deepeval 3.7.3__py3-none-any.whl → 3.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- deepeval/_version.py +1 -1
- deepeval/cli/test.py +1 -1
- deepeval/config/settings.py +102 -13
- deepeval/dataset/golden.py +54 -2
- deepeval/evaluate/configs.py +1 -1
- deepeval/evaluate/evaluate.py +16 -8
- deepeval/evaluate/execute.py +74 -27
- deepeval/evaluate/utils.py +26 -22
- deepeval/integrations/pydantic_ai/agent.py +19 -2
- deepeval/integrations/pydantic_ai/instrumentator.py +62 -23
- deepeval/metrics/__init__.py +14 -12
- deepeval/metrics/answer_relevancy/answer_relevancy.py +74 -29
- deepeval/metrics/answer_relevancy/template.py +188 -92
- deepeval/metrics/argument_correctness/template.py +2 -2
- deepeval/metrics/base_metric.py +2 -5
- deepeval/metrics/bias/template.py +3 -3
- deepeval/metrics/contextual_precision/contextual_precision.py +53 -15
- deepeval/metrics/contextual_precision/template.py +115 -66
- deepeval/metrics/contextual_recall/contextual_recall.py +50 -13
- deepeval/metrics/contextual_recall/template.py +106 -55
- deepeval/metrics/contextual_relevancy/contextual_relevancy.py +47 -15
- deepeval/metrics/contextual_relevancy/template.py +87 -58
- deepeval/metrics/conversation_completeness/template.py +2 -2
- deepeval/metrics/conversational_dag/templates.py +4 -4
- deepeval/metrics/conversational_g_eval/template.py +4 -3
- deepeval/metrics/dag/templates.py +5 -5
- deepeval/metrics/faithfulness/faithfulness.py +70 -27
- deepeval/metrics/faithfulness/schema.py +1 -1
- deepeval/metrics/faithfulness/template.py +200 -115
- deepeval/metrics/g_eval/utils.py +2 -2
- deepeval/metrics/hallucination/template.py +4 -4
- deepeval/metrics/indicator.py +4 -4
- deepeval/metrics/misuse/template.py +2 -2
- deepeval/metrics/multimodal_metrics/__init__.py +0 -18
- deepeval/metrics/multimodal_metrics/image_coherence/image_coherence.py +24 -17
- deepeval/metrics/multimodal_metrics/image_editing/image_editing.py +26 -21
- deepeval/metrics/multimodal_metrics/image_helpfulness/image_helpfulness.py +24 -17
- deepeval/metrics/multimodal_metrics/image_reference/image_reference.py +24 -17
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/multimodal_g_eval.py +19 -19
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/template.py +63 -78
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/utils.py +20 -20
- deepeval/metrics/multimodal_metrics/text_to_image/text_to_image.py +71 -50
- deepeval/metrics/non_advice/template.py +2 -2
- deepeval/metrics/pii_leakage/template.py +2 -2
- deepeval/metrics/prompt_alignment/template.py +4 -4
- deepeval/metrics/ragas.py +3 -3
- deepeval/metrics/role_violation/template.py +2 -2
- deepeval/metrics/step_efficiency/step_efficiency.py +1 -1
- deepeval/metrics/tool_correctness/tool_correctness.py +2 -2
- deepeval/metrics/toxicity/template.py +4 -4
- deepeval/metrics/turn_contextual_precision/schema.py +21 -0
- deepeval/metrics/turn_contextual_precision/template.py +187 -0
- deepeval/metrics/turn_contextual_precision/turn_contextual_precision.py +550 -0
- deepeval/metrics/turn_contextual_recall/schema.py +21 -0
- deepeval/metrics/turn_contextual_recall/template.py +178 -0
- deepeval/metrics/turn_contextual_recall/turn_contextual_recall.py +520 -0
- deepeval/metrics/{multimodal_metrics/multimodal_contextual_relevancy → turn_contextual_relevancy}/schema.py +7 -1
- deepeval/metrics/turn_contextual_relevancy/template.py +161 -0
- deepeval/metrics/turn_contextual_relevancy/turn_contextual_relevancy.py +535 -0
- deepeval/metrics/{multimodal_metrics/multimodal_faithfulness → turn_faithfulness}/schema.py +11 -3
- deepeval/metrics/turn_faithfulness/template.py +218 -0
- deepeval/metrics/turn_faithfulness/turn_faithfulness.py +596 -0
- deepeval/metrics/turn_relevancy/template.py +2 -2
- deepeval/metrics/utils.py +39 -58
- deepeval/models/__init__.py +0 -12
- deepeval/models/base_model.py +16 -38
- deepeval/models/embedding_models/__init__.py +7 -0
- deepeval/models/embedding_models/azure_embedding_model.py +69 -32
- deepeval/models/embedding_models/local_embedding_model.py +39 -22
- deepeval/models/embedding_models/ollama_embedding_model.py +42 -18
- deepeval/models/embedding_models/openai_embedding_model.py +50 -15
- deepeval/models/llms/amazon_bedrock_model.py +1 -2
- deepeval/models/llms/anthropic_model.py +53 -20
- deepeval/models/llms/azure_model.py +140 -43
- deepeval/models/llms/deepseek_model.py +38 -23
- deepeval/models/llms/gemini_model.py +222 -103
- deepeval/models/llms/grok_model.py +39 -27
- deepeval/models/llms/kimi_model.py +39 -23
- deepeval/models/llms/litellm_model.py +103 -45
- deepeval/models/llms/local_model.py +35 -22
- deepeval/models/llms/ollama_model.py +129 -17
- deepeval/models/llms/openai_model.py +151 -50
- deepeval/models/llms/portkey_model.py +149 -0
- deepeval/models/llms/utils.py +5 -3
- deepeval/models/retry_policy.py +17 -14
- deepeval/models/utils.py +94 -4
- deepeval/optimizer/__init__.py +5 -0
- deepeval/optimizer/algorithms/__init__.py +6 -0
- deepeval/optimizer/algorithms/base.py +29 -0
- deepeval/optimizer/algorithms/configs.py +18 -0
- deepeval/optimizer/algorithms/copro/__init__.py +5 -0
- deepeval/optimizer/algorithms/copro/copro.py +836 -0
- deepeval/optimizer/algorithms/gepa/__init__.py +5 -0
- deepeval/optimizer/algorithms/gepa/gepa.py +737 -0
- deepeval/optimizer/algorithms/miprov2/__init__.py +17 -0
- deepeval/optimizer/algorithms/miprov2/bootstrapper.py +435 -0
- deepeval/optimizer/algorithms/miprov2/miprov2.py +752 -0
- deepeval/optimizer/algorithms/miprov2/proposer.py +301 -0
- deepeval/optimizer/algorithms/simba/__init__.py +5 -0
- deepeval/optimizer/algorithms/simba/simba.py +999 -0
- deepeval/optimizer/algorithms/simba/types.py +15 -0
- deepeval/optimizer/configs.py +31 -0
- deepeval/optimizer/policies.py +227 -0
- deepeval/optimizer/prompt_optimizer.py +263 -0
- deepeval/optimizer/rewriter/__init__.py +5 -0
- deepeval/optimizer/rewriter/rewriter.py +124 -0
- deepeval/optimizer/rewriter/utils.py +214 -0
- deepeval/optimizer/scorer/__init__.py +5 -0
- deepeval/optimizer/scorer/base.py +86 -0
- deepeval/optimizer/scorer/scorer.py +316 -0
- deepeval/optimizer/scorer/utils.py +30 -0
- deepeval/optimizer/types.py +148 -0
- deepeval/optimizer/utils.py +480 -0
- deepeval/prompt/prompt.py +7 -6
- deepeval/test_case/__init__.py +1 -3
- deepeval/test_case/api.py +12 -10
- deepeval/test_case/conversational_test_case.py +19 -1
- deepeval/test_case/llm_test_case.py +152 -1
- deepeval/test_case/utils.py +4 -8
- deepeval/test_run/api.py +15 -14
- deepeval/test_run/cache.py +2 -0
- deepeval/test_run/test_run.py +9 -4
