dgenerate-ultralytics-headless 8.3.221__py3-none-any.whl → 8.3.223__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/METADATA +2 -2
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/RECORD +29 -27
- tests/test_python.py +5 -5
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/lvis.yaml +5 -5
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/data/base.py +1 -1
- ultralytics/data/utils.py +1 -1
- ultralytics/engine/exporter.py +46 -110
- ultralytics/engine/model.py +1 -1
- ultralytics/engine/trainer.py +1 -1
- ultralytics/models/rtdetr/val.py +1 -1
- ultralytics/models/yolo/classify/train.py +2 -2
- ultralytics/nn/autobackend.py +1 -1
- ultralytics/nn/modules/head.py +5 -30
- ultralytics/utils/__init__.py +4 -4
- ultralytics/utils/benchmarks.py +3 -1
- ultralytics/utils/export/__init__.py +4 -239
- ultralytics/utils/export/engine.py +240 -0
- ultralytics/utils/export/imx.py +39 -28
- ultralytics/utils/export/tensorflow.py +221 -0
- ultralytics/utils/metrics.py +2 -2
- ultralytics/utils/nms.py +4 -2
- ultralytics/utils/plotting.py +1 -1
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.221.dist-info → dgenerate_ultralytics_headless-8.3.223.dist-info}/top_level.txt +0 -0
ultralytics/nn/modules/head.py
CHANGED
|
@@ -166,22 +166,8 @@ class Detect(nn.Module):
|
|
|
166
166
|
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
|
167
167
|
self.shape = shape
|
|
168
168
|
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
cls = x_cat[:, self.reg_max * 4 :]
|
|
172
|
-
else:
|
|
173
|
-
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
|
174
|
-
|
|
175
|
-
if self.export and self.format in {"tflite", "edgetpu"}:
|
|
176
|
-
# Precompute normalization factor to increase numerical stability
|
|
177
|
-
# See https://github.com/ultralytics/ultralytics/issues/7371
|
|
178
|
-
grid_h = shape[2]
|
|
179
|
-
grid_w = shape[3]
|
|
180
|
-
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
|
181
|
-
norm = self.strides / (self.stride[0] * grid_size)
|
|
182
|
-
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
|
183
|
-
else:
|
|
184
|
-
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
|
169
|
+
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
|
170
|
+
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
|
185
171
|
return torch.cat((dbox, cls.sigmoid()), 1)
|
|
186
172
|
|
|
187
173
|
def bias_init(self):
|
|
@@ -391,20 +377,9 @@ class Pose(Detect):
|
|
|
391
377
|
"""Decode keypoints from predictions."""
|
|
392
378
|
ndim = self.kpt_shape[1]
|
|
393
379
|
if self.export:
|
|
394
|
-
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
}: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
|
|
398
|
-
# Precompute normalization factor to increase numerical stability
|
|
399
|
-
y = kpts.view(bs, *self.kpt_shape, -1)
|
|
400
|
-
grid_h, grid_w = self.shape[2], self.shape[3]
|
|
401
|
-
grid_size = torch.tensor([grid_w, grid_h], device=y.device).reshape(1, 2, 1)
|
|
402
|
-
norm = self.strides / (self.stride[0] * grid_size)
|
|
403
|
-
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * norm
|
|
404
|
-
else:
|
|
405
|
-
# NCNN fix
|
|
406
|
-
y = kpts.view(bs, *self.kpt_shape, -1)
|
|
407
|
-
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
|
|
380
|
+
# NCNN fix
|
|
381
|
+
y = kpts.view(bs, *self.kpt_shape, -1)
|
|
382
|
+
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
|
|
408
383
|
if ndim == 3:
|
|
409
384
|
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
|
|
410
385
|
return a.view(bs, self.nk, -1)
|
ultralytics/utils/__init__.py
CHANGED
|
@@ -795,13 +795,13 @@ def is_pip_package(filepath: str = __name__) -> bool:
|
|
|
795
795
|
|
|
796
796
|
def is_dir_writeable(dir_path: str | Path) -> bool:
|
|
797
797
|
"""
|
|
798
|
-
Check if a directory is
|
|
798
|
+
Check if a directory is writable.
