deepeval 3.7.3__py3-none-any.whl → 3.7.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (156) hide show
  1. deepeval/_version.py +1 -1
  2. deepeval/cli/test.py +1 -1
  3. deepeval/config/settings.py +102 -13
  4. deepeval/dataset/golden.py +54 -2
  5. deepeval/evaluate/configs.py +1 -1
  6. deepeval/evaluate/evaluate.py +16 -8
  7. deepeval/evaluate/execute.py +74 -27
  8. deepeval/evaluate/utils.py +26 -22
  9. deepeval/integrations/pydantic_ai/agent.py +19 -2
  10. deepeval/integrations/pydantic_ai/instrumentator.py +62 -23
  11. deepeval/metrics/__init__.py +14 -12
  12. deepeval/metrics/answer_relevancy/answer_relevancy.py +74 -29
  13. deepeval/metrics/answer_relevancy/template.py +188 -92
  14. deepeval/metrics/argument_correctness/template.py +2 -2
  15. deepeval/metrics/base_metric.py +2 -5
  16. deepeval/metrics/bias/template.py +3 -3
  17. deepeval/metrics/contextual_precision/contextual_precision.py +53 -15
  18. deepeval/metrics/contextual_precision/template.py +115 -66
  19. deepeval/metrics/contextual_recall/contextual_recall.py +50 -13
  20. deepeval/metrics/contextual_recall/template.py +106 -55
  21. deepeval/metrics/contextual_relevancy/contextual_relevancy.py +47 -15
  22. deepeval/metrics/contextual_relevancy/template.py +87 -58
  23. deepeval/metrics/conversation_completeness/template.py +2 -2
  24. deepeval/metrics/conversational_dag/templates.py +4 -4
  25. deepeval/metrics/conversational_g_eval/template.py +4 -3
  26. deepeval/metrics/dag/templates.py +5 -5
  27. deepeval/metrics/faithfulness/faithfulness.py +70 -27
  28. deepeval/metrics/faithfulness/schema.py +1 -1
  29. deepeval/metrics/faithfulness/template.py +200 -115
  30. deepeval/metrics/g_eval/utils.py +2 -2
  31. deepeval/metrics/hallucination/template.py +4 -4
  32. deepeval/metrics/indicator.py +4 -4
  33. deepeval/metrics/misuse/template.py +2 -2
  34. deepeval/metrics/multimodal_metrics/__init__.py +0 -18
  35. deepeval/metrics/multimodal_metrics/image_coherence/image_coherence.py +24 -17
  36. deepeval/metrics/multimodal_metrics/image_editing/image_editing.py +26 -21
  37. deepeval/metrics/multimodal_metrics/image_helpfulness/image_helpfulness.py +24 -17
  38. deepeval/metrics/multimodal_metrics/image_reference/image_reference.py +24 -17
  39. deepeval/metrics/multimodal_metrics/multimodal_g_eval/multimodal_g_eval.py +19 -19
  40. deepeval/metrics/multimodal_metrics/multimodal_g_eval/template.py +63 -78
  41. deepeval/metrics/multimodal_metrics/multimodal_g_eval/utils.py +20 -20
  42. deepeval/metrics/multimodal_metrics/text_to_image/text_to_image.py +71 -50
  43. deepeval/metrics/non_advice/template.py +2 -2
  44. deepeval/metrics/pii_leakage/template.py +2 -2
  45. deepeval/metrics/prompt_alignment/template.py +4 -4
  46. deepeval/metrics/ragas.py +3 -3
  47. deepeval/metrics/role_violation/template.py +2 -2
  48. deepeval/metrics/step_efficiency/step_efficiency.py +1 -1
  49. deepeval/metrics/tool_correctness/tool_correctness.py +2 -2
  50. deepeval/metrics/toxicity/template.py +4 -4
  51. deepeval/metrics/turn_contextual_precision/schema.py +21 -0
  52. deepeval/metrics/turn_contextual_precision/template.py +187 -0
  53. deepeval/metrics/turn_contextual_precision/turn_contextual_precision.py +550 -0
  54. deepeval/metrics/turn_contextual_recall/schema.py +21 -0
  55. deepeval/metrics/turn_contextual_recall/template.py +178 -0