- deepeval/tracing/patchers.py +9 -4
- deepeval/tracing/tracing.py +2 -2
- deepeval/utils.py +89 -0
- {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/METADATA +1 -4
- {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/RECORD +134 -118
- deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/multimodal_answer_relevancy.py +0 -343
- deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/schema.py +0 -19
- deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/template.py +0 -122
- deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/multimodal_contextual_precision.py +0 -301
- deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/schema.py +0 -15
- deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/template.py +0 -132
- deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/multimodal_contextual_recall.py +0 -285
- deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/schema.py +0 -15
- deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/template.py +0 -112
- deepeval/metrics/multimodal_metrics/multimodal_contextual_relevancy/multimodal_contextual_relevancy.py +0 -282
- deepeval/metrics/multimodal_metrics/multimodal_contextual_relevancy/template.py +0 -102
- deepeval/metrics/multimodal_metrics/multimodal_faithfulness/__init__.py +0 -0
- deepeval/metrics/multimodal_metrics/multimodal_faithfulness/multimodal_faithfulness.py +0 -356
- deepeval/metrics/multimodal_metrics/multimodal_faithfulness/template.py +0 -175
- deepeval/metrics/multimodal_metrics/multimodal_tool_correctness/__init__.py +0 -0
- deepeval/metrics/multimodal_metrics/multimodal_tool_correctness/multimodal_tool_correctness.py +0 -290
- deepeval/models/mlllms/__init__.py +0 -4
- deepeval/models/mlllms/azure_model.py +0 -334
- deepeval/models/mlllms/gemini_model.py +0 -284
- deepeval/models/mlllms/ollama_model.py +0 -144
- deepeval/models/mlllms/openai_model.py +0 -258
- deepeval/test_case/mllm_test_case.py +0 -170
- /deepeval/metrics/{multimodal_metrics/multimodal_answer_relevancy → turn_contextual_precision}/__init__.py +0 -0
- /deepeval/metrics/{multimodal_metrics/multimodal_contextual_precision → turn_contextual_recall}/__init__.py +0 -0
- /deepeval/metrics/{multimodal_metrics/multimodal_contextual_recall → turn_contextual_relevancy}/__init__.py +0 -0
- /deepeval/metrics/{multimodal_metrics/multimodal_contextual_relevancy → turn_faithfulness}/__init__.py +0 -0
- {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/LICENSE.md +0 -0
- {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/WHEEL +0 -0
- {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/entry_points.txt +0 -0
|
@@ -0,0 +1,999 @@
|
|
|
1
|
+
# - SIMBA-style multi-strategy 0-shot variant:
|
|
2
|
+
# - Works on a single set of goldens (no D_pareto split).
|
|
3
|
+
# - Maintains a bounded population of candidate prompts
|
|
4
|
+
# (size controlled by `population_size`).
|
|
5
|
+
# - At each iteration:
|
|
6
|
+
# - Select a parent via epsilon-greedy on mean minibatch score.
|
|
7
|
+
# - Sample a minibatch of goldens for scoring.
|
|
8
|
+
# - Compute feedback once for the parent + minibatch.
|
|
9
|
+
# - Propose multiple child prompts cooperatively from the same parent
|
|
10
|
+
# (up to `proposals_per_step` children), each using a SIMBA edit
|
|
11
|
+
# strategy (e.g., APPEND_DEMO or APPEND_RULE).
|
|
12
|
+
# - For each child, accept it if its minibatch score improves on the
|
|
13
|
+
# parent by at least `min_delta`, add it to the pool, and prune
|
|
14
|
+
# low-scoring candidates if the population exceeds `population_size`.
|
|
15
|
+
# - Uses `full_eval_every` (if set) to periodically re-score the current
|
|
16
|
+
# best candidate on the full golden set.
|
|
17
|
+
|
|
18
|
+
from __future__ import annotations
|
|
19
|
+
|
|
20
|
+
import random
|
|
21
|
+
import time
|
|
22
|
+
import uuid
|
|
23
|
+
from typing import (
|
|
24
|
+
Awaitable,
|
|
25
|
+
Callable,
|
|
26
|
+
Dict,
|
|
27
|
+
List,
|
|
28
|
+
Optional,
|
|
29
|
+
Tuple,
|
|
30
|
+
Union,
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
from deepeval.models.base_model import DeepEvalBaseLLM
|
|
34
|
+
|
|
35
|
+
from deepeval.errors import DeepEvalError
|
|
36
|
+
from deepeval.dataset.golden import ConversationalGolden, Golden
|
|
37
|
+
from deepeval.optimizer.utils import Aggregator, mean_of_all
|
|
38
|
+
from deepeval.optimizer.types import (
|
|
39
|
+
AcceptedIterationDict,
|
|
40
|
+
ModuleId,
|
|
41
|
+
OptimizationReport,
|
|
42
|
+
PromptConfiguration,
|
|
43
|
+
PromptConfigurationId,
|
|
44
|
+
RunnerStatusCallback,
|
|
45
|
+
RunnerStatusType,
|
|
46
|
+
ScoreTable,
|
|
47
|
+
)
|
|
48
|
+
from deepeval.optimizer.scorer.base import BaseScorer
|
|
49
|
+
from deepeval.optimizer.algorithms.base import BaseAlgorithm
|
|
50
|
+
from deepeval.optimizer.utils import build_prompt_config_snapshots
|
|
51
|
+
from deepeval.prompt.api import PromptType
|
|
52
|
+
from deepeval.prompt.prompt import Prompt
|
|
53
|
+
from deepeval.optimizer.rewriter import Rewriter
|
|
54
|
+
|
|
55
|
+
from deepeval.optimizer.algorithms.configs import (
|
|
56
|
+
MIPROV2_MIN_DELTA,
|
|
57
|
+
MIPROV2_REWRITE_INSTRUCTION_MAX_CHARS,
|
|
58
|
+
SIMBA_DEMO_INPUT_MAX_CHARS,
|
|
59
|
+
)
|
|
60
|
+
from deepeval.optimizer.algorithms.simba.types import SIMBAStrategy
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class SIMBA(BaseAlgorithm):
|
|
64
|
+
"""
|
|
65
|
+
SIMBA-style cooperative prompt optimization loop with sync/async execution.
|
|
66
|
+
|
|
67
|
+
This runner is intentionally low level and does not know about metrics,
|
|
68
|
+
models, or async configs. It relies on a preconfigured Scorer and
|
|
69
|
+
Rewriter, which are typically constructed by PromptOptimizer.
|
|
70
|
+
|
|
71
|
+
Parameters
|
|
72
|
+
----------
|
|
73
|
+
iterations : int
|
|
74
|
+
Total number of optimization trials. Default is 5.
|
|
75
|
+
minibatch_size : int
|
|
76
|
+
Number of examples drawn per iteration. Default is 8.
|
|
77
|
+
random_seed : int, optional
|
|
78
|
+
RNG seed for reproducibility. If None, derived from time.time_ns().
|
|
79
|
+
exploration_probability : float
|
|
80
|
+
Epsilon greedy exploration rate. Default is 0.2.
|
|
81
|
+
full_eval_every : int, optional
|
|
82
|
+
Fully evaluate best candidate every N trials. Default is 5.
|
|
83
|
+
population_size : int
|
|
84
|
+
Maximum number of candidates in the pool. Default is 4.
|
|
85
|
+
proposals_per_step : int
|
|
86
|
+
Number of child prompts proposed per iteration. Default is 4.
|
|
87
|
+
max_demos_per_proposal : int
|
|
88
|
+
Maximum demos from minibatch for APPEND_DEMO strategy. Default is 3.