|
|
799
799
|
|
|
800
800
|
Args:
|
|
801
801
|
dir_path (str | Path): The path to the directory.
|
|
802
802
|
|
|
803
803
|
Returns:
|
|
804
|
-
(bool): True if the directory is
|
|
804
|
+
(bool): True if the directory is writable, False otherwise.
|
|
805
805
|
"""
|
|
806
806
|
return os.access(str(dir_path), os.W_OK)
|
|
807
807
|
|
|
@@ -882,14 +882,14 @@ def get_user_config_dir(sub_dir="Ultralytics"):
|
|
|
882
882
|
p.mkdir(parents=True, exist_ok=True)
|
|
883
883
|
return p
|
|
884
884
|
|
|
885
|
-
# Fallbacks for Docker, GCP/AWS functions where only /tmp is
|
|
885
|
+
# Fallbacks for Docker, GCP/AWS functions where only /tmp is writable
|
|
886
886
|
for alt in [Path("/tmp") / sub_dir, Path.cwd() / sub_dir]:
|
|
887
887
|
if alt.exists():
|
|
888
888
|
return alt
|
|
889
889
|
if is_dir_writeable(alt.parent):
|
|
890
890
|
alt.mkdir(parents=True, exist_ok=True)
|
|
891
891
|
LOGGER.warning(
|
|
892
|
-
f"user config directory '{p}' is not
|
|
892
|
+
f"user config directory '{p}' is not writable, using '{alt}'. Set YOLO_CONFIG_DIR to override."
|
|
893
893
|
)
|
|
894
894
|
return alt
|
|
895
895
|
|
ultralytics/utils/benchmarks.py
CHANGED
|
@@ -144,7 +144,9 @@ def benchmark(
|
|
|
144
144
|
if format == "imx":
|
|
145
145
|
assert not is_end2end
|
|
146
146
|
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 IMX exports not supported"
|
|
147
|
-
assert model.task
|
|
147
|
+
assert model.task in {"detect", "classify", "pose"}, (
|
|
148
|
+
"IMX export is only supported for detection, classification and pose estimation tasks"
|
|
149
|
+
)
|
|
148
150
|
assert "C2f" in model.__str__(), "IMX only supported for YOLOv8n and YOLO11n"
|
|
149
151
|
if format == "rknn":
|
|
150
152
|
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 RKNN exports not supported yet"
|
|
@@ -1,242 +1,7 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
from
|
|
3
|
+
from .engine import onnx2engine, torch2onnx
|
|
4
|
+
from .imx import torch2imx
|
|
5
|
+
from .tensorflow import keras2pb, onnx2saved_model, pb2tfjs, tflite2edgetpu
|
|
4
6
|
|
|
5
|
-
|
|
6
|
-
from pathlib import Path
|
|
7
|
-
|
|
8
|
-
import torch
|
|
9
|
-
|
|
10
|
-
from ultralytics.utils import IS_JETSON, LOGGER
|
|
11
|
-
from ultralytics.utils.torch_utils import TORCH_2_4
|
|
12
|
-
|
|
13
|
-
from .imx import torch2imx # noqa
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
def torch2onnx(
|
|
17
|
-
torch_model: torch.nn.Module,
|
|
18
|
-
im: torch.Tensor,
|
|
19
|
-
onnx_file: str,
|
|
20
|
-
opset: int = 14,
|
|
21
|
-
input_names: list[str] = ["images"],
|
|
22
|
-
output_names: list[str] = ["output0"],
|
|
23
|
-
dynamic: bool | dict = False,
|
|
24
|
-
) -> None:
|
|
25
|
-
"""
|
|
26
|
-
Export a PyTorch model to ONNX format.
|
|
27
|
-
|
|
28
|
-
Args:
|
|
29
|
-
torch_model (torch.nn.Module): The PyTorch model to export.
|
|
30
|
-
im (torch.Tensor): Example input tensor for the model.
|
|
31
|
-
onnx_file (str): Path to save the exported ONNX file.
|
|
32
|
-
opset (int): ONNX opset version to use for export.