  56. deepeval/metrics/turn_contextual_recall/turn_contextual_recall.py +520 -0
  57. deepeval/metrics/{multimodal_metrics/multimodal_contextual_relevancy → turn_contextual_relevancy}/schema.py +7 -1
  58. deepeval/metrics/turn_contextual_relevancy/template.py +161 -0
  59. deepeval/metrics/turn_contextual_relevancy/turn_contextual_relevancy.py +535 -0
  60. deepeval/metrics/{multimodal_metrics/multimodal_faithfulness → turn_faithfulness}/schema.py +11 -3
  61. deepeval/metrics/turn_faithfulness/template.py +218 -0
  62. deepeval/metrics/turn_faithfulness/turn_faithfulness.py +596 -0
  63. deepeval/metrics/turn_relevancy/template.py +2 -2
  64. deepeval/metrics/utils.py +39 -58
  65. deepeval/models/__init__.py +0 -12
  66. deepeval/models/base_model.py +16 -38
  67. deepeval/models/embedding_models/__init__.py +7 -0
  68. deepeval/models/embedding_models/azure_embedding_model.py +69 -32
  69. deepeval/models/embedding_models/local_embedding_model.py +39 -22
  70. deepeval/models/embedding_models/ollama_embedding_model.py +42 -18
  71. deepeval/models/embedding_models/openai_embedding_model.py +50 -15
  72. deepeval/models/llms/amazon_bedrock_model.py +1 -2
  73. deepeval/models/llms/anthropic_model.py +53 -20
  74. deepeval/models/llms/azure_model.py +140 -43
  75. deepeval/models/llms/deepseek_model.py +38 -23
  76. deepeval/models/llms/gemini_model.py +222 -103
  77. deepeval/models/llms/grok_model.py +39 -27
  78. deepeval/models/llms/kimi_model.py +39 -23
  79. deepeval/models/llms/litellm_model.py +103 -45
  80. deepeval/models/llms/local_model.py +35 -22
  81. deepeval/models/llms/ollama_model.py +129 -17
  82. deepeval/models/llms/openai_model.py +151 -50
  83. deepeval/models/llms/portkey_model.py +149 -0
  84. deepeval/models/llms/utils.py +5 -3
  85. deepeval/models/retry_policy.py +17 -14
  86. deepeval/models/utils.py +94 -4
  87. deepeval/optimizer/__init__.py +5 -0
  88. deepeval/optimizer/algorithms/__init__.py +6 -0
  89. deepeval/optimizer/algorithms/base.py +29 -0
  90. deepeval/optimizer/algorithms/configs.py +18 -0
  91. deepeval/optimizer/algorithms/copro/__init__.py +5 -0
  92. deepeval/optimizer/algorithms/copro/copro.py +836 -0
  93. deepeval/optimizer/algorithms/gepa/__init__.py +5 -0
  94. deepeval/optimizer/algorithms/gepa/gepa.py +737 -0
  95. deepeval/optimizer/algorithms/miprov2/__init__.py +17 -0
  96. deepeval/optimizer/algorithms/miprov2/bootstrapper.py +435 -0
  97. deepeval/optimizer/algorithms/miprov2/miprov2.py +752 -0
  98. deepeval/optimizer/algorithms/miprov2/proposer.py +301 -0
  99. deepeval/optimizer/algorithms/simba/__init__.py +5 -0
  100. deepeval/optimizer/algorithms/simba/simba.py +999 -0
  101. deepeval/optimizer/algorithms/simba/types.py +15 -0
  102. deepeval/optimizer/configs.py +31 -0
  103. deepeval/optimizer/policies.py +227 -0
  104. deepeval/optimizer/prompt_optimizer.py +263 -0
  105. deepeval/optimizer/rewriter/__init__.py +5 -0
  106. deepeval/optimizer/rewriter/rewriter.py +124 -0
  107. deepeval/optimizer/rewriter/utils.py +214 -0
  108. deepeval/optimizer/scorer/__init__.py +5 -0
  109. deepeval/optimizer/scorer/base.py +86 -0
  110. deepeval/optimizer/scorer/scorer.py +316 -0
  111. deepeval/optimizer/scorer/utils.py +30 -0
  112. deepeval/optimizer/types.py +148 -0
  113. deepeval/optimizer/utils.py +480 -0
  114. deepeval/prompt/prompt.py +7 -6
