsc,69852
|
|
126
|
+
ultralytics/engine/model.py,sha256=d7yGl8ybd7v8W4Q-ueSDAVfumDhsx0QCp4mx8OKf0Z8,53448
|
|
127
127
|
ultralytics/engine/predictor.py,sha256=ZQrx1Bz4X8aTgGjrOSdRSP7SCtQ05uqz6IitEan_Gyk,22813
|
|
128
128
|
ultralytics/engine/results.py,sha256=oHQdV_eIMvAU2qLCV7wG7iLifdfaLEgP80lDXB5ghkg,71490
|
|
129
|
-
ultralytics/engine/trainer.py,sha256=
|
|
129
|
+
ultralytics/engine/trainer.py,sha256=EoJY-fsZBC8sGiHFVVgrHVioRX589Jng5Mg-eqTg7e0,44139
|
|
130
130
|
ultralytics/engine/tuner.py,sha256=vc_Y26g5vzuIeSQBUPOwyVWNT6DumpEDGLvYygdq_kY,21659
|
|
131
131
|
ultralytics/engine/validator.py,sha256=HoBE5Lc7Ro7IQ5TlfDC94L5BmdOb8J8yfGlELozZ6EM,17560
|
|
132
132
|
ultralytics/hub/__init__.py,sha256=2BzU31EQXxnRL9r3BgUFsskf_o_FgTBTi4az58frNNM,6741
|
|
@@ -148,7 +148,7 @@ ultralytics/models/rtdetr/__init__.py,sha256=F4NEQqtcVKFxj97Dh7rkn2Vu3JG4Ea_nxqr
|
|
|
148
148
|
ultralytics/models/rtdetr/model.py,sha256=Pq9QDgaZetDnjxdYSoomj2s6vOGSdpsqVfyN5j0GUmc,2292
|
|
149
149
|
ultralytics/models/rtdetr/predict.py,sha256=43-gGCHEH7UQQ6H1oXdlDlrM39esnp-YEhqCvZOwtOM,4279
|
|
150
150
|
ultralytics/models/rtdetr/train.py,sha256=SNntxGHXatbNqn1yna5_dDQiR_ciDK6o_4S7JIHU7EY,3765
|
|
151
|
-
ultralytics/models/rtdetr/val.py,sha256=
|
|
151
|
+
ultralytics/models/rtdetr/val.py,sha256=UXaoNiy81zdkv6d79x1oGyR8T7dwuV5Y4m0Gpe-LQts,8976
|
|
152
152
|
ultralytics/models/sam/__init__.py,sha256=p1BKLawQFvVxmdk7LomFVWX-67Kc-AP4PJBNPfU_Nuc,359
|
|
153
153
|
ultralytics/models/sam/amg.py,sha256=nFq4EwHf65W2N5Ipo4W69nGRhCbJEh_boYQ8SIPWBZ0,11816
|
|
154
154
|
ultralytics/models/sam/build.py,sha256=uKCgHpcYgV26OFuMq5RaGR8aXYoEtNoituT06bmnW44,12790
|
|
@@ -170,7 +170,7 @@ ultralytics/models/yolo/__init__.py,sha256=YD407NDDiyjo0x_MR6usJaTpePKPgsfBUYehl
|
|
|
170
170
|
ultralytics/models/yolo/model.py,sha256=PH8nXl0ZulgjWMr9M-XAK2TcdaBNXX5AzofIhcKbTQ0,18840
|
|
171
171
|
ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
|
|
172
172
|
ultralytics/models/yolo/classify/predict.py,sha256=o7pDE8xwjkHUUIIOph7ZVQZyGZyob24dYDQ460v_7R0,4149
|
|
173
|
-
ultralytics/models/yolo/classify/train.py,sha256=
|
|
173
|
+
ultralytics/models/yolo/classify/train.py,sha256=afjxs_CCvBgCKgcJoxmPA7vYUkHhpETn1Wwqdm7vasI,9026
|
|
174
174
|
ultralytics/models/yolo/classify/val.py,sha256=VbjlFQf219gFGxu0Gx0PYH2v31c4HxvM4BnH5AqWzOE,10828
|
|
175
175
|
ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
|
|
176
176
|
ultralytics/models/yolo/detect/predict.py,sha256=Vtpqb2gHI7hv9TaBBXsnoScQ8HrSnj0PPOkEu07MwLc,5394
|
|
@@ -197,14 +197,14 @@ ultralytics/models/yolo/yoloe/train.py,sha256=qefvNNXDTOK1tO3va0kNHr8lE5QJkOlV8G
|
|
|
197
197
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=aCV7M8oQOvODFnU4piZdJh3tIrBJYAzZfRVRx1vRgxo,4956
|
|
198
198
|
ultralytics/models/yolo/yoloe/val.py,sha256=5Gd9EoFH0FmKKvWXBl4J7gBe9DVxIczN-s3ceHwdUDo,9458
|
|
199
199
|
ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
|
|
200
|
-
ultralytics/nn/autobackend.py,sha256=
|
|
200
|
+
ultralytics/nn/autobackend.py,sha256=gw8REfburF36l9Hyh11eYzy7UnMvuX1Dm3cjsJBA1TM,42702
|
|
201
201
|
ultralytics/nn/tasks.py,sha256=vRr6HTucM7Eg3kxzhYtyjgEAdacZ7gIDU3yPbMnyYMM,70834
|
|
202
202
|
ultralytics/nn/text_model.py,sha256=pHqnKe8UueR1MuwJcIE_IvrnYIlt68QL796xjcRJs2A,15275
|
|
203
203
|
ultralytics/nn/modules/__init__.py,sha256=5Sg_28MDfKwdu14Ty_WCaiIXZyjBSQ-xCNCwnoz_w-w,3198
|
|
204
204
|
ultralytics/nn/modules/activation.py,sha256=75JcIMH2Cu9GTC2Uf55r_5YLpxcrXQDaVoeGQ0hlUAU,2233
|
|
205
205
|
ultralytics/nn/modules/block.py,sha256=eQ8DegyvBG9k-O_QgSZe5XGmpravqwlnSCCBW6bHRXo,70622
|
|
206
206
|
ultralytics/nn/modules/conv.py,sha256=MISNAK8NzAZhNUusVKWvTHQ8IsofwM-5X0gChCagsaY,21457
|
|
207
|
-
ultralytics/nn/modules/head.py,sha256=
|
|
207
|
+
ultralytics/nn/modules/head.py,sha256=XBOLfpxgApIhNmdgnWoECep0wKhrw8LWtmd1TrWNBak,52076
|
|
208
208
|
ultralytics/nn/modules/transformer.py,sha256=9aq0Yo9V3C4y_McSje4qE1d_PTWDctTsrb98MyXxigc,31470
|
|
209
209
|
ultralytics/nn/modules/utils.py,sha256=9kLeEtvEBFLugz53TkdI4mifD-39a-upjPD-wrE8opU,6092
|
|
210
210
|
ultralytics/solutions/__init__.py,sha256=Jj7OcRiYjHH-e104H4xTgjjR5W6aPB4mBRndbaSPmgU,1209
|
|
@@ -237,10 +237,10 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
|
|
|
237
237
|
ultralytics/trackers/utils/gmc.py,sha256=1cCmlbk5Z6Pd-rFCaiJML7o_cUm_IktMuCocTDOMGFQ,14028
|
|
238
238
|
ultralytics/trackers/utils/kalman_filter.py,sha256=PPmM0lwBMdT_hGojvfLoUsBUFMBBMNRAxKbMcQa3wJ0,21619
|
|
239
239
|
ultralytics/trackers/utils/matching.py,sha256=eIcqzN6WgvE8A3V83DlyklcWLN386StVieqB-j35TpM,7164
|
|
240
|
-
ultralytics/utils/__init__.py,sha256=
|
|
240
|
+
ultralytics/utils/__init__.py,sha256=dXjsJVoQwtoMWCP09h11JaG9oo39zE9kqpN-sgyiZXk,53487
|
|
241
241
|
ultralytics/utils/autobatch.py,sha256=i6KYLLSItKP1Q2IUlTPHrZhjcxl7UOjs0Seb8bF8pvM,5124
|
|
242
242
|
ultralytics/utils/autodevice.py,sha256=d9yq6eEn05fdfzfpxeSECd0YEO61er5f7T-0kjLdofg,8843
|
|
243
|
-
ultralytics/utils/benchmarks.py,sha256
|
|
243
|
+
ultralytics/utils/benchmarks.py,sha256=icNEzwAtlDDQMmgZkCcax0mFKV_LJWMfu0hvNVYoxT4,32233
|
|
244
244
|
ultralytics/utils/checks.py,sha256=QyQglwJBi-SYA0lomfq6FFvkvOuyd9Vz_qmz0SMdHII,36272
|
|
245
245
|
ultralytics/utils/cpu.py,sha256=OPlVxROWhQp-kEa9EkeNRKRQ-jz0KwySu5a-h91JZjk,3634
|
|
246
246
|
ultralytics/utils/dist.py,sha256=5xQhWK0OLORvseAL08UmG1LYdkiDVLquxmaGSnqiSqo,4151
|
|
@@ -252,11 +252,11 @@ ultralytics/utils/git.py,sha256=yYJH7vdWHBag1boyqYJEbwtDPdkUK4jz4cU62UY48gU,5512
|
|
|
252
252
|
ultralytics/utils/instance.py,sha256=_b_jMTECWJGzncCiTg7FtTDSSeXGnbiAhaJhIsqbn9k,19043
|
|
253
253
|
ultralytics/utils/logger.py,sha256=hK1APBBHmlLAm0zbAFY7gf7Iaejy0PdwLWnnpboboGg,15129
|
|
254
254
|
ultralytics/utils/loss.py,sha256=wJ0F2DpRTI9-e9adxIm2io0zcXRa0RTWFTOc7WmS1-A,39827