|
|
33
|
-
input_names (list[str]): List of input tensor names.
|
|
34
|
-
output_names (list[str]): List of output tensor names.
|
|
35
|
-
dynamic (bool | dict, optional): Whether to enable dynamic axes.
|
|
36
|
-
|
|
37
|
-
Notes:
|
|
38
|
-
Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
|
|
39
|
-
"""
|
|
40
|
-
kwargs = {"dynamo": False} if TORCH_2_4 else {}
|
|
41
|
-
torch.onnx.export(
|
|
42
|
-
torch_model,
|
|
43
|
-
im,
|
|
44
|
-
onnx_file,
|
|
45
|
-
verbose=False,
|
|
46
|
-
opset_version=opset,
|
|
47
|
-
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
|
48
|
-
input_names=input_names,
|
|
49
|
-
output_names=output_names,
|
|
50
|
-
dynamic_axes=dynamic or None,
|
|
51
|
-
**kwargs,
|
|
52
|
-
)
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
def onnx2engine(
|
|
56
|
-
onnx_file: str,
|
|
57
|
-
engine_file: str | None = None,
|
|
58
|
-
workspace: int | None = None,
|
|
59
|
-
half: bool = False,
|
|
60
|
-
int8: bool = False,
|
|
61
|
-
dynamic: bool = False,
|
|
62
|
-
shape: tuple[int, int, int, int] = (1, 3, 640, 640),
|
|
63
|
-
dla: int | None = None,
|
|
64
|
-
dataset=None,
|
|
65
|
-
metadata: dict | None = None,
|
|
66
|
-
verbose: bool = False,
|
|
67
|
-
prefix: str = "",
|
|
68
|
-
) -> None:
|
|
69
|
-
"""
|
|
70
|
-
Export a YOLO model to TensorRT engine format.
|
|
71
|
-
|
|
72
|
-
Args:
|
|
73
|
-
onnx_file (str): Path to the ONNX file to be converted.
|
|
74
|
-
engine_file (str, optional): Path to save the generated TensorRT engine file.
|
|
75
|
-
workspace (int, optional): Workspace size in GB for TensorRT.
|
|
76
|
-
half (bool, optional): Enable FP16 precision.
|
|
77
|
-
int8 (bool, optional): Enable INT8 precision.
|
|
78
|
-
dynamic (bool, optional): Enable dynamic input shapes.
|
|
79
|
-
shape (tuple[int, int, int, int], optional): Input shape (batch, channels, height, width).
|
|
80
|
-
dla (int, optional): DLA core to use (Jetson devices only).
|
|
81
|
-
dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration.
|
|
82
|
-
metadata (dict, optional): Metadata to include in the engine file.
|
|
83
|
-
verbose (bool, optional): Enable verbose logging.
|
|
84
|
-
prefix (str, optional): Prefix for log messages.
|
|
85
|
-
|
|
86
|
-
Raises:
|
|
87
|
-
ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
|
|
88
|
-
RuntimeError: If the ONNX file cannot be parsed.
|
|
89
|
-
|
|
90
|
-
Notes:
|
|
91
|
-
TensorRT version compatibility is handled for workspace size and engine building.
|
|
92
|
-
INT8 calibration requires a dataset and generates a calibration cache.
|
|
93
|
-
Metadata is serialized and written to the engine file if provided.