  115. deepeval/test_case/__init__.py +1 -3
  116. deepeval/test_case/api.py +12 -10
  117. deepeval/test_case/conversational_test_case.py +19 -1
  118. deepeval/test_case/llm_test_case.py +152 -1
  119. deepeval/test_case/utils.py +4 -8
  120. deepeval/test_run/api.py +15 -14
  121. deepeval/test_run/cache.py +2 -0
  122. deepeval/test_run/test_run.py +9 -4
  123. deepeval/tracing/patchers.py +9 -4
  124. deepeval/tracing/tracing.py +2 -2
  125. deepeval/utils.py +89 -0
  126. {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/METADATA +1 -4
  127. {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/RECORD +134 -118
  128. deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/multimodal_answer_relevancy.py +0 -343
  129. deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/schema.py +0 -19
  130. deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/template.py +0 -122
  131. deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/multimodal_contextual_precision.py +0 -301
  132. deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/schema.py +0 -15
  133. deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/template.py +0 -132
  134. deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/multimodal_contextual_recall.py +0 -285
  135. deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/schema.py +0 -15
  136. deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/template.py +0 -112
  137. deepeval/metrics/multimodal_metrics/multimodal_contextual_relevancy/multimodal_contextual_relevancy.py +0 -282
  138. deepeval/metrics/multimodal_metrics/multimodal_contextual_relevancy/template.py +0 -102
  139. deepeval/metrics/multimodal_metrics/multimodal_faithfulness/__init__.py +0 -0
  140. deepeval/metrics/multimodal_metrics/multimodal_faithfulness/multimodal_faithfulness.py +0 -356
  141. deepeval/metrics/multimodal_metrics/multimodal_faithfulness/template.py +0 -175
  142. deepeval/metrics/multimodal_metrics/multimodal_tool_correctness/__init__.py +0 -0
  143. deepeval/metrics/multimodal_metrics/multimodal_tool_correctness/multimodal_tool_correctness.py +0 -290
  144. deepeval/models/mlllms/__init__.py +0 -4
  145. deepeval/models/mlllms/azure_model.py +0 -334
  146. deepeval/models/mlllms/gemini_model.py +0 -284
  147. deepeval/models/mlllms/ollama_model.py +0 -144
  148. deepeval/models/mlllms/openai_model.py +0 -258
  149. deepeval/test_case/mllm_test_case.py +0 -170
  150. /deepeval/metrics/{multimodal_metrics/multimodal_answer_relevancy → turn_contextual_precision}/__init__.py +0 -0
  151. /deepeval/metrics/{multimodal_metrics/multimodal_contextual_precision → turn_contextual_recall}/__init__.py +0 -0
  152. /deepeval/metrics/{multimodal_metrics/multimodal_contextual_recall → turn_contextual_relevancy}/__init__.py +0 -0
  153. /deepeval/metrics/{multimodal_metrics/multimodal_contextual_relevancy → turn_faithfulness}/__init__.py +0 -0
  154. {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/LICENSE.md +0 -0
  155. {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/WHEEL +0 -0
  156. {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/entry_points.txt +0 -0
@@ -1,84 +1,133 @@
1
- from typing import List, Dict
1
+ from typing import List, Dict, Union
2
+ import textwrap
3
+ from deepeval.test_case import MLLMImage
4
+ from deepeval.utils import convert_to_multi_modal_array
2
5
 