|
|
255
|
-
ultralytics/utils/metrics.py,sha256=
|
|
256
|
-
ultralytics/utils/nms.py,sha256=
|
|
255
|
+
ultralytics/utils/metrics.py,sha256=EWwkVWNmN_9rIsR1UOTLz3PiXOzflUE0iWFibydvXgM,68882
|
|
256
|
+
ultralytics/utils/nms.py,sha256=SnZF0VRzY933YzI92NLzmLwuVzu56UNZ7sFT0FryCaw,14285
|
|
257
257
|
ultralytics/utils/ops.py,sha256=yb0jlahjxqUT_xb3y9wz0kXn0rx2AryUgWdtLat3yWY,27010
|
|
258
258
|
ultralytics/utils/patches.py,sha256=0-2G4jXCIPnMonlft-cPcjfFcOXQS6ODwUDNUwanfg4,6541
|
|
259
|
-
ultralytics/utils/plotting.py,sha256=
|
|
259
|
+
ultralytics/utils/plotting.py,sha256=l5G4MT2pB_LLMFqSgFbKb7ip5VMrnpi3i5QmZWytRRU,48369
|
|
260
260
|
ultralytics/utils/tal.py,sha256=7KQYNyetfx18CNc_bvNG7BDb44CIU3DEu4qziVVvNAE,20869
|
|
261
261
|
ultralytics/utils/torch_utils.py,sha256=9o0vvqoRQ-F68yDP8xBHx8Re055u4-mNKwFSB1NN-f0,40377
|
|
262
262
|
ultralytics/utils/tqdm.py,sha256=ny5RIg2OTkWQ7gdaXfYaoIgR0Xn2_hNGB6tUpO2Unns,16137
|
|
@@ -274,10 +274,12 @@ ultralytics/utils/callbacks/platform.py,sha256=a7T_8htoBB0uX1WIc392UJnhDjxkRyQMv
|
|
|
274
274
|
ultralytics/utils/callbacks/raytune.py,sha256=S6Bq16oQDQ8BQgnZzA0zJHGN_BBr8iAM_WtGoLiEcwg,1283
|
|
275
275
|
ultralytics/utils/callbacks/tensorboard.py,sha256=_4nfGK1dDLn6ijpvphBDhc-AS8qhS3jjY2CAWB7SNF0,5283
|
|
276
276
|
ultralytics/utils/callbacks/wb.py,sha256=ngQO8EJ1kxJDF1YajScVtzBbm26jGuejA0uWeOyvf5A,7685
|
|
277
|
-
ultralytics/utils/export/__init__.py,sha256=
|
|
278
|
-
ultralytics/utils/export/
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
dgenerate_ultralytics_headless-8.3.
|
|
282
|
-
dgenerate_ultralytics_headless-8.3.
|
|
283
|
-
dgenerate_ultralytics_headless-8.3.
|
|
277
|
+
ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqdFfmTZ30,333
|
|
278
|
+
ultralytics/utils/export/engine.py,sha256=V8ERERlpufTRm6k_7KOy9dUupAICC28W9TPO_7dkEJY,9979
|
|
279
|
+
ultralytics/utils/export/imx.py,sha256=DH0rVe-gris7qA7bGT-WoOJHqWxLBAmei1JXmK-W7vM,11660
|
|
280
|
+
ultralytics/utils/export/tensorflow.py,sha256=CxraBn-5pIDSd_-0-0vQGMz8lv75vjSl6N7DYgVS3SU,9382
|
|
281
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/METADATA,sha256=P2UOqD5tY6Tx3cfHaU_B5oXQPOsycKUo6lThBHn7G0s,38764
|
|
282
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
283
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
|
284
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
|
285
|
+
dgenerate_ultralytics_headless-8.3.223.dist-info/RECORD,,
|
tests/test_python.py
CHANGED
|
@@ -136,23 +136,23 @@ def test_predict_visualize(model):
|
|
|
136
136
|
YOLO(WEIGHTS_DIR / model)(SOURCE, imgsz=32, visualize=True)
|
|
137
137
|
|
|
138
138
|
|
|
139
|
-
def
|
|
140
|
-
"""Test YOLO prediction on SOURCE converted to
|
|
139
|
+
def test_predict_gray_and_4ch(tmp_path):
|
|
140
|
+
"""Test YOLO prediction on SOURCE converted to grayscale and 4-channel images with various filenames."""