|
|
89
|
+
"""
|
|
90
|
+
|
|
91
|
+
name = "SIMBA"
|
|
92
|
+
SINGLE_MODULE_ID: ModuleId = "__module__"
|
|
93
|
+
|
|
94
|
+
def __init__(
|
|
95
|
+
self,
|
|
96
|
+
iterations: int = 5,
|
|
97
|
+
minibatch_size: int = 8,
|
|
98
|
+
random_seed: Optional[int] = None,
|
|
99
|
+
exploration_probability: float = 0.2,
|
|
100
|
+
full_eval_every: Optional[int] = 5,
|
|
101
|
+
population_size: int = 4,
|
|
102
|
+
proposals_per_step: int = 4,
|
|
103
|
+
max_demos_per_proposal: int = 3,
|
|
104
|
+
aggregate_instances: Aggregator = mean_of_all,
|
|
105
|
+
scorer: Optional[BaseScorer] = None,
|
|
106
|
+
) -> None:
|
|
107
|
+
# Validate parameters
|
|
108
|
+
if iterations < 1:
|
|
109
|
+
raise ValueError("iterations must be >= 1")
|
|
110
|
+
if minibatch_size < 1:
|
|
111
|
+
raise ValueError("minibatch_size must be >= 1")
|
|
112
|
+
if exploration_probability < 0.0 or exploration_probability > 1.0:
|
|
113
|
+
raise ValueError(
|
|
114
|
+
"exploration_probability must be >= 0.0 and <= 1.0"
|
|
115
|
+
)
|
|
116
|
+
if full_eval_every is not None and full_eval_every < 1:
|
|
117
|
+
raise ValueError("full_eval_every must be >= 1")
|
|
118
|
+
if population_size < 1:
|
|
119
|
+
raise ValueError("population_size must be >= 1")
|
|
120
|
+
if proposals_per_step < 1:
|
|
121
|
+
raise ValueError("proposals_per_step must be >= 1")
|
|
122
|
+
if max_demos_per_proposal < 0:
|
|
123
|
+
raise ValueError("max_demos_per_proposal must be >= 0")
|
|
124
|
+
|
|
125
|
+
self.iterations = iterations
|
|
126
|
+
self.minibatch_size = minibatch_size
|
|
127
|
+
self.exploration_probability = exploration_probability
|
|
128
|
+
self.full_eval_every = full_eval_every
|
|
129
|
+
self.population_size = population_size
|
|
130
|
+
self.proposals_per_step = proposals_per_step
|
|
131
|
+
self.max_demos_per_proposal = max_demos_per_proposal
|
|
132
|
+
self.aggregate_instances = aggregate_instances
|
|
133
|
+
self.scorer = scorer
|
|
134
|
+
|
|
135
|
+
if max_demos_per_proposal > 0:
|
|
136
|
+
self._strategies = [
|
|
137
|
+
SIMBAStrategy.APPEND_DEMO,
|
|
138
|
+
SIMBAStrategy.APPEND_RULE,
|
|
139
|
+
]
|
|
140
|
+
else:
|
|
141
|
+
self._strategies = [SIMBAStrategy.APPEND_RULE]
|
|
142
|
+
|
|
143
|
+
# If no seed provided, use time-based seed
|
|
144
|
+
if random_seed is None:
|
|
145
|
+
random_seed = time.time_ns()
|
|
146
|
+
self.random_seed = random_seed
|
|
147
|
+
self.random_state = random.Random(random_seed)
|
|
148
|
+
|
|
149
|
+
# Runtime state to be reset between runs
|
|
150
|
+
self.reset_state()
|
|
151
|
+
|
|
152
|
+
# Status callback set by PromptOptimizer:
|
|
153
|
+
# (kind, step_index, total_steps, detail) -> None
|
|
154
|
+
self.status_callback: Optional[RunnerStatusCallback] = None
|
|
155
|
+
|
|
156
|
+
# Optimizer model used by the rewriter for prompt mutation.
|
|
157
|
+
# Set by PromptOptimizer.
|
|
158
|
+
self.optimizer_model: Optional["DeepEvalBaseLLM"] = None
|
|
159
|
+
|
|
160
|
+
# Lazy-loaded Rewriter set by PromptOptimizer
|
|
161
|
+
self._rewriter: Optional[Rewriter] = None
|
|
162
|
+
|
|
163
|
+
##############
|
|
164
|
+
# Public API #
|
|
165
|
+
##############
|
|
166
|
+
|
|
167
|
+
def execute(
|
|
168
|
+
self,
|
|
169
|
+
prompt: Prompt,
|
|
170
|
+
goldens: Union[List[Golden], List[ConversationalGolden]],
|
|
171
|
+
) -> Tuple[Prompt, OptimizationReport]:
|
|
172
|
+
"""
|
|
173
|
+
Synchronous SIMBA run from a full list of goldens.
|
|
174
|
+
|
|
175
|
+
The full goldens set is used both for mini-batched scoring during
|
|
176
|
+
optimization and for a final full evaluation of the best candidate.
|
|
177
|
+
"""
|
|
178
|
+
total_goldens = len(goldens)
|
|
179
|
+
if total_goldens < 1:
|
|
180
|
+
raise DeepEvalError(
|
|
181
|
+
"SIMBA prompt optimization requires at least 1 golden, but "
|
|
182
|
+
f"received {total_goldens}. Provide at least one golden to run "
|
|
183
|
+
"the optimizer."
|
|
184
|
+
)
|
|
185
|
+
|
|
186
|
+
self._ensure_scorer()
|
|
187
|
+
self.reset_state()
|
|
188
|
+
|
|
189
|
+
# Seed candidate pool with the root prompt configuration.
|
|
190
|
+
seed_prompts_by_module = {self.SINGLE_MODULE_ID: prompt}
|
|
191
|
+
root_prompt_configuration = PromptConfiguration.new(
|
|
192
|
+
prompts=dict(seed_prompts_by_module)
|
|
193
|
+
)
|
|
194
|
+
# Add root candidate to the pool, but defer its first minibatch
|
|
195
|
+
# evaluation until the first iteration so that any long running
|
|
196
|
+
# model calls happen under the main loop (with progress updates).
|
|
197
|
+
self._add_prompt_configuration(root_prompt_configuration)
|
|
198
|
+
|
|
199
|
+
accepted_iterations: List[Dict] = []
|
|
200
|
+
self.trial_index = 0
|
|
201
|
+
|
|
202
|
+
def _one_iteration() -> bool:
|
|
203
|
+
nonlocal accepted_iterations
|
|
204
|
+
|
|
205
|
+
if not goldens:
|
|
206
|
+
return False
|
|
207
|
+
|
|
208
|
+
# Lazily seed with a minibatch score for the root
|
|
209
|
+
# candidate on the first iteration.
|
|
210
|
+
if not self._minibatch_score_counts:
|
|
211
|
+
seed_minibatch = self._draw_minibatch(goldens)
|
|
212
|
+
root_score = self.scorer.score_minibatch(
|
|
213
|
+
root_prompt_configuration, seed_minibatch
|
|
214
|
+
)
|
|
215
|
+
self._record_minibatch_score(
|
|
216
|
+
root_prompt_configuration.id, root_score
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
# 1. Choose which candidate prompt to mutate.
|
|
220
|
+
parent_prompt_configuration = self._select_candidate()
|
|
221
|
+
selected_module_id: ModuleId = self.SINGLE_MODULE_ID
|
|
222
|
+
|
|
223
|
+
minibatch = self._draw_minibatch(goldens)
|
|
224
|
+
|
|
225
|
+
# Compute shared feedback for this parent/minibatch that will be
|
|
226
|
+
# used by all SIMBA proposals in this iteration.
|
|
227
|
+
feedback_text = self.scorer.get_minibatch_feedback(
|
|
228
|
+
parent_prompt_configuration, selected_module_id, minibatch
|
|
229
|
+
)
|
|
230
|
+
|
|
231
|
+
before_mean = self._mean_minibatch_score(
|
|
232
|
+
parent_prompt_configuration.id
|
|
233
|
+
)
|
|
234
|
+
jitter = 1e-6
|
|
235
|
+
min_delta = max(MIPROV2_MIN_DELTA, jitter)