3
6
 
4
7
  class ContextualPrecisionTemplate:
5
8
  @staticmethod
6
9
  def generate_verdicts(
7
- input: str, expected_output: str, retrieval_context: List[str]
10
+ input: str,
11
+ expected_output: str,
12
+ retrieval_context: List[str],
13
+ multimodal: bool = False,
8
14
  ):
9
15
  document_count_str = f" ({len(retrieval_context)} document{'s' if len(retrieval_context) > 1 else ''})"
10
- return f"""Given the input, expected output, and retrieval context, please generate a list of JSON objects to determine whether each node in the retrieval context was remotely useful in arriving at the expected output.
11
-
12
- **
13
- IMPORTANT: Please make sure to only return in JSON format, with the 'verdicts' key as a list of JSON. These JSON only contain the `verdict` key that outputs only 'yes' or 'no', and a `reason` key to justify the verdict. In your reason, you should aim to quote parts of the context.
14
- Example Retrieval Context: ["Einstein won the Nobel Prize for his discovery of the photoelectric effect", "He won the Nobel Prize in 1968.", "There was a cat."]
15
- Example Input: "Who won the Nobel Prize in 1968 and for what?"
16
- Example Expected Output: "Einstein won the Nobel Prize in 1968 for his discovery of the photoelectric effect."
17
-
18
- Example:
19
- {{
20
- "verdicts": [
21
- {{
22
- "verdict": "yes",
23
- "reason": "It clearly addresses the question by stating that 'Einstein won the Nobel Prize for his discovery of the photoelectric effect.'"
24
- }},
25
- {{
26
- "verdict": "yes",
27
- "reason": "The text verifies that the prize was indeed won in 1968."
28
- }},
29
- {{
30
- "verdict": "no",
31
- "reason": "'There was a cat' is not at all relevant to the topic of winning a Nobel Prize."
32
- }}
33
- ]
34
- }}
35
- Since you are going to generate a verdict for each context, the number of 'verdicts' SHOULD BE STRICTLY EQUAL to that of the contexts.
36
- **
37
-
38
- Input:
39
- {input}
40
-
41
- Expected output:
42
- {expected_output}
43
-
44
- Retrieval Context{document_count_str}:
45
- {retrieval_context}
46
-
47
- JSON:
48
- """
16
+
17
+ # For multimodal, we need to annotate the retrieval context with node IDs
18
+ context_to_display = (
19
+ ContextualPrecisionTemplate.id_retrieval_context(retrieval_context)
20
+ if multimodal
21
+ else retrieval_context
22
+ )
23
+
24
+ multimodal_note = (
25
+ " (which can be text or an image)" if multimodal else ""
26
+ )
27
+
28
+ prompt_template = textwrap.dedent(
29
+ f"""Given the input, expected output, and retrieval context, please generate a list of JSON objects to determine whether each node in the retrieval context was remotely useful in arriving at the expected output.
30
+
31
+ **
32
+ IMPORTANT: Please make sure to only return in JSON format, with the 'verdicts' key as a list of JSON. These JSON only contain the `verdict` key that outputs only 'yes' or 'no', and a `reason` key to justify the verdict. In your reason, you should aim to quote parts of the context {multimodal_note}.
33
+ Example Retrieval Context: ["Einstein won the Nobel Prize for his discovery of the photoelectric effect", "He won the Nobel Prize in 1968.", "There was a cat."]
34
+ Example Input: "Who won the Nobel Prize in 1968 and for what?"
35
+ Example Expected Output: "Einstein won the Nobel Prize in 1968 for his discovery of the photoelectric effect."
36
+
37
+ Example:
38
+ {{
39
+ "verdicts": [
40
+ {{
41
+ "reason": "It clearly addresses the question by stating that 'Einstein won the Nobel Prize for his discovery of the photoelectric effect.'",
42
+ "verdict": "yes"
43
+ }},
44
+ {{
45
+ "reason": "The text verifies that the prize was indeed won in 1968.",
46
+ "verdict": "yes"
47
+ }},
48
+ {{
49
+ "reason": "'There was a cat' is not at all relevant to the topic of winning a Nobel Prize.",
50
+ "verdict": "no"
51
+ }}
52
+ ]
53
+ }}
54
+ Since you are going to generate a verdict for each context, the number of 'verdicts' SHOULD BE STRICTLY EQUAL to that of the contexts.
55
+ **
56
+
57
+ Input:
58
+ {input}
59
+
60
+ Expected output:
61
+ {expected_output}
62
+
63
+ Retrieval Context {document_count_str}:
64
+ {context_to_display}
65
+
66
+ JSON:
67
+ """
68
+ )
69
+
70
+ return prompt_template
49
71
 
50
72
  @staticmethod
51
73
  def generate_reason(
52
- input: str, score: float, verdicts: List[Dict[str, str]]
74
+ input: str,
75
+ score: float,
76
+ verdicts: List[Dict[str, str]],
77
+ multimodal: bool = False,
53
78
  ):
54
- # given the input and retrieval context for this input, where the verdict is whether ... and the node is the ..., give a reason for the score
55
- return f"""Given the input, retrieval contexts, and contextual precision score, provide a CONCISE summary for the score. Explain why it is not higher, but also why it is at its current score.
56
- The retrieval contexts is a list of JSON with three keys: `verdict`, `reason` (reason for the verdict) and `node`. `verdict` will be either 'yes' or 'no', which represents whether the corresponding 'node' in the retrieval context is relevant to the input.
57
- Contextual precision represents if the relevant nodes are ranked higher than irrelevant nodes. Also note that retrieval contexts is given IN THE ORDER OF THEIR RANKINGS.
79
+ return textwrap.dedent(
80
+ f"""Given the input, retrieval contexts, and contextual precision score, provide a CONCISE {'summarize' if multimodal else 'summary'} for the score. Explain why it is not higher, but also why it is at its current score.
81
+ The retrieval contexts is a list of JSON with three keys: `verdict`, `reason` (reason for the verdict) and `node`. `verdict` will be either 'yes' or 'no', which represents whether the corresponding 'node' in the retrieval context is relevant to the input.
82
+ Contextual precision represents if the relevant nodes are ranked higher than irrelevant nodes. Also note that retrieval contexts is given IN THE ORDER OF THEIR RANKINGS.
83
+
84
+ **
85
+ IMPORTANT: Please make sure to only return in JSON format, with the 'reason' key providing the reason.
86
+ Example JSON:
87
+ {{
88
+ "reason": "The score is <contextual_precision_score> because <your_reason>."
89
+ }}
58
90
 
59
- **
60
- IMPORTANT: Please make sure to only return in JSON format, with the 'reason' key providing the reason.
61
- Example JSON:
62
- {{
63
- "reason": "The score is <contextual_precision_score> because <your_reason>."
64
- }}
65
91
 