|
|
94
|
-
"""
|
|
95
|
-
import tensorrt as trt
|
|
96
|
-
|
|
97
|
-
engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
|
|
98
|
-
|
|
99
|
-
logger = trt.Logger(trt.Logger.INFO)
|
|
100
|
-
if verbose:
|
|
101
|
-
logger.min_severity = trt.Logger.Severity.VERBOSE
|
|
102
|
-
|
|
103
|
-
# Engine builder
|
|
104
|
-
builder = trt.Builder(logger)
|
|
105
|
-
config = builder.create_builder_config()
|
|
106
|
-
workspace_bytes = int((workspace or 0) * (1 << 30))
|
|
107
|
-
is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10 # is TensorRT >= 10
|
|
108
|
-
if is_trt10 and workspace_bytes > 0:
|
|
109
|
-
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace_bytes)
|
|
110
|
-
elif workspace_bytes > 0: # TensorRT versions 7, 8
|
|
111
|
-
config.max_workspace_size = workspace_bytes
|
|
112
|
-
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
|
113
|
-
network = builder.create_network(flag)
|
|
114
|
-
half = builder.platform_has_fast_fp16 and half
|
|
115
|
-
int8 = builder.platform_has_fast_int8 and int8
|
|
116
|
-
|
|
117
|
-
# Optionally switch to DLA if enabled
|
|
118
|
-
if dla is not None:
|
|
119
|
-
if not IS_JETSON:
|
|
120
|
-
raise ValueError("DLA is only available on NVIDIA Jetson devices")
|
|
121
|
-
LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
|
|
122
|
-
if not half and not int8:
|
|
123
|
-
raise ValueError(
|
|
124
|
-
"DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
|
|
125
|
-
)
|
|
126
|
-
config.default_device_type = trt.DeviceType.DLA
|
|
127
|
-
config.DLA_core = int(dla)
|
|
128
|
-
config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
|
|
129
|
-
|
|
130
|
-
# Read ONNX file
|
|
131
|
-
parser = trt.OnnxParser(network, logger)
|
|
132
|
-
if not parser.parse_from_file(onnx_file):
|
|
133
|
-
raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
|
|
134
|
-
|
|
135
|
-
# Network inputs
|
|
136
|
-
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
|
137
|
-
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
|
138
|
-
for inp in inputs:
|
|
139
|
-
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
|
140
|
-
for out in outputs:
|
|
141
|
-
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
|
142
|
-
|
|
143
|
-
if dynamic:
|
|
144
|
-
profile = builder.create_optimization_profile()
|
|
145
|
-
min_shape = (1, shape[1], 32, 32) # minimum input shape
|
|
146
|
-
max_shape = (*shape[:2], *(int(max(2, workspace or 2) * d) for d in shape[2:])) # max input shape
|
|
147
|
-
for inp in inputs:
|
|
148
|
-
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
|
|
149
|
-
config.add_optimization_profile(profile)
|
|
150
|
-
if int8:
|
|
151
|
-
config.set_calibration_profile(profile)
|
|
152
|
-
|
|
153
|
-
LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
|
|
154
|
-
if int8:
|
|
155
|
-
config.set_flag(trt.BuilderFlag.INT8)
|
|
156
|
-
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
|
|
157
|
-
|
|
158
|
-
class EngineCalibrator(trt.IInt8Calibrator):
|
|
159
|
-
"""
|
|
160
|
-
Custom INT8 calibrator for TensorRT engine optimization.
|
|
161
|
-
|
|
162
|
-
This calibrator provides the necessary interface for TensorRT to perform INT8 quantization calibration
|
|
163
|
-
using a dataset. It handles batch generation, caching, and calibration algorithm selection.
|
|
164
|
-
|
|
165
|
-
Attributes:
|
|
166
|
-
dataset: Dataset for calibration.
|
|
167
|
-
data_iter: Iterator over the calibration dataset.
|
|
168
|
-
algo (trt.CalibrationAlgoType): Calibration algorithm type.
|
|
169
|
-
batch (int): Batch size for calibration.
|
|
170
|
-
cache (Path): Path to save the calibration cache.
|
|
171
|
-
|
|
172
|
-
Methods:
|
|
173
|
-
get_algorithm: Get the calibration algorithm to use.
|
|
174
|
-
get_batch_size: Get the batch size to use for calibration.
|
|
175
|
-
get_batch: Get the next batch to use for calibration.
|
|
176
|
-
read_calibration_cache: Use existing cache instead of calibrating again.
|
|
177
|
-
write_calibration_cache: Write calibration cache to disk.
|
|
178
|
-
"""
|
|
179
|
-
|
|
180
|
-
def __init__(
|
|
181
|
-
self,
|
|
182
|
-
dataset, # ultralytics.data.build.InfiniteDataLoader
|
|
183
|
-
cache: str = "",
|
|
184
|
-
) -> None:
|
|
185
|
-
"""Initialize the INT8 calibrator with dataset and cache path."""