|
|
236
|
+
|
|
237
|
+
# 2. Generate multiple SIMBA child prompts and evaluate them.
|
|
238
|
+
num_proposals = int(self.proposals_per_step)
|
|
239
|
+
for _ in range(num_proposals):
|
|
240
|
+
strategy = self._sample_strategy()
|
|
241
|
+
child_prompt = self._generate_child_prompt(
|
|
242
|
+
strategy,
|
|
243
|
+
selected_module_id,
|
|
244
|
+
parent_prompt_configuration,
|
|
245
|
+
feedback_text,
|
|
246
|
+
minibatch,
|
|
247
|
+
)
|
|
248
|
+
if child_prompt is None:
|
|
249
|
+
# No child, nothing to evaluate for this proposal.
|
|
250
|
+
continue
|
|
251
|
+
|
|
252
|
+
child_prompt_configuration = self._make_child(
|
|
253
|
+
selected_module_id,
|
|
254
|
+
parent_prompt_configuration,
|
|
255
|
+
child_prompt,
|
|
256
|
+
)
|
|
257
|
+
|
|
258
|
+
child_score = self.scorer.score_minibatch(
|
|
259
|
+
child_prompt_configuration, minibatch
|
|
260
|
+
)
|
|
261
|
+
|
|
262
|
+
# 3. Evaluate & decide whether to accept the child.
|
|
263
|
+
if child_score >= before_mean + min_delta:
|
|
264
|
+
# Accept: add to pool, update surrogate stats, and record iteration.
|
|
265
|
+
self._add_prompt_configuration(child_prompt_configuration)
|
|
266
|
+
self._record_minibatch_score(
|
|
267
|
+
child_prompt_configuration.id, child_score
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
accepted_iterations.append(
|
|
271
|
+
AcceptedIterationDict(
|
|
272
|
+
parent=parent_prompt_configuration.id,
|
|
273
|
+
child=child_prompt_configuration.id,
|
|
274
|
+
module=selected_module_id,
|
|
275
|
+
before=before_mean,
|
|
276
|
+
after=child_score,
|
|
277
|
+
)
|
|
278
|
+
)
|
|
279
|
+
# else: reject; do not add child to the candidate pool.
|
|
280
|
+
|
|
281
|
+
self.trial_index += 1
|
|
282
|
+
if (
|
|
283
|
+
self.full_eval_every is not None
|
|
284
|
+
and self.trial_index % self.full_eval_every == 0
|
|
285
|
+
):
|
|
286
|
+
self._full_evaluate_best(goldens)
|
|
287
|
+
|
|
288
|
+
return True
|
|
289
|
+
|
|
290
|
+
self._run_loop_iteration(_one_iteration)
|
|
291
|
+
|
|
292
|
+
# Ensure at least one candidate has been fully evaluated.
|
|
293
|
+
if not self.pareto_score_table:
|
|
294
|
+
self._full_evaluate_best(goldens)
|
|
295
|
+
|
|
296
|
+
best = self._best_by_aggregate()
|
|
297
|
+
prompt_config_snapshots = build_prompt_config_snapshots(
|
|
298
|
+
self.prompt_configurations_by_id
|
|
299
|
+
)
|
|
300
|
+
report = OptimizationReport(
|
|
301
|
+
optimization_id=self.optimization_id,
|
|
302
|
+
best_id=best.id,
|
|
303
|
+
accepted_iterations=accepted_iterations,
|
|
304
|
+
pareto_scores=self.pareto_score_table,
|
|
305
|
+
parents=self.parents_by_id,
|
|
306
|
+
prompt_configurations=prompt_config_snapshots,
|
|
307
|
+
)
|
|
308
|
+
return best.prompts[self.SINGLE_MODULE_ID], report
|
|
309
|
+
|
|
310
|
+
async def a_execute(
|
|
311
|
+
self,
|
|
312
|
+
prompt: Prompt,
|
|
313
|
+
goldens: Union[List[Golden], List[ConversationalGolden]],
|
|
314
|
+
) -> Tuple[Prompt, OptimizationReport]:
|
|
315
|
+
"""
|
|
316
|
+
Asynchronous twin of execute().
|
|
317
|
+
"""
|
|
318
|
+
total_goldens = len(goldens)
|
|
319
|
+
if total_goldens < 1:
|
|
320
|
+
raise DeepEvalError(
|
|
321
|
+
"SIMBA prompt optimization requires at least 1 golden, but "
|
|
322
|
+
f"received {total_goldens}. Provide at least one golden to run "
|
|
323
|
+
"the optimizer."
|
|
324
|
+
)
|
|
325
|
+
|
|
326
|
+
self._ensure_scorer()
|
|
327
|
+
self.reset_state()
|
|
328
|
+
|
|
329
|
+
seed_prompts_by_module = {self.SINGLE_MODULE_ID: prompt}
|
|
330
|
+
root_prompt_configuration = PromptConfiguration.new(
|
|
331
|
+
prompts=dict(seed_prompts_by_module)
|
|
332
|
+
)
|
|
333
|
+
self._add_prompt_configuration(root_prompt_configuration)
|
|
334
|
+
|
|
335
|
+
accepted_iterations: List[Dict] = []
|
|
336
|
+
self.trial_index = 0
|
|
337
|
+
|
|
338
|
+
async def _one_iteration() -> bool:
|
|
339
|
+
nonlocal accepted_iterations
|
|
340
|
+
|
|
341
|
+
if not goldens:
|
|
342
|
+
return False
|
|
343
|
+
|
|
344
|
+
if not self._minibatch_score_counts:
|
|
345
|
+
seed_minibatch = self._draw_minibatch(goldens)
|
|
346
|
+
root_score = await self.scorer.a_score_minibatch(
|
|
347
|
+
root_prompt_configuration, seed_minibatch
|
|
348
|
+
)
|
|
349
|
+
self._record_minibatch_score(
|
|
350
|
+
root_prompt_configuration.id, root_score
|
|
351
|
+
)
|
|
352
|
+
|
|
353
|
+
parent_prompt_configuration = self._select_candidate()
|
|
354
|
+
selected_module_id: ModuleId = self.SINGLE_MODULE_ID
|
|
355
|
+
|
|
356
|
+
minibatch = self._draw_minibatch(goldens)
|
|
357
|
+
|
|
358
|
+
feedback_text = await self.scorer.a_get_minibatch_feedback(
|
|
359
|
+
parent_prompt_configuration, selected_module_id, minibatch
|
|
360
|
+
)
|
|
361
|
+
|
|
362
|
+
before_mean = self._mean_minibatch_score(
|
|
363
|
+
parent_prompt_configuration.id
|
|
364
|
+
)
|
|
365
|
+
jitter = 1e-6
|
|
366
|
+
min_delta = max(MIPROV2_MIN_DELTA, jitter)
|
|
367
|
+
|
|
368
|
+
num_proposals = int(self.proposals_per_step)
|
|
369
|
+
for _ in range(num_proposals):
|
|
370
|
+
strategy = self._sample_strategy()
|
|
371
|
+
child_prompt = await self._a_generate_child_prompt(
|
|
372
|
+
strategy,
|
|
373
|
+
selected_module_id,
|
|
374
|
+
parent_prompt_configuration,
|
|
375
|
+
feedback_text,
|
|
376
|
+
minibatch,
|
|
377
|
+
)
|
|
378
|
+
if child_prompt is None:
|
|
379
|
+
continue
|
|
380
|
+
|
|
381
|
+
child_prompt_configuration = self._make_child(
|
|
382
|
+
selected_module_id,
|
|
383
|
+
parent_prompt_configuration,
|
|
384
|
+
child_prompt,
|
|
385
|
+
)
|
|
386
|
+
|
|
387
|
+
child_score = await self.scorer.a_score_minibatch(
|
|
388
|
+
child_prompt_configuration, minibatch
|
|
389
|
+
)
|
|