92
+ DO NOT mention 'verdict' in your reason, but instead phrase it as irrelevant nodes. The term 'verdict' {'are' if multimodal else 'is'} just here for you to understand the broader scope of things.
93
+ Also DO NOT mention there are `reason` fields in the retrieval contexts you are presented with, instead just use the information in the `reason` field.
94
+ In your reason, you MUST USE the `reason`, QUOTES in the 'reason', and the node RANK (starting from 1, eg. first node) to explain why the 'no' verdicts should be ranked lower than the 'yes' verdicts.
95
+ When addressing nodes, make it explicit that {'it is' if multimodal else 'they are'} nodes in {'retrieval context' if multimodal else 'retrieval contexts'}.
96
+ If the score is 1, keep it short and say something positive with an upbeat tone (but don't overdo it{',' if multimodal else ''} otherwise it gets annoying).
97
+ **
66
98
 
67
- DO NOT mention 'verdict' in your reason, but instead phrase it as irrelevant nodes. The term 'verdict' is just here for you to understand the broader scope of things.
68
- Also DO NOT mention there are `reason` fields in the retrieval contexts you are presented with, instead just use the information in the `reason` field.
69
- In your reason, you MUST USE the `reason`, QUOTES in the 'reason', and the node RANK (starting from 1, eg. first node) to explain why the 'no' verdicts should be ranked lower than the 'yes' verdicts.
70
- When addressing nodes, make it explicit that they are nodes in retrieval contexts.
71
- If the score is 1, keep it short and say something positive with an upbeat tone (but don't overdo it, otherwise it gets annoying).
72
- **
99
+ Contextual Precision Score:
100
+ {score}
73
101
 
74
- Contextual Precision Score:
75
- {score}
102
+ Input:
103
+ {input}
76
104
 
77
- Input:
78
- {input}
105
+ Retrieval Contexts:
106
+ {verdicts}
107
+
108
+ JSON:
109
+ """
110
+ )
111
+
112
+ @staticmethod
113
+ def id_retrieval_context(
114
+ retrieval_context: List[str],
115
+ ) -> List[str]:
116
+ """
117
+ Annotates retrieval context with node IDs for multimodal processing.
79
118
 
80
- Retrieval Contexts:
81
- {verdicts}
119
+ Args:
120
+ retrieval_context: List of contexts (can be strings or MLLMImages)
82
121
 
83
- JSON:
84
- """
122
+ Returns:
123
+ Annotated list with "Node X:" prefixes
124
+ """
125
+ annotated_retrieval_context = []
126
+ retrieval_context = convert_to_multi_modal_array(retrieval_context)
127
+ for i, context in enumerate(retrieval_context):
128
+ if isinstance(context, str):
129
+ annotated_retrieval_context.append(f"Node {i + 1}: {context}")
130
+ elif isinstance(context, MLLMImage):
131
+ annotated_retrieval_context.append(f"Node {i + 1}:")
132
+ annotated_retrieval_context.append(context)
133
+ return annotated_retrieval_context
@@ -1,10 +1,15 @@
1
1
  from typing import Optional, List, Type, Union
2
2
 
3
- from deepeval.utils import get_or_create_event_loop, prettify_list
3
+ from deepeval.utils import (
4
+ get_or_create_event_loop,
5
+ prettify_list,
6
+ convert_to_multi_modal_array,
7
+ )
4
8
  from deepeval.metrics.utils import (
5
9
  construct_verbose_logs,
6
10
  trimAndLoadJson,
7
11
  check_llm_test_case_params,
12
+ check_mllm_test_case_params,
8
13
  initialize_model,
9
14
  )
10
15
  from deepeval.test_case import (
@@ -55,7 +60,14 @@ class ContextualRecallMetric(BaseMetric):
55
60
  _in_component: bool = False,
56
61
  _log_metric_to_confident: bool = True,
57
62
  ) -> float:
58
- check_llm_test_case_params(test_case, self._required_params, self)
63
+ multimodal = test_case.multimodal
64
+
65
+ if multimodal:
66
+ check_mllm_test_case_params(
67
+ test_case, self._required_params, None, None, self, self.model
68
+ )
69
+ else:
70
+ check_llm_test_case_params(test_case, self._required_params, self)
59
71
 
60
72
  self.evaluation_cost = 0 if self.using_native_model else None
61
73
  with metric_progress_indicator(
@@ -72,13 +84,16 @@ class ContextualRecallMetric(BaseMetric):
72
84
  )
73
85
  )
74
86
  else:
87
+ expected_output = test_case.expected_output
88
+ retrieval_context = test_case.retrieval_context
89
+
75
90
  self.verdicts: List[ContextualRecallVerdict] = (
76
91
  self._generate_verdicts(
77
- test_case.expected_output, test_case.retrieval_context
92
+ expected_output, retrieval_context, multimodal
78
93
  )
79
94
  )
80
95
  self.score = self._calculate_score()
81
- self.reason = self._generate_reason(test_case.expected_output)
96
+ self.reason = self._generate_reason(expected_output, multimodal)
82
97
  self.success = self.score >= self.threshold
83
98
  self.verbose_logs = construct_verbose_logs(
84
99
  self,
@@ -101,7 +116,14 @@ class ContextualRecallMetric(BaseMetric):
101
116
  _log_metric_to_confident: bool = True,
102
117
  ) -> float:
103
118
 