|
|
186
|
-
trt.IInt8Calibrator.__init__(self)
|
|
187
|
-
self.dataset = dataset
|
|
188
|
-
self.data_iter = iter(dataset)
|
|
189
|
-
self.algo = (
|
|
190
|
-
trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2 # DLA quantization needs ENTROPY_CALIBRATION_2
|
|
191
|
-
if dla is not None
|
|
192
|
-
else trt.CalibrationAlgoType.MINMAX_CALIBRATION
|
|
193
|
-
)
|
|
194
|
-
self.batch = dataset.batch_size
|
|
195
|
-
self.cache = Path(cache)
|
|
196
|
-
|
|
197
|
-
def get_algorithm(self) -> trt.CalibrationAlgoType:
|
|
198
|
-
"""Get the calibration algorithm to use."""
|
|
199
|
-
return self.algo
|
|
200
|
-
|
|
201
|
-
def get_batch_size(self) -> int:
|
|
202
|
-
"""Get the batch size to use for calibration."""
|
|
203
|
-
return self.batch or 1
|
|
204
|
-
|
|
205
|
-
def get_batch(self, names) -> list[int] | None:
|
|
206
|
-
"""Get the next batch to use for calibration, as a list of device memory pointers."""
|
|
207
|
-
try:
|
|
208
|
-
im0s = next(self.data_iter)["img"] / 255.0
|
|
209
|
-
im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
|
|
210
|
-
return [int(im0s.data_ptr())]
|
|
211
|
-
except StopIteration:
|
|
212
|
-
# Return None to signal to TensorRT there is no calibration data remaining
|
|
213
|
-
return None
|
|
214
|
-
|
|
215
|
-
def read_calibration_cache(self) -> bytes | None:
|
|
216
|
-
"""Use existing cache instead of calibrating again, otherwise, implicitly return None."""
|
|
217
|
-
if self.cache.exists() and self.cache.suffix == ".cache":
|
|
218
|
-
return self.cache.read_bytes()
|
|
219
|
-
|
|
220
|
-
def write_calibration_cache(self, cache: bytes) -> None:
|
|
221
|
-
"""Write calibration cache to disk."""
|
|
222
|
-
_ = self.cache.write_bytes(cache)
|
|
223
|
-
|
|
224
|
-
# Load dataset w/ builder (for batching) and calibrate
|
|
225
|
-
config.int8_calibrator = EngineCalibrator(
|
|
226
|
-
dataset=dataset,
|
|
227
|
-
cache=str(Path(onnx_file).with_suffix(".cache")),
|
|
228
|
-
)
|
|
229
|
-
|
|
230
|
-
elif half:
|
|
231
|
-
config.set_flag(trt.BuilderFlag.FP16)
|
|
232
|
-
|
|
233
|
-
# Write file
|
|
234
|
-
build = builder.build_serialized_network if is_trt10 else builder.build_engine
|
|
235
|
-
with build(network, config) as engine, open(engine_file, "wb") as t:
|
|
236
|
-
# Metadata
|
|
237
|
-
if metadata is not None:
|
|
238
|
-
meta = json.dumps(metadata)
|
|
239
|
-
t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
|
|
240
|
-
t.write(meta.encode())
|
|
241
|
-
# Model
|
|
242
|
-
t.write(engine if is_trt10 else engine.serialize())
|
|
7
|
+
__all__ = ["keras2pb", "onnx2engine", "onnx2saved_model", "pb2tfjs", "tflite2edgetpu", "torch2imx", "torch2onnx"]
|
|
@@ -0,0 +1,240 @@
|
|
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
|
+
|
|
3
|
+
from __future__ import annotations
|
|
4
|
+
|
|
5
|
+
import json
|
|
6
|
+
from pathlib import Path
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
|
|
10
|
+
from ultralytics.utils import IS_JETSON, LOGGER
|
|
11
|
+
from ultralytics.utils.torch_utils import TORCH_2_4
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def torch2onnx(
|
|
15
|
+
torch_model: torch.nn.Module,
|
|
16
|
+
im: torch.Tensor,
|
|
17
|
+
onnx_file: str,
|
|
18
|
+
opset: int = 14,
|
|
19
|
+
input_names: list[str] = ["images"],
|
|
20
|
+
output_names: list[str] = ["output0"],
|
|
21
|
+
dynamic: bool | dict = False,
|
|
22
|
+
) -> None:
|
|
23
|
+
"""
|
|
24
|
+
Export a PyTorch model to ONNX format.