390
|
+
|
|
391
|
+
if child_score >= before_mean + min_delta:
|
|
392
|
+
self._add_prompt_configuration(child_prompt_configuration)
|
|
393
|
+
self._record_minibatch_score(
|
|
394
|
+
child_prompt_configuration.id, child_score
|
|
395
|
+
)
|
|
396
|
+
|
|
397
|
+
accepted_iterations.append(
|
|
398
|
+
AcceptedIterationDict(
|
|
399
|
+
parent=parent_prompt_configuration.id,
|
|
400
|
+
child=child_prompt_configuration.id,
|
|
401
|
+
module=selected_module_id,
|
|
402
|
+
before=before_mean,
|
|
403
|
+
after=child_score,
|
|
404
|
+
)
|
|
405
|
+
)
|
|
406
|
+
|
|
407
|
+
self.trial_index += 1
|
|
408
|
+
if (
|
|
409
|
+
self.full_eval_every is not None
|
|
410
|
+
and self.trial_index % self.full_eval_every == 0
|
|
411
|
+
):
|
|
412
|
+
await self._a_full_evaluate_best(goldens)
|
|
413
|
+
|
|
414
|
+
return True
|
|
415
|
+
|
|
416
|
+
await self._a_run_loop_iteration(_one_iteration)
|
|
417
|
+
|
|
418
|
+
if not self.pareto_score_table:
|
|
419
|
+
await self._a_full_evaluate_best(goldens)
|
|
420
|
+
|
|
421
|
+
best = self._best_by_aggregate()
|
|
422
|
+
prompt_config_snapshots = build_prompt_config_snapshots(
|
|
423
|
+
self.prompt_configurations_by_id
|
|
424
|
+
)
|
|
425
|
+
report = OptimizationReport(
|
|
426
|
+
optimization_id=self.optimization_id,
|
|
427
|
+
best_id=best.id,
|
|
428
|
+
accepted_iterations=accepted_iterations,
|
|
429
|
+
pareto_scores=self.pareto_score_table,
|
|
430
|
+
parents=self.parents_by_id,
|
|
431
|
+
prompt_configurations=prompt_config_snapshots,
|
|
432
|
+
)
|
|
433
|
+
return best.prompts[self.SINGLE_MODULE_ID], report
|
|
434
|
+
|
|
435
|
+
###################
|
|
436
|
+
# State & helpers #
|
|
437
|
+
###################
|
|
438
|
+
|
|
439
|
+
def reset_state(self) -> None:
|
|
440
|
+
self.optimization_id = str(uuid.uuid4())
|
|
441
|
+
self.prompt_configurations_by_id: Dict[
|
|
442
|
+
PromptConfigurationId, PromptConfiguration
|
|
443
|
+
] = {}
|
|
444
|
+
self.parents_by_id: Dict[
|
|
445
|
+
PromptConfigurationId, Optional[PromptConfigurationId]
|
|
446
|
+
] = {}
|
|
447
|
+
# For SIMBA we reuse the same field name as GEPA for full-eval scores.
|
|
448
|
+
self.pareto_score_table: ScoreTable = {}
|
|
449
|
+
|
|
450
|
+
# Surrogate stats: running mean minibatch scores per candidate.
|
|
451
|
+
self._minibatch_score_sums: Dict[PromptConfigurationId, float] = {}
|
|
452
|
+
self._minibatch_score_counts: Dict[PromptConfigurationId, int] = {}
|
|
453
|
+
|
|
454
|
+
# Trial counter (used for full_eval_every).
|
|
455
|
+
self.trial_index: int = 0
|
|
456
|
+
|
|
457
|
+
def _ensure_scorer(self) -> None:
|
|
458
|
+
if self.scorer is None:
|
|
459
|
+
raise DeepEvalError(
|
|
460
|
+
"SIMBARunner requires a `scorer`. "
|
|
461
|
+
"Construct one (for example, Scorer) in "
|
|
462
|
+
"PromptOptimizer and assign it to `runner.scorer`."
|
|
463
|
+
)
|
|
464
|
+
|
|
465
|
+
def _prompts_equivalent(
|
|
466
|
+
self,
|
|
467
|
+
old_prompt: Prompt,
|
|
468
|
+
new_prompt: Prompt,
|
|
469
|
+
) -> bool:
|
|
470
|
+
"""
|
|
471
|
+
Compare two Prompts for optimization purposes.
|
|
472
|
+
|
|
473
|
+
We treat a child as "no change" if:
|
|
474
|
+
- The types differ, or
|
|
475
|
+
- For TEXT: trimmed text_template matches.
|
|
476
|
+
- For LIST: messages_template length, roles, and trimmed content match.
|
|
477
|
+
"""
|
|
478
|
+
|
|
479
|
+
if new_prompt.type == PromptType.LIST:
|
|
480
|
+
old_msgs = old_prompt.messages_template
|
|
481
|
+
new_msgs = new_prompt.messages_template
|
|
482
|
+
if len(old_msgs) != len(new_msgs):
|
|
483
|
+
return False
|
|
484
|
+
|
|
485
|
+
for old_msg, new_msg in zip(old_msgs, new_msgs):
|
|
486
|
+
if old_msg.role != new_msg.role:
|
|
487
|
+
return False
|
|
488
|
+
if (old_msg.content or "").strip() != (
|
|
489
|
+
new_msg.content or ""
|
|
490
|
+
).strip():
|
|
491
|
+
return False
|
|
492
|
+
|
|
493
|
+
return True
|
|
494
|
+
|
|
495
|
+
old_txt = (old_prompt.text_template or "").strip()
|
|
496
|
+
new_txt = (new_prompt.text_template or "").strip()
|
|
497
|
+
return new_txt == old_txt
|
|
498
|
+
|
|
499
|
+
def _add_prompt_configuration(
|
|
500
|
+
self,
|
|
501
|
+
prompt_configuration: PromptConfiguration,
|
|
502
|
+
) -> None:
|
|
503
|
+
"""
|
|
504
|
+
Add a candidate to the active pool and, if a population limit is set,
|
|
505
|
+
prune the worst-scoring candidates to enforce it.
|
|
506
|
+
"""
|
|
507
|
+
self.prompt_configurations_by_id[prompt_configuration.id] = (
|
|
508
|
+
prompt_configuration
|
|
509
|
+
)
|
|
510
|
+
self.parents_by_id[prompt_configuration.id] = (
|
|
511
|
+
prompt_configuration.parent
|
|
512
|
+
)
|
|
513
|
+
|
|
514
|
+
# If we exceed the population size, iteratively prune the worst
|
|
515
|
+
# (by mean minibatch score), never removing the current best.
|
|
516
|
+
while len(self.prompt_configurations_by_id) > self.population_size:
|
|
517
|
+
best_id: Optional[PromptConfigurationId] = None
|
|
518
|
+
best_score = float("-inf")
|
|
519
|
+
for cand_id in self.prompt_configurations_by_id.keys():
|
|
520
|
+
mean_score = self._mean_minibatch_score(cand_id)
|
|
521
|
+
if mean_score > best_score:
|
|
522
|
+
best_score = mean_score
|
|
523
|
+
best_id = cand_id
|
|
524
|
+
|
|
525
|
+
worst_id: Optional[PromptConfigurationId] = None
|
|
526
|
+
worst_score = float("inf")
|
|
527
|
+
for cand_id in self.prompt_configurations_by_id.keys():
|
|
528
|
+
if cand_id == best_id:
|
|
529
|
+
continue
|
|
530
|
+
mean_score = self._mean_minibatch_score(cand_id)
|
|
531
|
+
if mean_score < worst_score:
|
|
532
|
+
worst_score = mean_score
|
|
533
|
+
worst_id = cand_id
|
|
534
|
+
|
|
535
|
+
if worst_id is None or worst_id == best_id:
|
|
536
|
+
break
|
|
537
|
+
|
|
538
|
+
# Prune the chosen worst candidate from all bookkeeping tables.
|
|
539
|
+
self.prompt_configurations_by_id.pop(worst_id, None)
|
|
540
|
+
self.parents_by_id.pop(worst_id, None)
|
|
541
|
+
self._minibatch_score_sums.pop(worst_id, None)
|
|
542
|
+
self._minibatch_score_counts.pop(worst_id, None)
|
|
543
|
+
self.pareto_score_table.pop(worst_id, None)
|
|
544
|
+
|
|
545
|
+
def _record_minibatch_score(
|
|
546
|
+
self,
|
|
547
|
+
prompt_configuration_id: PromptConfigurationId,
|
|
548
|
+
score: float,
|
|
549
|
+
) -> None:
|
|
550
|
+
self._minibatch_score_sums[prompt_configuration_id] = (
|
|
551
|
+
self._minibatch_score_sums.get(prompt_configuration_id, 0.0)
|
|
552
|
+
+ float(score)
|
|
553
|
+
)
|
|
554
|
+
self._minibatch_score_counts[prompt_configuration_id] = (
|
|
555
|
+
self._minibatch_score_counts.get(prompt_configuration_id, 0) + 1
|
|
556
|
+
)
|
|
557
|
+
|
|
558
|
+
def _mean_minibatch_score(
|
|
559
|
+
self,
|
|
560
|
+
prompt_configuration_id: PromptConfigurationId,
|
|
561
|
+
) -> float:
|
|
562
|
+
total = self._minibatch_score_sums.get(prompt_configuration_id, 0.0)
|
|
563
|
+
count = self._minibatch_score_counts.get(prompt_configuration_id, 0)
|
|
564
|
+
if count <= 0:
|
|
565
|
+
# Use a sentinel that will not dominate selection if a scored
|
|
566
|
+
# candidate exists. Root is seeded explicitly in the first iteration.
|
|
567
|
+
return float("-inf")
|
|
568
|
+
return total / count
|
|
569
|
+
|
|
570
|
+
def _best_by_minibatch(self) -> PromptConfiguration:
|
|
571
|
+
"""
|
|
572
|
+
Return the candidate with the highest mean minibatch score.
|
|
573
|
+
"""
|
|
574
|
+
if not self.prompt_configurations_by_id:
|
|
575
|
+
raise DeepEvalError(
|
|
576
|
+
"SIMBARunner has no prompt configurations; this should not happen."
|
|
577
|
+
)
|
|
578
|
+
|
|
579
|
+
best_id: Optional[PromptConfigurationId] = None
|
|
580
|
+
best_score = float("-inf")
|
|
581
|
+
|
|
582
|
+
for cand_id in self.prompt_configurations_by_id.keys():
|
|
583
|
+
mean_score = self._mean_minibatch_score(cand_id)
|
|
584
|
+
if mean_score > best_score:
|
|
585
|
+
best_score = mean_score
|
|
586
|
+
best_id = cand_id
|
|
587
|
+
|
|
588
|
+
if best_id is None:
|
|
589
|
+
# Fallback to the first candidate if all means are -inf.
|
|
590
|
+
best_id = next(iter(self.prompt_configurations_by_id.keys()))
|
|
591
|
+
|
|
592
|
+
return self.prompt_configurations_by_id[best_id]
|
|
593
|
+
|
|
594
|
+
def _best_by_aggregate(self) -> PromptConfiguration:
|
|
595
|
+
"""
|
|
596
|
+
Return the best candidate based on full-eval scores.
|
|
597
|
+
|
|
598
|
+
If no full evaluation scores are available (should be rare, but possible if
|
|
599
|
+
full_eval_every is very large and the loop exits early), fall back to
|
|
600
|
+
best-by-minibatch.
|
|
601
|
+
"""
|
|
602
|
+
if not self.pareto_score_table:
|
|
603
|
+
return self._best_by_minibatch()
|
|
604
|
+
|
|
605
|
+
totals = {
|
|
606
|
+
prompt_configuration_id: self.aggregate_instances(vector)
|
|
607
|
+
for prompt_configuration_id, vector in self.pareto_score_table.items()
|
|
608
|
+
}
|
|
609
|
+
|
|
610
|
+
best_ids: List[PromptConfigurationId] = []
|
|
611
|
+
best_val = float("-inf")
|
|
612
|
+
|
|
613
|
+
for cand_id, aggregate in totals.items():
|
|
614
|
+
if aggregate > best_val + 1e-12:
|
|
615
|
+
best_val = aggregate
|
|
616
|
+
best_ids = [cand_id]
|
|
617
|
+
elif abs(aggregate - best_val) <= 1e-12:
|
|
618
|
+
best_ids.append(cand_id)
|
|
619
|
+
|
|
620
|
+
chosen_id = self.random_state.choice(best_ids)
|
|
621
|
+
return self.prompt_configurations_by_id[chosen_id]
|
|
622
|
+
|
|
623
|
+
def _select_candidate(self) -> PromptConfiguration:
|
|
624
|
+
"""
|
|
625
|
+
Epsilon-greedy candidate selection:
|
|
626
|
+
|
|
627
|
+
- With probability ``exploration_probability``, pick a random candidate.
|
|
628
|
+
- Otherwise, pick the candidate with the highest mean minibatch score.
|
|
629
|
+
"""
|
|
630
|
+
if not self.prompt_configurations_by_id:
|
|
631
|
+
raise DeepEvalError(
|
|
632
|
+
"SIMBARunner has no prompt configurations to select from."
|
|
633
|
+
)
|
|
634
|
+
|
|
635
|
+
candidate_ids = list(self.prompt_configurations_by_id.keys())
|
|
636
|
+
if not candidate_ids:
|
|
637
|
+
raise DeepEvalError(
|
|
638
|
+
"SIMBARunner has an empty candidate pool; this should not happen."
|
|
639
|
+
)
|
|
640
|
+
|
|
641
|
+
eps = float(self.exploration_probability)
|
|
642
|
+
if eps > 0.0 and self.random_state.random() < eps:
|
|
643
|
+
chosen_id = self.random_state.choice(candidate_ids)
|
|
644
|
+
else:
|
|
645
|
+
chosen_id = self._best_by_minibatch().id
|
|
646
|
+
|
|
647
|
+
return self.prompt_configurations_by_id[chosen_id]
|
|
648
|
+
|
|
649
|
+
def _draw_minibatch(
|
|
650
|
+
self,
|
|
651
|
+
goldens: Union[List[Golden], List[ConversationalGolden]],
|
|
652
|
+
) -> Union[List[Golden], List[ConversationalGolden]]:
|
|
653
|
+
"""
|
|
654
|
+
Determine effective minibatch size, bounded by the available goldens,
|
|
655
|
+
and sample with replacement.
|
|
656
|
+
"""
|
|
657
|
+
n = len(goldens)
|
|
658
|
+
if n <= 0:
|
|
659
|
+
return []
|
|
660
|
+
|
|
661
|
+
size = min(self.minibatch_size, n)
|
|
662
|
+
|
|
663
|
+
return [goldens[self.random_state.randrange(0, n)] for _ in range(size)]
|
|
664
|
+
|
|
665
|
+
async def _a_full_evaluate_best(
|
|
666
|
+
self,
|
|
667
|
+
goldens: Union[List[Golden], List[ConversationalGolden]],
|
|
668
|
+
) -> None:
|
|
669
|
+
if not self.prompt_configurations_by_id:
|
|
670
|
+
return
|
|
671
|
+
|
|
672
|
+
best = self._best_by_minibatch()
|
|
673
|
+
if best.id in self.pareto_score_table:
|
|
674
|
+
return
|
|
675
|
+
|
|
676
|
+
scores = await self.scorer.a_score_pareto(best, goldens)
|
|
677
|
+
self.pareto_score_table[best.id] = scores
|
|
678
|
+
|
|
679
|
+
def _full_evaluate_best(
|
|
680
|
+
self,
|
|
681
|
+
goldens: Union[List[Golden], List[ConversationalGolden]],
|
|
682
|
+
) -> None:
|
|
683
|
+
if not self.prompt_configurations_by_id:
|
|
684
|
+
return
|
|
685
|
+
|
|
686
|
+
best = self._best_by_minibatch()
|
|
687
|
+
if best.id in self.pareto_score_table:
|
|
688
|
+
return
|
|
689
|
+
|
|
690
|
+
scores = self.scorer.score_pareto(best, goldens)
|
|
691
|
+
self.pareto_score_table[best.id] = scores
|
|
692
|
+
|
|
693
|
+
async def _a_generate_child_prompt(
|
|
694
|
+
self,
|
|
695
|
+
strategy: SIMBAStrategy,
|
|
696
|
+
selected_module_id: ModuleId,
|
|
697
|
+
parent_prompt_configuration: PromptConfiguration,
|
|
698
|
+
feedback_text: str,
|
|
699
|
+
minibatch: Union[List[Golden], List[ConversationalGolden]],
|
|
700
|
+
) -> Optional[Prompt]:
|
|
701
|
+
try:
|
|
702
|
+
old_prompt = parent_prompt_configuration.prompts[selected_module_id]
|
|
703
|
+
except KeyError as exc:
|
|
704
|
+
raise DeepEvalError(
|
|
705
|
+
"SIMBARunner expected a prompt for module_id "
|
|
706
|
+
f"{selected_module_id!r} but none was found in the "
|
|
707
|
+
"current prompt configuration."