104
- check_llm_test_case_params(test_case, self._required_params, self)
119
+ multimodal = test_case.multimodal
120
+
121
+ if multimodal:
122
+ check_mllm_test_case_params(
123
+ test_case, self._required_params, None, None, self, self.model
124
+ )
125
+ else:
126
+ check_llm_test_case_params(test_case, self._required_params, self)
105
127
 
106
128
  self.evaluation_cost = 0 if self.using_native_model else None
107
129
  with metric_progress_indicator(
@@ -110,14 +132,17 @@ class ContextualRecallMetric(BaseMetric):
110
132
  _show_indicator=_show_indicator,
111
133
  _in_component=_in_component,
112
134
  ):
135
+ expected_output = test_case.expected_output
136
+ retrieval_context = test_case.retrieval_context
137
+
113
138
  self.verdicts: List[ContextualRecallVerdict] = (
114
139
  await self._a_generate_verdicts(
115
- test_case.expected_output, test_case.retrieval_context
140
+ expected_output, retrieval_context, multimodal
116
141
  )
117
142
  )
118
143
  self.score = self._calculate_score()
119
144
  self.reason = await self._a_generate_reason(
120
- test_case.expected_output
145
+ expected_output, multimodal
121
146
  )
122
147
  self.success = self.score >= self.threshold
123
148
  self.verbose_logs = construct_verbose_logs(
@@ -133,7 +158,7 @@ class ContextualRecallMetric(BaseMetric):
133
158
  )
134
159
  return self.score
135
160
 
136
- async def _a_generate_reason(self, expected_output: str):
161
+ async def _a_generate_reason(self, expected_output: str, multimodal: bool):
137
162
  if self.include_reason is False:
138
163
  return None
139
164
 
@@ -150,6 +175,7 @@ class ContextualRecallMetric(BaseMetric):
150
175
  supportive_reasons=supportive_reasons,
151
176
  unsupportive_reasons=unsupportive_reasons,
152
177
  score=format(self.score, ".2f"),
178
+ multimodal=multimodal,
153
179
  )
154
180
 
155
181
  if self.using_native_model:
@@ -169,7 +195,7 @@ class ContextualRecallMetric(BaseMetric):
169
195
  data = trimAndLoadJson(res, self)
170
196
  return data["reason"]
171
197
 
172
- def _generate_reason(self, expected_output: str):
198
+ def _generate_reason(self, expected_output: str, multimodal: bool):
173
199
  if self.include_reason is False:
174
200
  return None
175
201
 
@@ -186,6 +212,7 @@ class ContextualRecallMetric(BaseMetric):
186
212
  supportive_reasons=supportive_reasons,
187
213
  unsupportive_reasons=unsupportive_reasons,
188
214
  score=format(self.score, ".2f"),
215
+ multimodal=multimodal,
189
216
  )
190
217
 
191
218
  if self.using_native_model:
@@ -219,10 +246,15 @@ class ContextualRecallMetric(BaseMetric):
219
246
  return 0 if self.strict_mode and score < self.threshold else score
220
247
 
221
248
  async def _a_generate_verdicts(
222
- self, expected_output: str, retrieval_context: List[str]
249
+ self,
250
+ expected_output: str,
251
+ retrieval_context: List[str],
252
+ multimodal: bool,
223
253
  ) -> List[ContextualRecallVerdict]:
224
254
  prompt = self.evaluation_template.generate_verdicts(
225
- expected_output=expected_output, retrieval_context=retrieval_context
255
+ expected_output=expected_output,
256
+ retrieval_context=retrieval_context,
257
+ multimodal=multimodal,
226
258
  )
227
259
  if self.using_native_model:
228
260
  res, cost = await self.model.a_generate(prompt, schema=Verdicts)
@@ -245,10 +277,15 @@ class ContextualRecallMetric(BaseMetric):
245
277
  return verdicts
246
278
 