|
|
25
|
+
|
|
26
|
+
Args:
|
|
27
|
+
torch_model (torch.nn.Module): The PyTorch model to export.
|
|
28
|
+
im (torch.Tensor): Example input tensor for the model.
|
|
29
|
+
onnx_file (str): Path to save the exported ONNX file.
|
|
30
|
+
opset (int): ONNX opset version to use for export.
|
|
31
|
+
input_names (list[str]): List of input tensor names.
|
|
32
|
+
output_names (list[str]): List of output tensor names.
|
|
33
|
+
dynamic (bool | dict, optional): Whether to enable dynamic axes.
|
|
34
|
+
|
|
35
|
+
Notes:
|
|
36
|
+
Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
|
|
37
|
+
"""
|
|
38
|
+
kwargs = {"dynamo": False} if TORCH_2_4 else {}
|
|
39
|
+
torch.onnx.export(
|
|
40
|
+
torch_model,
|
|
41
|
+
im,
|
|
42
|
+
onnx_file,
|
|
43
|
+
verbose=False,
|
|
44
|
+
opset_version=opset,
|
|
45
|
+
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
|
46
|
+
input_names=input_names,
|
|
47
|
+
output_names=output_names,
|
|
48
|
+
dynamic_axes=dynamic or None,
|
|
49
|
+
**kwargs,
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def onnx2engine(
|
|
54
|
+
onnx_file: str,
|
|
55
|
+
engine_file: str | None = None,
|
|
56
|
+
workspace: int | None = None,
|
|
57
|
+
half: bool = False,
|
|
58
|
+
int8: bool = False,
|
|
59
|
+
dynamic: bool = False,
|
|
60
|
+
shape: tuple[int, int, int, int] = (1, 3, 640, 640),
|
|
61
|
+
dla: int | None = None,
|
|
62
|
+
dataset=None,
|
|
63
|
+
metadata: dict | None = None,
|
|
64
|
+
verbose: bool = False,
|
|
65
|
+
prefix: str = "",
|
|
66
|
+
) -> None:
|
|
67
|
+
"""
|
|
68
|
+
Export a YOLO model to TensorRT engine format.
|
|
69
|
+
|
|
70
|
+
Args:
|
|
71
|
+
onnx_file (str): Path to the ONNX file to be converted.
|
|
72
|
+
engine_file (str, optional): Path to save the generated TensorRT engine file.
|
|
73
|
+
workspace (int, optional): Workspace size in GB for TensorRT.
|
|
74
|
+
half (bool, optional): Enable FP16 precision.
|
|
75
|
+
int8 (bool, optional): Enable INT8 precision.
|
|
76
|
+
dynamic (bool, optional): Enable dynamic input shapes.
|
|
77
|
+
shape (tuple[int, int, int, int], optional): Input shape (batch, channels, height, width).
|
|
78
|
+
dla (int, optional): DLA core to use (Jetson devices only).
|
|
79
|
+
dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration.
|
|
80
|
+
metadata (dict, optional): Metadata to include in the engine file.
|
|
81
|
+
verbose (bool, optional): Enable verbose logging.
|
|
82
|
+
prefix (str, optional): Prefix for log messages.
|
|
83
|
+
|
|
84
|
+
Raises:
|
|
85
|
+
ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
|
|
86
|
+
RuntimeError: If the ONNX file cannot be parsed.
|
|
87
|
+
|
|
88
|
+
Notes:
|
|
89
|
+
TensorRT version compatibility is handled for workspace size and engine building.
|
|
90
|
+
INT8 calibration requires a dataset and generates a calibration cache.
|
|
91
|
+
Metadata is serialized and written to the engine file if provided.