|
|
708
|
+
) from exc
|
|
709
|
+
|
|
710
|
+
strategy_feedback = self._build_feedback_for_strategy(
|
|
711
|
+
strategy, feedback_text, minibatch
|
|
712
|
+
)
|
|
713
|
+
|
|
714
|
+
new_prompt = await self._rewriter.a_rewrite(
|
|
715
|
+
module_id=selected_module_id,
|
|
716
|
+
old_prompt=old_prompt,
|
|
717
|
+
feedback_text=strategy_feedback,
|
|
718
|
+
)
|
|
719
|
+
|
|
720
|
+
if old_prompt.type != new_prompt.type or self._prompts_equivalent(
|
|
721
|
+
old_prompt, new_prompt
|
|
722
|
+
):
|
|
723
|
+
# Don't accept if new prompt is the same as parent, or if type changed.
|
|
724
|
+
return None
|
|
725
|
+
return new_prompt
|
|
726
|
+
|
|
727
|
+
def _generate_child_prompt(
|
|
728
|
+
self,
|
|
729
|
+
strategy: SIMBAStrategy,
|
|
730
|
+
selected_module_id: ModuleId,
|
|
731
|
+
parent_prompt_configuration: PromptConfiguration,
|
|
732
|
+
feedback_text: str,
|
|
733
|
+
minibatch: Union[List[Golden], List[ConversationalGolden]],
|
|
734
|
+
) -> Optional[Prompt]:
|
|
735
|
+
try:
|
|
736
|
+
old_prompt = parent_prompt_configuration.prompts[selected_module_id]
|
|
737
|
+
except KeyError as exc:
|
|
738
|
+
# This should never happen in normal operation.
|
|
739
|
+
raise DeepEvalError(
|
|
740
|
+
"SIMBARunner expected a prompt for module_id "
|
|
741
|
+
f"{selected_module_id!r} but none was found in the "
|
|
742
|
+
"current prompt configuration."
|
|
743
|
+
) from exc
|
|
744
|
+
|
|
745
|
+
strategy_feedback = self._build_feedback_for_strategy(
|
|
746
|
+
strategy, feedback_text, minibatch
|
|
747
|
+
)
|
|
748
|
+
|
|
749
|
+
new_prompt = self._rewriter.rewrite(
|
|
750
|
+
module_id=selected_module_id,
|
|
751
|
+
old_prompt=old_prompt,
|
|
752
|
+
feedback_text=strategy_feedback,
|
|
753
|
+
)
|
|
754
|
+
|
|
755
|
+
if old_prompt.type != new_prompt.type or self._prompts_equivalent(
|
|
756
|
+
old_prompt, new_prompt
|
|
757
|
+
):
|
|
758
|
+
# Don't accept if new prompt is the same as parent, or if type changed.
|
|
759
|
+
return None
|
|
760
|
+
return new_prompt
|
|
761
|
+
|
|
762
|
+
def _make_child(
|
|
763
|
+
self,
|
|
764
|
+
selected_module_id: ModuleId,
|
|
765
|
+
parent_prompt_configuration: PromptConfiguration,
|
|
766
|
+
child_prompt: Prompt,
|
|
767
|
+
) -> PromptConfiguration:
|
|
768
|
+
child_prompt_configuration = PromptConfiguration.new(
|
|
769
|
+
prompts=dict(parent_prompt_configuration.prompts),
|
|
770
|
+
parent=parent_prompt_configuration.id,
|
|
771
|
+
)
|
|
772
|
+
child_prompt_configuration.prompts[selected_module_id] = child_prompt
|
|
773
|
+
return child_prompt_configuration
|
|
774
|
+
|
|
775
|
+
def _truncate_instruction(self, text: str) -> str:
|
|
776
|
+
"""
|
|
777
|
+
Truncate strategy instructions + feedback to the configured character
|
|
778
|
+
budget so the rewriter prompt does not explode.
|
|
779
|
+
"""
|
|
780
|
+
max_chars = MIPROV2_REWRITE_INSTRUCTION_MAX_CHARS
|
|
781
|
+
if max_chars <= 0:
|
|
782
|
+
return text
|
|
783
|
+
if len(text) <= max_chars:
|
|
784
|
+
return text
|
|
785
|
+
return text[:max_chars]
|
|
786
|
+
|
|
787
|
+
def _build_demo_block(
|
|
788
|
+
self,
|
|
789
|
+
minibatch: Union[List[Golden], List[ConversationalGolden]],
|
|
790
|
+
) -> str:
|
|
791
|
+
"""
|
|
792
|
+
Build a small block of input/context/output demos from the current
|
|
793
|
+
minibatch, inspired by SIMBA's `append_a_demo` strategy.
|
|
794
|
+
|
|
795
|
+
For each Golden:
|
|
796
|
+
|
|
797
|
+
Golden:
|
|
798
|
+
Input <- golden.input
|
|
799
|
+
Context <- " ".join(golden.context) if present
|
|
800
|
+
Output <- golden.expected_output
|
|
801
|
+
|
|
802
|
+
ConversationalGolden:
|
|
803
|
+
Input <- golden.scenario
|
|
804
|
+
Context <- " ".join(golden.context) if present
|
|
805
|
+
Output <- golden.expected_outcome
|
|
806
|
+
|
|
807
|
+
All text segments are independently truncated to `SIMBA_DEMO_INPUT_MAX_CHARS`.
|
|
808
|
+
"""
|
|
809
|
+
max_demos = self.max_demos_per_proposal
|
|
810
|
+
if max_demos <= 0:
|
|
811
|
+
return ""
|
|
812
|
+
|
|
813
|
+
lines: List[str] = []
|
|
814
|
+
demo_limit = min(max_demos, len(minibatch))
|
|
815
|
+
max_chars = SIMBA_DEMO_INPUT_MAX_CHARS
|
|
816
|
+
|
|
817
|
+
for golden in minibatch[:demo_limit]:
|
|
818
|
+
if isinstance(golden, Golden):
|
|
819
|
+
input_text = golden.input or ""
|
|
820
|
+
expected_output_text = golden.expected_output or ""
|
|
821
|
+
ctx_list = golden.context or []
|
|
822
|
+
elif isinstance(golden, ConversationalGolden):
|
|
823
|
+
input_text = golden.scenario or ""
|
|
824
|
+
expected_output_text = golden.expected_outcome or ""
|
|
825
|
+
ctx_list = golden.context or []
|
|
826
|
+
else:
|
|
827
|
+
# Unknown type; skip defensively
|
|
828
|
+
continue
|
|
829
|
+
|
|
830
|
+
context_text = " ".join(ctx_list) if ctx_list else ""
|
|
831
|
+
|
|
832
|
+
# Skip completely empty triples
|
|
833
|
+
if not input_text and not expected_output_text and not context_text:
|
|
834
|
+
continue
|
|
835
|
+
|
|
836
|
+
# Truncate each segment independently
|
|
837
|
+
if max_chars > 0:
|
|
838
|
+
if len(input_text) > max_chars:
|
|
839
|
+
input_text = input_text[:max_chars]
|
|
840
|
+
if len(context_text) > max_chars:
|
|
841
|
+
context_text = context_text[:max_chars]
|
|
842
|
+
if len(expected_output_text) > max_chars:
|
|
843
|
+
expected_output_text = expected_output_text[:max_chars]
|
|
844
|
+
|
|
845
|
+
demo_lines: List[str] = [f"Input: {input_text}"]
|
|
846
|
+
if context_text:
|
|
847
|
+
demo_lines.append(f"Context: {context_text}")
|
|
848
|
+
demo_lines.append(f"Output: {expected_output_text}")
|
|
849
|
+
|
|
850
|
+
lines.append("\n".join(demo_lines))
|
|
851
|
+
|
|
852
|
+
return "\n\n".join(lines)
|
|
853
|
+
|
|
854
|
+
def _build_feedback_for_strategy(
|
|
855
|
+
self,
|
|
856
|
+
strategy: SIMBAStrategy,
|
|
857
|
+
feedback_text: str,
|
|
858
|
+
minibatch: Union[List[Golden], List[ConversationalGolden]],
|
|
859
|
+
) -> str:
|
|
860
|
+
"""
|
|
861
|
+
Construct a strategy-specific feedback string that is passed into
|
|
862
|
+
Rewriter.rewrite / a_rewrite.