247
279
  def _generate_verdicts(
248
- self, expected_output: str, retrieval_context: List[str]
280
+ self,
281
+ expected_output: str,
282
+ retrieval_context: List[str],
283
+ multimodal: bool,
249
284
  ) -> List[ContextualRecallVerdict]:
250
285
  prompt = self.evaluation_template.generate_verdicts(
251
- expected_output=expected_output, retrieval_context=retrieval_context
286
+ expected_output=expected_output,
287
+ retrieval_context=retrieval_context,
288
+ multimodal=multimodal,
252
289
  )
253
290
  if self.using_native_model:
254
291
  res, cost = self.model.generate(prompt, schema=Verdicts)
@@ -1,4 +1,7 @@
1
- from typing import List
1
+ from typing import List, Union
2
+ import textwrap
3
+ from deepeval.test_case import MLLMImage
4
+ from deepeval.utils import convert_to_multi_modal_array
2
5
 
3
6
 
4
7
  class ContextualRecallTemplate:
@@ -8,68 +11,116 @@ class ContextualRecallTemplate:
8
11
  supportive_reasons: str,
9
12
  unsupportive_reasons: str,
10
13
  score: float,
14
+ multimodal: bool = False,
11
15
  ):
12
- return f"""
13
- Given the original expected output, a list of supportive reasons, and a list of unsupportive reasons (which are deduced directly from the 'expected output'), and a contextual recall score (closer to 1 the better), summarize a CONCISE reason for the score.
14
- A supportive reason is the reason why a certain sentence in the original expected output can be attributed to the node in the retrieval context.
15
- An unsupportive reason is the reason why a certain sentence in the original expected output cannot be attributed to anything in the retrieval context.
16
- In your reason, you should relate supportive/unsupportive reasons to the sentence number in expected output, and include info regarding the node number in retrieval context to support your final reason. The first mention of "node(s)" should specify "node(s) in retrieval context".
16
+ content_type = "sentence or image" if multimodal else "sentence"
17
17
 
18
- **
19
- IMPORTANT: Please make sure to only return in JSON format, with the 'reason' key providing the reason.
20
- Example JSON:
21
- {{
22
- "reason": "The score is <contextual_recall_score> because <your_reason>."
23
- }}
18
+ return textwrap.dedent(
19
+ f"""Given the original expected output, a list of supportive reasons, and a list of unsupportive reasons ({'which is' if multimodal else 'which are'} deduced directly from the {'"expected output"' if multimodal else 'original expected output'}), and a contextual recall score (closer to 1 the better), summarize a CONCISE reason for the score.
20
+ A supportive reason is the reason why a certain {content_type} in the original expected output can be attributed to the node in the retrieval context.
21
+ An unsupportive reason is the reason why a certain {content_type} in the original expected output cannot be attributed to anything in the retrieval context.
22
+ In your reason, you should {'related' if multimodal else 'relate'} supportive/unsupportive reasons to the {content_type} number in expected output, and {'info' if multimodal else 'include info'} regarding the node number in retrieval context to support your final reason. The first mention of "node(s)" should specify "node(s) in retrieval context{')' if multimodal else ''}.
24
23
 
25
- DO NOT mention 'supportive reasons' and 'unsupportive reasons' in your reason, these terms are just here for you to understand the broader scope of things.
26
- If the score is 1, keep it short and say something positive with an upbeat encouraging tone (but don't overdo it, otherwise it gets annoying).
27
- **
24
+ **
25
+ IMPORTANT: Please make sure to only return in JSON format, with the 'reason' key providing the reason.
26
+ Example JSON:
27
+ {{
28
+ "reason": "The score is <contextual_recall_score> because <your_reason>."
29
+ }}
28
30
 
29
- Contextual Recall Score:
30
- {score}
31
+ DO NOT mention 'supportive reasons' and 'unsupportive reasons' in your reason, these terms are just here for you to understand the broader scope of things.
32
+ If the score is 1, keep it short and say something positive with an upbeat encouraging tone (but don't overdo it{',' if multimodal else ''} otherwise it gets annoying).
33
+ **
31
34
 
32
- Expected Output:
33
- {expected_output}
35
+ Contextual Recall Score:
36
+ {score}
34
37
 
35
- Supportive Reasons:
36
- {supportive_reasons}
38
+ Expected Output:
39
+ {expected_output}
37
40
 
38
- Unsupportive Reasons:
39
- {unsupportive_reasons}
41
+ Supportive Reasons:
42
+ {supportive_reasons}
40
43
 