|
|
92
|
+
"""
|
|
93
|
+
import tensorrt as trt
|
|
94
|
+
|
|
95
|
+
engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
|
|
96
|
+
|
|
97
|
+
logger = trt.Logger(trt.Logger.INFO)
|
|
98
|
+
if verbose:
|
|
99
|
+
logger.min_severity = trt.Logger.Severity.VERBOSE
|
|
100
|
+
|
|
101
|
+
# Engine builder
|
|
102
|
+
builder = trt.Builder(logger)
|
|
103
|
+
config = builder.create_builder_config()
|
|
104
|
+
workspace_bytes = int((workspace or 0) * (1 << 30))
|
|
105
|
+
is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10 # is TensorRT >= 10
|
|
106
|
+
if is_trt10 and workspace_bytes > 0:
|
|
107
|
+
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace_bytes)
|
|
108
|
+
elif workspace_bytes > 0: # TensorRT versions 7, 8
|
|
109
|
+
config.max_workspace_size = workspace_bytes
|
|
110
|
+
flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
|
111
|
+
network = builder.create_network(flag)
|
|
112
|
+
half = builder.platform_has_fast_fp16 and half
|
|
113
|
+
int8 = builder.platform_has_fast_int8 and int8
|
|
114
|
+
|
|
115
|
+
# Optionally switch to DLA if enabled
|
|
116
|
+
if dla is not None:
|
|
117
|
+
if not IS_JETSON:
|
|
118
|
+
raise ValueError("DLA is only available on NVIDIA Jetson devices")
|
|
119
|
+
LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
|
|
120
|
+
if not half and not int8:
|
|
121
|
+
raise ValueError(
|
|
122
|
+
"DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
|
|
123
|
+
)
|
|
124
|
+
config.default_device_type = trt.DeviceType.DLA
|
|
125
|
+
config.DLA_core = int(dla)
|
|
126
|
+
config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
|
|
127
|
+
|
|
128
|
+
# Read ONNX file
|
|
129
|
+
parser = trt.OnnxParser(network, logger)
|
|
130
|
+
if not parser.parse_from_file(onnx_file):
|
|
131
|
+
raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
|
|
132
|
+
|
|
133
|
+
# Network inputs
|
|
134
|
+
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
|
135
|
+
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
|
136
|
+
for inp in inputs:
|
|
137
|
+
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
|
138
|
+
for out in outputs:
|
|
139
|
+
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
|
140
|
+
|
|
141
|
+
if dynamic:
|
|
142
|
+
profile = builder.create_optimization_profile()
|
|
143
|
+
min_shape = (1, shape[1], 32, 32) # minimum input shape
|
|
144
|
+
max_shape = (*shape[:2], *(int(max(2, workspace or 2) * d) for d in shape[2:])) # max input shape
|
|
145
|
+
for inp in inputs:
|
|
146
|
+
profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
|
|
147
|
+
config.add_optimization_profile(profile)
|
|
148
|
+
if int8:
|
|
149
|
+
config.set_calibration_profile(profile)
|
|
150
|
+
|
|
151
|
+
LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
|
|
152
|
+
if int8:
|
|
153
|
+
config.set_flag(trt.BuilderFlag.INT8)
|
|
154
|
+
config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
|
|
155
|
+
|
|
156
|
+
class EngineCalibrator(trt.IInt8Calibrator):
|
|
157
|
+
"""
|
|
158
|
+
Custom INT8 calibrator for TensorRT engine optimization.
|
|
159
|
+
|
|
160
|
+
This calibrator provides the necessary interface for TensorRT to perform INT8 quantization calibration
|
|
161
|
+
using a dataset. It handles batch generation, caching, and calibration algorithm selection.
|
|
162
|
+
|
|
163
|
+
Attributes:
|
|
164
|
+
dataset: Dataset for calibration.
|
|
165
|
+
data_iter: Iterator over the calibration dataset.
|
|
166
|
+
algo (trt.CalibrationAlgoType): Calibration algorithm type.
|
|
167
|
+
batch (int): Batch size for calibration.
|
|
168
|
+
cache (Path): Path to save the calibration cache.