|
|
141
141
|
im = Image.open(SOURCE)
|
|
142
142
|
|
|
143
|
-
|
|
143
|
+
source_grayscale = tmp_path / "grayscale.jpg"
|
|
144
144
|
source_rgba = tmp_path / "4ch.png"
|
|
145
145
|
source_non_utf = tmp_path / "non_UTF_测试文件_tést_image.jpg"
|
|
146
146
|
source_spaces = tmp_path / "image with spaces.jpg"
|
|
147
147
|
|
|
148
|
-
im.convert("L").save(
|
|
148
|
+
im.convert("L").save(source_grayscale) # grayscale
|
|
149
149
|
im.convert("RGBA").save(source_rgba) # 4-ch PNG with alpha
|
|
150
150
|
im.save(source_non_utf) # non-UTF characters in filename
|
|
151
151
|
im.save(source_spaces) # spaces in filename
|
|
152
152
|
|
|
153
153
|
# Inference
|
|
154
154
|
model = YOLO(MODEL)
|
|
155
|
-
for f in source_rgba,
|
|
155
|
+
for f in source_rgba, source_grayscale, source_non_utf, source_spaces:
|
|
156
156
|
for source in Image.open(f), cv2.imread(str(f)), f:
|
|
157
157
|
results = model(source, save=True, verbose=True, imgsz=32)
|
|
158
158
|
assert len(results) == 1 # verify that an image was run
|
ultralytics/__init__.py
CHANGED
|
@@ -35,7 +35,7 @@ names:
|
|
|
35
35
|
17: armband
|
|
36
36
|
18: armchair
|
|
37
37
|
19: armoire
|
|
38
|
-
20: armor
|
|
38
|
+
20: armor
|
|
39
39
|
21: artichoke
|
|
40
40
|
22: trash can/garbage can/wastebin/dustbin/trash barrel/trash bin
|
|
41
41
|
23: ashtray
|
|
@@ -245,7 +245,7 @@ names:
|
|
|
245
245
|
227: CD player
|
|
246
246
|
228: celery
|
|
247
247
|
229: cellular telephone/cellular phone/cellphone/mobile phone/smart phone
|
|
248
|
-
230: chain mail/ring mail/chain armor/
|
|
248
|
+
230: chain mail/ring mail/chain armor/ring armor
|
|
249
249
|
231: chair
|
|
250
250
|
232: chaise longue/chaise/daybed
|
|
251
251
|
233: chalice
|
|
@@ -305,7 +305,7 @@ names:
|
|
|
305
305
|
287: coin
|
|
306
306
|
288: colander/cullender
|
|
307
307
|
289: coleslaw/slaw
|
|
308
|
-
290: coloring material
|
|
308
|
+
290: coloring material
|
|
309
309
|
291: combination lock
|
|
310
310
|
292: pacifier/teething ring
|
|
311
311
|
293: comic book
|
|
@@ -401,7 +401,7 @@ names:
|
|
|
401
401
|
383: domestic ass/donkey
|
|
402
402
|
384: doorknob/doorhandle
|
|
403
403
|
385: doormat/welcome mat
|
|
404
|
-
386:
|
|
404
|
+
386: donut
|
|
405
405
|
387: dove
|
|
406
406
|
388: dragonfly
|
|
407
407
|
389: drawer
|
|
@@ -1072,7 +1072,7 @@ names:
|
|
|
1072
1072
|
1054: tag
|
|
1073
1073
|
1055: taillight/rear light
|
|
1074
1074
|
1056: tambourine
|
|
1075
|
-
1057: army tank/armored combat vehicle
|
|
1075
|
+
1057: army tank/armored combat vehicle
|
|
1076
1076
|
1058: tank/tank storage vessel/storage tank
|
|
1077
1077
|
1059: tank top/tank top clothing
|
|
1078
1078
|
1060: tape/tape sticky cloth or paper
|
ultralytics/data/base.py
CHANGED
|
@@ -307,7 +307,7 @@ class BaseDataset(Dataset):
|
|
|
307
307
|
b += im.nbytes
|
|
308
308
|
if not os.access(Path(im_file).parent, os.W_OK):
|
|
309
309
|
self.cache = None
|
|
310
|
-
LOGGER.warning(f"{self.prefix}Skipping caching images to disk, directory not
|
|
310
|
+
LOGGER.warning(f"{self.prefix}Skipping caching images to disk, directory not writable")
|
|
311
311
|
return False
|
|
312
312
|
disk_required = b * self.ni / n * (1 + safety_margin) # bytes required to cache dataset to disk
|
|
313
313
|
total, _used, free = shutil.disk_usage(Path(self.im_files[0]).parent)
|
ultralytics/data/utils.py
CHANGED
|
@@ -804,4 +804,4 @@ def save_dataset_cache_file(prefix: str, path: Path, x: dict, version: str):
|
|
|
804
804
|
np.save(file, x)
|
|
805
805
|
LOGGER.info(f"{prefix}New cache created: {path}")
|
|
806
806
|
else:
|
|
807
|
-
LOGGER.warning(f"{prefix}Cache directory {path.parent} is not
|
|
807
|
+
LOGGER.warning(f"{prefix}Cache directory {path.parent} is not writable, cache not saved.")