|
|
863
|
+
|
|
864
|
+
- APPEND_RULE: emphasize extracting a concise rule from metric feedback.
|
|
865
|
+
- APPEND_DEMO: emphasize appending concrete demos built from goldens.
|
|
866
|
+
"""
|
|
867
|
+
base = (feedback_text or "").strip()
|
|
868
|
+
|
|
869
|
+
if strategy is SIMBAStrategy.APPEND_RULE:
|
|
870
|
+
prefix = (
|
|
871
|
+
"Strategy: Append a concise natural-language rule to the existing "
|
|
872
|
+
"prompt that addresses the issues described below. Preserve all "
|
|
873
|
+
"original instructions and add the new rule(s) in a clearly marked "
|
|
874
|
+
'"Rules" or "Guidelines" section.\n\n'
|
|
875
|
+
)
|
|
876
|
+
text = prefix
|
|
877
|
+
if base:
|
|
878
|
+
text += "Evaluation feedback:\n" + base
|
|
879
|
+
return self._truncate_instruction(text)
|
|
880
|
+
|
|
881
|
+
if strategy is SIMBAStrategy.APPEND_DEMO:
|
|
882
|
+
demos = self._build_demo_block(minibatch)
|
|
883
|
+
prefix = (
|
|
884
|
+
"Strategy: Append one or more concrete input/output demonstrations "
|
|
885
|
+
"to the prompt. Each demo should illustrate how to respond "
|
|
886
|
+
"correctly on similar inputs.\n\n"
|
|
887
|
+
)
|
|
888
|
+
text = prefix
|
|
889
|
+
if base:
|
|
890
|
+
text += "Evaluation feedback:\n" + base + "\n\n"
|
|
891
|
+
if demos:
|
|
892
|
+
text += (
|
|
893
|
+
"Candidate demos built from the current minibatch:\n"
|
|
894
|
+
+ demos
|
|
895
|
+
)
|
|
896
|
+
return self._truncate_instruction(text)
|
|
897
|
+
|
|
898
|
+
# just pass through feedback.
|
|
899
|
+
return self._truncate_instruction(base)
|
|
900
|
+
|
|
901
|
+
def _sample_strategy(self) -> SIMBAStrategy:
|
|
902
|
+
"""
|
|
903
|
+
Sample one of the configured SIMBA edit strategies.
|
|
904
|
+
|
|
905
|
+
Defaults to APPEND_RULE if the strategy list is empty for any reason.
|
|
906
|
+
"""
|
|
907
|
+
return self.random_state.choice(self._strategies)
|
|
908
|
+
|
|
909
|
+
def _update_progress(
|
|
910
|
+
self,
|
|
911
|
+
total_iterations: int,
|
|
912
|
+
iteration: int,
|
|
913
|
+
remaining_iterations: int,
|
|
914
|
+
elapsed: float,
|
|
915
|
+
) -> None:
|
|
916
|
+
if self.status_callback is not None:
|
|
917
|
+
detail = (
|
|
918
|
+
f"(iterations={total_iterations}) "
|
|
919
|
+
f"• iteration {iteration}/{total_iterations} "
|
|
920
|
+
f"• {elapsed:.2f}s • remaining={remaining_iterations}"
|
|
921
|
+
)
|
|
922
|
+
self.status_callback(
|
|
923
|
+
RunnerStatusType.PROGRESS,
|
|
924
|
+
step_index=iteration,
|
|
925
|
+
total_steps=total_iterations,
|
|
926
|
+
detail=detail,
|
|
927
|
+
)
|
|
928
|
+
|
|
929
|
+
def _update_error(
|
|
930
|
+
self,
|
|
931
|
+
total_iterations: int,
|
|
932
|
+
iteration: int,
|
|
933
|
+
exc: Exception,
|
|
934
|
+
) -> None:
|
|
935
|
+
# Report a user-facing error event.
|
|
936
|
+
if self.status_callback is not None:
|
|
937
|
+
detail = (
|
|
938
|
+
f"(iterations={total_iterations}) "
|
|
939
|
+
f"• error {exc.__class__.__name__}: {exc} "
|
|
940
|
+
f"• halted at iteration {iteration}"
|
|
941
|
+
)
|
|
942
|
+
self.status_callback(
|
|
943
|
+
RunnerStatusType.ERROR,
|
|
944
|
+
step_index=iteration,
|
|
945
|
+
total_steps=total_iterations,
|
|
946
|
+
detail=detail,
|
|
947
|
+
)
|
|
948
|
+
|
|
949
|
+
def _run_loop_iteration(
|
|
950
|
+
self,
|
|
951
|
+
simba_iteration: Callable[[], bool],
|
|
952
|
+
) -> None:
|
|
953
|
+
total_iterations = self.iterations
|
|
954
|
+
remaining_iterations = total_iterations
|
|
955
|
+
iteration = 0
|
|
956
|
+
self._update_progress(
|
|
957
|
+
total_iterations, iteration, remaining_iterations, 0.0
|
|
958
|
+
)
|
|
959
|
+
while remaining_iterations > 0:
|
|
960
|
+
iteration += 1
|
|
961
|
+
start_time = time.perf_counter()
|
|
962
|
+
try:
|
|
963
|
+
ok = simba_iteration()
|
|
964
|
+
except Exception as exc:
|
|
965
|
+
self._update_error(total_iterations, iteration, exc)
|
|
966
|
+
break
|
|
967
|
+
elapsed = time.perf_counter() - start_time
|
|
968
|
+
if not ok:
|
|
969
|
+
break
|
|
970
|
+
remaining_iterations -= 1
|
|
971
|
+
self._update_progress(
|
|
972
|
+
total_iterations, iteration, remaining_iterations, elapsed
|
|
973
|
+
)
|
|
974
|
+
|
|
975
|
+
async def _a_run_loop_iteration(
|
|
976
|
+
self,
|
|
977
|
+
a_simba_iteration: Callable[[], Awaitable[bool]],
|
|
978
|
+
) -> None:
|
|
979
|
+
total_iterations = self.iterations
|
|
980
|
+
remaining_iterations = total_iterations
|
|
981
|
+
iteration = 0
|
|
982
|
+
self._update_progress(
|
|
983
|
+
total_iterations, iteration, remaining_iterations, 0.0
|
|
984
|
+
)
|
|
985
|
+
while remaining_iterations > 0:
|
|
986
|
+
iteration += 1
|
|
987
|
+
start_time = time.perf_counter()
|
|
988
|
+
try:
|
|
989
|
+
ok = await a_simba_iteration()
|
|
990
|
+
except Exception as exc:
|
|
991
|
+
self._update_error(total_iterations, iteration, exc)
|
|
992
|
+
break
|
|
993
|
+
elapsed = time.perf_counter() - start_time
|
|
994
|
+
if not ok:
|
|
995
|
+
break
|
|
996
|
+
remaining_iterations -= 1
|
|
997
|
+
self._update_progress(
|
|
998
|
+
total_iterations, iteration, remaining_iterations, elapsed
|
|
999
|
+
)
|