|
|
169
|
+
|
|
170
|
+
Methods:
|
|
171
|
+
get_algorithm: Get the calibration algorithm to use.
|
|
172
|
+
get_batch_size: Get the batch size to use for calibration.
|
|
173
|
+
get_batch: Get the next batch to use for calibration.
|
|
174
|
+
read_calibration_cache: Use existing cache instead of calibrating again.
|
|
175
|
+
write_calibration_cache: Write calibration cache to disk.
|
|
176
|
+
"""
|
|
177
|
+
|
|
178
|
+
def __init__(
|
|
179
|
+
self,
|
|
180
|
+
dataset, # ultralytics.data.build.InfiniteDataLoader
|
|
181
|
+
cache: str = "",
|
|
182
|
+
) -> None:
|
|
183
|
+
"""Initialize the INT8 calibrator with dataset and cache path."""
|
|
184
|
+
trt.IInt8Calibrator.__init__(self)
|
|
185
|
+
self.dataset = dataset
|
|
186
|
+
self.data_iter = iter(dataset)
|
|
187
|
+
self.algo = (
|
|
188
|
+
trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2 # DLA quantization needs ENTROPY_CALIBRATION_2
|
|
189
|
+
if dla is not None
|
|
190
|
+
else trt.CalibrationAlgoType.MINMAX_CALIBRATION
|
|
191
|
+
)
|
|
192
|
+
self.batch = dataset.batch_size
|
|
193
|
+
self.cache = Path(cache)
|
|
194
|
+
|
|
195
|
+
def get_algorithm(self) -> trt.CalibrationAlgoType:
|
|
196
|
+
"""Get the calibration algorithm to use."""
|
|
197
|
+
return self.algo
|
|
198
|
+
|
|
199
|
+
def get_batch_size(self) -> int:
|
|
200
|
+
"""Get the batch size to use for calibration."""
|
|
201
|
+
return self.batch or 1
|
|
202
|
+
|
|
203
|
+
def get_batch(self, names) -> list[int] | None:
|
|
204
|
+
"""Get the next batch to use for calibration, as a list of device memory pointers."""
|
|
205
|
+
try:
|
|
206
|
+
im0s = next(self.data_iter)["img"] / 255.0
|
|
207
|
+
im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
|
|
208
|
+
return [int(im0s.data_ptr())]
|
|
209
|
+
except StopIteration:
|
|
210
|
+
# Return None to signal to TensorRT there is no calibration data remaining
|
|
211
|
+
return None
|
|
212
|
+
|
|
213
|
+
def read_calibration_cache(self) -> bytes | None:
|
|
214
|
+
"""Use existing cache instead of calibrating again, otherwise, implicitly return None."""
|
|
215
|
+
if self.cache.exists() and self.cache.suffix == ".cache":
|
|
216
|
+
return self.cache.read_bytes()
|
|
217
|
+
|
|
218
|
+
def write_calibration_cache(self, cache: bytes) -> None:
|
|
219
|
+
"""Write calibration cache to disk."""
|
|
220
|
+
_ = self.cache.write_bytes(cache)
|
|
221
|
+
|
|
222
|
+
# Load dataset w/ builder (for batching) and calibrate
|
|
223
|
+
config.int8_calibrator = EngineCalibrator(
|
|
224
|
+
dataset=dataset,
|
|
225
|
+
cache=str(Path(onnx_file).with_suffix(".cache")),
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
elif half:
|
|
229
|
+
config.set_flag(trt.BuilderFlag.FP16)
|
|
230
|
+
|
|
231
|
+
# Write file
|
|
232
|
+
build = builder.build_serialized_network if is_trt10 else builder.build_engine
|
|
233
|
+
with build(network, config) as engine, open(engine_file, "wb") as t:
|
|
234
|
+
# Metadata
|
|
235
|
+
if metadata is not None:
|
|
236
|
+
meta = json.dumps(metadata)
|
|
237
|
+
t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
|
|
238
|
+
t.write(meta.encode())
|
|
239
|
+
# Model
|
|
240
|
+
t.write(engine if is_trt10 else engine.serialize())
|