|
ultralytics/engine/exporter.py
CHANGED
|
@@ -107,9 +107,17 @@ from ultralytics.utils.checks import (
|
|
|
107
107
|
is_intel,
|
|
108
108
|
is_sudo_available,
|
|
109
109
|
)
|
|
110
|
-
from ultralytics.utils.downloads import
|
|
111
|
-
from ultralytics.utils.export import
|
|
112
|
-
|
|
110
|
+
from ultralytics.utils.downloads import get_github_assets, safe_download
|
|
111
|
+
from ultralytics.utils.export import (
|
|
112
|
+
keras2pb,
|
|
113
|
+
onnx2engine,
|
|
114
|
+
onnx2saved_model,
|
|
115
|
+
pb2tfjs,
|
|
116
|
+
tflite2edgetpu,
|
|
117
|
+
torch2imx,
|
|
118
|
+
torch2onnx,
|
|
119
|
+
)
|
|
120
|
+
from ultralytics.utils.files import file_size
|
|
113
121
|
from ultralytics.utils.metrics import batch_probiou
|
|
114
122
|
from ultralytics.utils.nms import TorchNMS
|
|
115
123
|
from ultralytics.utils.ops import Profile
|
|
@@ -206,15 +214,6 @@ def validate_args(format, passed_args, valid_args):
|
|
|
206
214
|
assert arg in valid_args, f"ERROR ❌️ argument '{arg}' is not supported for format='{format}'"
|
|
207
215
|
|
|
208
216
|
|
|
209
|
-
def gd_outputs(gd):
|
|
210
|
-
"""Return TensorFlow GraphDef model output node names."""
|
|
211
|
-
name_list, input_list = [], []
|
|
212
|
-
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
|
|
213
|
-
name_list.append(node.name)
|
|
214
|
-
input_list.extend(node.input)
|
|
215
|
-
return sorted(f"{x}:0" for x in list(set(name_list) - set(input_list)) if not x.startswith("NoOp"))
|
|
216
|
-
|
|
217
|
-
|
|
218
217
|
def try_export(inner_func):
|
|
219
218
|
"""YOLO export decorator, i.e. @try_export."""
|
|
220
219
|
inner_args = get_default_args(inner_func)
|
|
@@ -367,11 +366,11 @@ class Exporter:
|
|
|
367
366
|
if not self.args.int8:
|
|
368
367
|
LOGGER.warning("IMX export requires int8=True, setting int8=True.")
|
|
369
368
|
self.args.int8 = True
|
|
370
|
-
if not self.args.nms:
|
|
369
|
+
if not self.args.nms and model.task in {"detect", "pose"}:
|
|
371
370
|
LOGGER.warning("IMX export requires nms=True, setting nms=True.")
|
|
372
371
|
self.args.nms = True
|
|
373
|
-
if model.task not in {"detect", "pose"}:
|
|
374
|
-
raise ValueError("IMX export only supported for detection
|
|
372
|
+
if model.task not in {"detect", "pose", "classify"}:
|
|
373
|
+
raise ValueError("IMX export only supported for detection, pose estimation, and classification models.")
|
|
375
374
|
if not hasattr(model, "names"):
|
|
376
375
|
model.names = default_class_names()
|
|
377
376
|
model.names = check_class_names(model.names)
|
|
@@ -396,8 +395,6 @@ class Exporter:
|
|
|
396
395
|
assert self.args.name in RKNN_CHIPS, (
|
|
397
396
|
f"Invalid processor name '{self.args.name}' for Rockchip RKNN export. Valid names are {RKNN_CHIPS}."
|
|
398
397
|
)
|
|
399
|
-
if self.args.int8 and tflite:
|
|
400
|
-
assert not getattr(model, "end2end", False), "TFLite INT8 export not supported for end2end models."
|
|
401
398
|
if self.args.nms:
|
|
402
399
|
assert not isinstance(model, ClassificationModel), "'nms=True' is not valid for classification models."
|
|
403
400
|
assert not tflite or not ARM64 or not LINUX, "TFLite export with NMS unsupported on ARM64 Linux"
|
|
@@ -463,6 +460,10 @@ class Exporter:
|
|
|
463
460
|
from ultralytics.utils.export.imx import FXModel
|
|
464
461
|
|
|
465
462
|
model = FXModel(model, self.imgsz)
|
|
463
|
+
if tflite or edgetpu:
|
|
464
|
+
from ultralytics.utils.export.tensorflow import tf_wrapper
|
|
465
|
+
|
|
466
|
+
model = tf_wrapper(model)
|
|
466
467
|
for m in model.modules():
|
|
467
468
|
if isinstance(m, Classify):
|
|
468
469
|
m.export = True
|
|
@@ -644,7 +645,7 @@ class Exporter:
|
|
|
644
645
|
assert TORCH_1_13, f"'nms=True' ONNX export requires torch>=1.13 (found torch=={TORCH_VERSION})"
|
|
645
646
|
|
|
646
647
|
f = str(self.file.with_suffix(".onnx"))
|
|
647
|
-
output_names = ["output0", "output1"] if
|
|
648
|
+
output_names = ["output0", "output1"] if self.model.task == "segment" else ["output0"]
|
|
648
649
|
dynamic = self.args.dynamic
|
|