41
- JSON:
42
- """
44
+ Unsupportive Reasons:
45
+ {unsupportive_reasons}
43
46
 
44
- @staticmethod
45
- def generate_verdicts(expected_output: str, retrieval_context: List[str]):
46
- return f"""
47
- For EACH sentence in the given expected output below, determine whether the sentence can be attributed to the nodes of retrieval contexts. Please generate a list of JSON with two keys: `verdict` and `reason`.
48
- The `verdict` key should STRICTLY be either a 'yes' or 'no'. Answer 'yes' if the sentence can be attributed to any parts of the retrieval context, else answer 'no'.
49
- The `reason` key should provide a reason why to the verdict. In the reason, you should aim to include the node(s) count in the retrieval context (eg., 1st node, and 2nd node in the retrieval context) that is attributed to said sentence. You should also aim to quote the specific part of the retrieval context to justify your verdict, but keep it extremely concise and cut short the quote with an ellipsis if possible.
50
-
51
-
52
- **
53
- IMPORTANT: Please make sure to only return in JSON format, with the 'verdicts' key as a list of JSON objects, each with two keys: `verdict` and `reason`.
54
-
55
- {{
56
- "verdicts": [
57
- {{
58
- "verdict": "yes",
59
- "reason": "..."
60
- }},
61
- ...
62
- ]
63
- }}
64
-
65
- Since you are going to generate a verdict for each sentence, the number of 'verdicts' SHOULD BE STRICTLY EQUAL to the number of sentences in `expected output`.
66
- **
47
+ JSON:
48
+ """
49
+ )
67
50
 
68
- Expected Output:
69
- {expected_output}
70
-
71
- Retrieval Context:
72
- {retrieval_context}
51
+ @staticmethod
52
+ def generate_verdicts(
53
+ expected_output: str,
54
+ retrieval_context: List[str],
55
+ multimodal: bool = False,
56
+ ):
57
+ content_type = "sentence and image" if multimodal else "sentence"
58
+ content_type_plural = (
59
+ "sentences and images" if multimodal else "sentences"
60
+ )
61
+ content_or = "sentence or image" if multimodal else "sentence"
62
+
63
+ # For multimodal, we need to annotate the retrieval context with node IDs
64
+ context_to_display = (
65
+ ContextualRecallTemplate.id_retrieval_context(retrieval_context)
66
+ if multimodal
67
+ else retrieval_context
68
+ )
69
+
70
+ node_instruction = ""
71
+ if multimodal:
72
+ node_instruction = " A node is either a string or image, but not both (so do not group images and texts in the same nodes)."
73
+
74
+ return textwrap.dedent(
75
+ f"""For EACH {content_type} in the given expected output below, determine whether the {content_or} can be attributed to the nodes of retrieval contexts. Please generate a list of JSON with two keys: `verdict` and `reason`.
76
+ The `verdict` key should STRICTLY be either a 'yes' or 'no'. Answer 'yes' if the {content_or} can be attributed to any parts of the retrieval context, else answer 'no'.
77
+ The `reason` key should provide a reason why to the verdict. In the reason, you should aim to include the node(s) count in the retrieval context (eg., 1st node, and 2nd node in the retrieval context) that is attributed to said {content_or}.{node_instruction} You should also aim to quote the specific part of the retrieval context to justify your verdict, but keep it extremely concise and cut short the quote with an ellipsis if possible.
78
+
79
+ **
80
+ IMPORTANT: Please make sure to only return in JSON format, with the 'verdicts' key as a list of JSON objects, each with two keys: `verdict` and `reason`.
81
+
82
+ {{
83
+ "verdicts": [
84
+ {{
85
+ "reason": "...",
86
+ "verdict": "yes"
87
+ }},
88
+ ...
89
+ ]
90
+ }}
91
+
92
+ Since you are going to generate a verdict for each sentence, the number of 'verdicts' SHOULD BE STRICTLY EQUAL to the number of {content_type_plural} in {'the' if multimodal else '`expected output`'}{' `expected output`' if multimodal else ''}.
93
+ **
94
+
95
+ Expected Output:
96
+ {expected_output}
97
+
98
+ Retrieval Context:
99
+ {context_to_display}
100
+
101
+ JSON:
102
+ """
103
+ )
73
104
 
74
- JSON:
75
- """
105
+ @staticmethod
106
+ def id_retrieval_context(
107
+ retrieval_context: List[str],
108
+ ) -> List[str]:
109
+ """
110
+ Annotates retrieval context with node IDs for multimodal processing.
111
+
112
+ Args:
113
+ retrieval_context: List of contexts (can be strings or MLLMImages)
114
+
115
+ Returns:
116
+ Annotated list with "Node X:" prefixes
117
+ """
118
+ annotated_retrieval_context = []
119
+ retrieval_context = convert_to_multi_modal_array(retrieval_context)
120
+ for i, context in enumerate(retrieval_context):
121
+ if isinstance(context, str):
122
+ annotated_retrieval_context.append(f"Node {i + 1}: {context}")
123
+ elif isinstance(context, MLLMImage):
124
+ annotated_retrieval_context.append(f"Node {i + 1}:")
125
+ annotated_retrieval_context.append(context)
126
+ return annotated_retrieval_context