649
650
|
if dynamic:
|
|
650
651
|
dynamic = {"images": {0: "batch", 2: "height", 3: "width"}} # shape(1,3,640,640)
|
|
@@ -1055,75 +1056,43 @@ class Exporter:
|
|
|
1055
1056
|
if f.is_dir():
|
|
1056
1057
|
shutil.rmtree(f) # delete output folder
|
|
1057
1058
|
|
|
1058
|
-
#
|
|
1059
|
-
|
|
1060
|
-
if
|
|
1061
|
-
|
|
1059
|
+
# Export to TF
|
|
1060
|
+
images = None
|
|
1061
|
+
if self.args.int8 and self.args.data:
|
|
1062
|
+
images = [batch["img"] for batch in self.get_int8_calibration_dataloader(prefix)]
|
|
1063
|
+
images = (
|
|
1064
|
+
torch.nn.functional.interpolate(torch.cat(images, 0).float(), size=self.imgsz)
|
|
1065
|
+
.permute(0, 2, 3, 1)
|
|
1066
|
+
.numpy()
|
|
1067
|
+
.astype(np.float32)
|
|
1068
|
+
)
|
|
1062
1069
|
|
|
1063
1070
|
# Export to ONNX
|
|
1064
1071
|
if isinstance(self.model.model[-1], RTDETRDecoder):
|
|
1065
1072
|
self.args.opset = self.args.opset or 19
|
|
1066
1073
|
assert 16 <= self.args.opset <= 19, "RTDETR export requires opset>=16;<=19"
|
|
1067
1074
|
self.args.simplify = True
|
|
1068
|
-
f_onnx = self.export_onnx()
|
|
1069
|
-
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
|
|
1073
|
-
|
|
1074
|
-
|
|
1075
|
-
|
|
1076
|
-
images = [batch["img"] for batch in self.get_int8_calibration_dataloader(prefix)]
|
|
1077
|
-
images = torch.nn.functional.interpolate(torch.cat(images, 0).float(), size=self.imgsz).permute(
|
|
1078
|
-
0, 2, 3, 1
|
|
1079
|
-
)
|
|
1080
|
-
np.save(str(tmp_file), images.numpy().astype(np.float32)) # BHWC
|
|
1081
|
-
np_data = [["images", tmp_file, [[[[0, 0, 0]]]], [[[[255, 255, 255]]]]]]
|
|
1082
|
-
|
|
1083
|
-
import onnx2tf # scoped for after ONNX export for reduced conflict during import
|
|
1084
|
-
|
|
1085
|
-
LOGGER.info(f"{prefix} starting TFLite export with onnx2tf {onnx2tf.__version__}...")
|
|
1086
|
-
keras_model = onnx2tf.convert(
|
|
1087
|
-
input_onnx_file_path=f_onnx,
|
|
1088
|
-
output_folder_path=str(f),
|
|
1089
|
-
not_use_onnxsim=True,
|
|
1090
|
-
verbosity="error", # note INT8-FP16 activation bug https://github.com/ultralytics/ultralytics/issues/15873
|
|
1091
|
-
output_integer_quantized_tflite=self.args.int8,
|
|
1092
|
-
custom_input_op_name_np_data_path=np_data,
|
|
1093
|
-
enable_batchmatmul_unfold=True and not self.args.int8, # fix lower no. of detected objects on GPU delegate
|
|
1094
|
-
output_signaturedefs=True, # fix error with Attention block group convolution
|
|
1095
|
-
disable_group_convolution=self.args.format in {"tfjs", "edgetpu"}, # fix error with group convolution
|
|
1075
|
+
f_onnx = self.export_onnx() # ensure ONNX is available
|
|
1076
|
+
keras_model = onnx2saved_model(
|
|
1077
|
+
f_onnx,
|
|
1078
|
+
f,
|
|
1079
|
+
int8=self.args.int8,
|
|
1080
|
+
images=images,
|
|
1081
|
+
disable_group_convolution=self.args.format in {"tfjs", "edgetpu"},
|
|
1082
|
+
prefix=prefix,
|
|
1096
1083
|
)
|
|
1097
1084
|
YAML.save(f / "metadata.yaml", self.metadata) # add metadata.yaml
|
|
1098
|
-
|
|
1099
|
-
# Remove/rename TFLite models
|
|
1100
|
-
if self.args.int8:
|
|
1101
|
-
tmp_file.unlink(missing_ok=True)
|
|
1102
|
-
for file in f.rglob("*_dynamic_range_quant.tflite"):
|
|
1103
|
-
file.rename(file.with_name(file.stem.replace("_dynamic_range_quant", "_int8") + file.suffix))
|
|
1104
|
-
for file in f.rglob("*_integer_quant_with_int16_act.tflite"):
|
|
1105
|
-
file.unlink() # delete extra fp16 activation TFLite files
|
|
1106
|
-
|
|
1107
1085
|
# Add TFLite metadata
|
|
1108
1086
|
for file in f.rglob("*.tflite"):
|
|
1109
|
-
|
|
1087
|
+
file.unlink() if "quant_with_int16_act.tflite" in str(file) else self._add_tflite_metadata(file)
|
|
1110
1088
|
|
|
1111
1089
|
return str(f), keras_model # or keras_model = tf.saved_model.load(f, tags=None, options=None)
|
|
1112
1090
|
|
|
1113
1091
|
@try_export
|
|
1114
1092
|
def export_pb(self, keras_model, prefix=colorstr("TensorFlow GraphDef:")):
|
|
1115
1093
|
"""Export YOLO model to TensorFlow GraphDef *.pb format https://github.com/leimao/Frozen-Graph-TensorFlow."""
|
|
1116
|
-
import tensorflow as tf
|
|
1117
|
-
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
|
1118
|
-
|
|
1119
|
-
LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
|
|
1120
1094
|
f = self.file.with_suffix(".pb")
|
|
1121
|
-
|
|
1122
|
-
m = tf.function(lambda x: keras_model(x)) # full model
|
|
1123
|
-
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
|
1124
|
-
frozen_func = convert_variables_to_constants_v2(m)
|
|
1125
|
-
frozen_func.graph.as_graph_def()
|
|
1126
|
-
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
|
1095
|
+
keras2pb(keras_model, f, prefix)
|
|
1127
1096
|
return f
|
|
1128
1097
|
|
|
1129
1098
|
@try_export
|
|
@@ -1191,22 +1160,11 @@ class Exporter:
|
|
|
1191
1160
|
"sudo apt-get install edgetpu-compiler",
|
|
1192
1161
|
):
|
|
1193
1162
|
subprocess.run(c if is_sudo_available() else c.replace("sudo ", ""), shell=True, check=True)
|
|
1194
|
-
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().rsplit(maxsplit=1)[-1]
|
|
1195
1163
|
|
|
1164
|
+
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().rsplit(maxsplit=1)[-1]
|
|
1196
1165
|
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
|
|
1166
|
+
tflite2edgetpu(tflite_file=tflite_model, output_dir=tflite_model.parent, prefix=prefix)
|
|
1197
1167
|
f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model
|
|
1198
|
-
|
|
1199
|
-
cmd = (
|
|
1200
|
-
"edgetpu_compiler "
|
|
1201
|
-
f'--out_dir "{Path(f).parent}" '
|
|
1202
|
-
"--show_operations "
|
|
1203
|
-
"--search_delegate "
|
|
1204
|
-
"--delegate_search_step 30 "
|
|
1205
|
-
"--timeout_sec 180 "
|
|
1206
|
-
f'"{tflite_model}"'
|
|
1207
|
-
)
|
|
1208
|
-
LOGGER.info(f"{prefix} running '{cmd}'")
|
|
1209
|
-
subprocess.run(cmd, shell=True)
|
|
1210
1168
|
self._add_tflite_metadata(f)
|
|
1211
1169
|
return f
|
|
1212
1170
|
|
|
@@ -1214,31 +1172,10 @@ class Exporter:
|
|
|
1214
1172
|
def export_tfjs(self, prefix=colorstr("TensorFlow.js:")):
|
|
1215
1173
|
"""Export YOLO model to TensorFlow.js format."""
|
|
1216
1174
|
check_requirements("tensorflowjs")
|
|
1217
|
-
import tensorflow as tf
|
|
1218
|
-
import tensorflowjs as tfjs
|
|
1219
1175
|
|
|
1220
|
-
LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
|
|
1221
1176
|
f = str(self.file).replace(self.file.suffix, "_web_model") # js dir
|
|
1222
1177
|
f_pb = str(self.file.with_suffix(".pb")) # *.pb path
|
|
1223
|
-
|
|
1224
|
-
gd = tf.Graph().as_graph_def() # TF GraphDef
|
|
1225
|
-
with open(f_pb, "rb") as file:
|
|
1226
|
-
gd.ParseFromString(file.read())
|
|
1227
|
-
outputs = ",".join(gd_outputs(gd))
|
|
1228
|
-
LOGGER.info(f"\n{prefix} output node names: {outputs}")
|
|
1229
|
-
|
|
1230
|
-
quantization = "--quantize_float16" if self.args.half else "--quantize_uint8" if self.args.int8 else ""
|
|
1231
|
-
with spaces_in_path(f_pb) as fpb_, spaces_in_path(f) as f_: # exporter can not handle spaces in path
|
|
1232
|
-
cmd = (
|
|
1233
|
-
"tensorflowjs_converter "
|
|
1234
|
-
f'--input_format=tf_frozen_model {quantization} --output_node_names={outputs} "{fpb_}" "{f_}"'
|
|
1235
|
-
)
|
|
1236
|
-
LOGGER.info(f"{prefix} running '{cmd}'")
|
|
1237
|
-
subprocess.run(cmd, shell=True)
|
|
1238
|
-
|
|
1239
|
-
if " " in f:
|
|
1240
|
-
LOGGER.warning(f"{prefix} your model may not work correctly with spaces in path '{f}'.")
|
|
1241
|
-
|
|
1178
|
+
pb2tfjs(pb_file=f_pb, output_dir=f, half=self.args.half, int8=self.args.int8, prefix=prefix)
|
|
1242
1179
|
# Add metadata
|
|
1243
1180
|
YAML.save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
|
|
1244
1181
|
return f
|
|
@@ -1510,17 +1447,16 @@ class NMSModel(torch.nn.Module):
|
|
|
1510
1447
|
box, score, cls, extra = box[mask], score[mask], cls[mask], extra[mask]
|
|
1511
1448
|
nmsbox = box.clone()
|
|
1512
1449
|
# `8` is the minimum value experimented to get correct NMS results for obb
|
|
1513
|
-
multiplier = 8 if self.obb else 1
|
|
1450
|
+
multiplier = (8 if self.obb else 1) / max(len(self.model.names), 1)
|
|
1514
1451
|
# Normalize boxes for NMS since large values for class offset causes issue with int8 quantization
|
|
1515
1452
|
if self.args.format == "tflite": # TFLite is already normalized
|
|
1516
1453
|
nmsbox *= multiplier
|
|
1517
1454
|
else:
|
|
1518
|
-
nmsbox = multiplier * nmsbox / torch.tensor(x.shape[2:], **kwargs).max()
|
|
1519
|
-
if not self.args.agnostic_nms: # class-
|
|
1455
|
+
nmsbox = multiplier * (nmsbox / torch.tensor(x.shape[2:], **kwargs).max())
|
|
1456
|
+
if not self.args.agnostic_nms: # class-wise NMS
|
|
1520
1457
|
end = 2 if self.obb else 4
|
|
1521
1458
|
# fully explicit expansion otherwise reshape error
|
|
1522
|
-
|
|
1523
|
-
cls_offset = cls.reshape(-1, 1).expand(nmsbox.shape[0], end)
|
|
1459
|
+
cls_offset = cls.view(cls.shape[0], 1).expand(cls.shape[0], end)
|
|
1524
1460
|
offbox = nmsbox[:, :end] + cls_offset * multiplier
|
|
1525
1461
|
nmsbox = torch.cat((offbox, nmsbox[:, end:]), dim=-1)
|
|
1526
1462
|
nms_fn = (
|
ultralytics/engine/model.py
CHANGED
|
@@ -877,7 +877,7 @@ class Model(torch.nn.Module):
|
|
|
877
877
|
>>> model = model._apply(lambda t: t.cuda()) # Move model to GPU
|
|
878
878
|
"""
|
|
879
879
|
self._check_is_pytorch_model()
|
|
880
|
-
self = super()._apply(fn)
|
|
880
|
+
self = super()._apply(fn)
|
|
881
881
|
self.predictor = None # reset predictor as device may have changed
|
|
882
882
|
self.overrides["device"] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0'
|
|
883
883
|
return self
|
ultralytics/engine/trainer.py
CHANGED
|
@@ -727,7 +727,7 @@ class BaseTrainer:
|
|
|
727
727
|
|
|
728
728
|
def label_loss_items(self, loss_items=None, prefix="train"):
|
|
729
729
|
"""
|
|
730
|
-
Return a loss dict with
|
|
730
|
+
Return a loss dict with labeled training loss items tensor.
|
|
731
731
|
|
|
732
732
|
Note:
|
|
733
733
|
This is not needed for classification but necessary for segmentation & detection
|
ultralytics/models/rtdetr/val.py
CHANGED
|
@@ -89,7 +89,7 @@ class RTDETRDataset(YOLODataset):
|
|
|
89
89
|
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
|
|
90
90
|
else:
|
|
91
91
|
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scale_fill=True)])
|
|
92
|
-
transforms = Compose([])
|
|
92
|
+
transforms = Compose([lambda x: {**x, **{"ratio_pad": [x["ratio_pad"], [0, 0]]}}])
|
|
93
93
|
transforms.append(
|
|
94
94
|
Format(
|
|
95
95
|
bbox_format="xywh",
|
|
@@ -38,7 +38,7 @@ class ClassificationTrainer(BaseTrainer):
|
|
|
38
38
|
preprocess_batch: Preprocess a batch of images and classes.
|
|
39
39
|
progress_string: Return a formatted string showing training progress.
|
|
40
40
|
get_validator: Return an instance of ClassificationValidator.
|
|
41
|
-
label_loss_items: Return a loss dict with
|
|
41
|
+
label_loss_items: Return a loss dict with labeled training loss items.
|
|
42
42
|
final_eval: Evaluate trained model and save validation results.
|
|
43
43
|
plot_training_samples: Plot training samples with their annotations.
|
|
44
44
|
|
|
@@ -178,7 +178,7 @@ class ClassificationTrainer(BaseTrainer):
|
|
|
178
178
|
|
|
179
179
|
def label_loss_items(self, loss_items: torch.Tensor | None = None, prefix: str = "train"):
|
|
180
180
|
"""
|
|
181
|
-
Return a loss dict with
|
|
181
|
+
Return a loss dict with labeled training loss items tensor.
|
|
182
182
|
|
|
183
183
|
Args:
|
|
184
184
|
loss_items (torch.Tensor, optional): Loss tensor items.
|
ultralytics/nn/autobackend.py
CHANGED
|
@@ -428,7 +428,7 @@ class AutoBackend(nn.Module):
|
|
|
428
428
|
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
|
|
429
429
|
import tensorflow as tf
|
|
430
430
|
|
|
431
|
-
from ultralytics.
|
|
431
|
+
from ultralytics.utils.export.tensorflow import gd_outputs
|
|
432
432
|
|
|
433
433
|
def wrap_frozen_graph(gd, inputs, outputs):
|
|
434
434
|
"""Wrap frozen graphs for deployment."""
|