deepeval 3.7.3__py3-none-any.whl → 3.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- deepeval/_version.py +1 -1
- deepeval/cli/test.py +1 -1
- deepeval/config/settings.py +102 -13
- deepeval/dataset/golden.py +54 -2
- deepeval/evaluate/configs.py +1 -1
- deepeval/evaluate/evaluate.py +16 -8
- deepeval/evaluate/execute.py +74 -27
- deepeval/evaluate/utils.py +26 -22
- deepeval/integrations/pydantic_ai/agent.py +19 -2
- deepeval/integrations/pydantic_ai/instrumentator.py +62 -23
- deepeval/metrics/__init__.py +14 -12
- deepeval/metrics/answer_relevancy/answer_relevancy.py +74 -29
- deepeval/metrics/answer_relevancy/template.py +188 -92
- deepeval/metrics/argument_correctness/template.py +2 -2
- deepeval/metrics/base_metric.py +2 -5
- deepeval/metrics/bias/template.py +3 -3
- deepeval/metrics/contextual_precision/contextual_precision.py +53 -15
- deepeval/metrics/contextual_precision/template.py +115 -66
- deepeval/metrics/contextual_recall/contextual_recall.py +50 -13
- deepeval/metrics/contextual_recall/template.py +106 -55
- deepeval/metrics/contextual_relevancy/contextual_relevancy.py +47 -15
- deepeval/metrics/contextual_relevancy/template.py +87 -58
- deepeval/metrics/conversation_completeness/template.py +2 -2
- deepeval/metrics/conversational_dag/templates.py +4 -4
- deepeval/metrics/conversational_g_eval/template.py +4 -3
- deepeval/metrics/dag/templates.py +5 -5
- deepeval/metrics/faithfulness/faithfulness.py +70 -27
- deepeval/metrics/faithfulness/schema.py +1 -1
- deepeval/metrics/faithfulness/template.py +200 -115
- deepeval/metrics/g_eval/utils.py +2 -2
- deepeval/metrics/hallucination/template.py +4 -4
- deepeval/metrics/indicator.py +4 -4
- deepeval/metrics/misuse/template.py +2 -2
- deepeval/metrics/multimodal_metrics/__init__.py +0 -18
- deepeval/metrics/multimodal_metrics/image_coherence/image_coherence.py +24 -17
- deepeval/metrics/multimodal_metrics/image_editing/image_editing.py +26 -21
- deepeval/metrics/multimodal_metrics/image_helpfulness/image_helpfulness.py +24 -17
- deepeval/metrics/multimodal_metrics/image_reference/image_reference.py +24 -17
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/multimodal_g_eval.py +19 -19
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/template.py +63 -78
- deepeval/metrics/multimodal_metrics/multimodal_g_eval/utils.py +20 -20
- deepeval/metrics/multimodal_metrics/text_to_image/text_to_image.py +71 -50
- deepeval/metrics/non_advice/template.py +2 -2
- deepeval/metrics/pii_leakage/template.py +2 -2
- deepeval/metrics/prompt_alignment/template.py +4 -4
- deepeval/metrics/ragas.py +3 -3
- deepeval/metrics/role_violation/template.py +2 -2
- deepeval/metrics/step_efficiency/step_efficiency.py +1 -1
- deepeval/metrics/tool_correctness/tool_correctness.py +2 -2
- deepeval/metrics/toxicity/template.py +4 -4
- deepeval/metrics/turn_contextual_precision/schema.py +21 -0
- deepeval/metrics/turn_contextual_precision/template.py +187 -0
- deepeval/metrics/turn_contextual_precision/turn_contextual_precision.py +550 -0
- deepeval/metrics/turn_contextual_recall/schema.py +21 -0
- deepeval/metrics/turn_contextual_recall/template.py +178 -0
- deepeval/metrics/turn_contextual_recall/turn_contextual_recall.py +520 -0
- deepeval/metrics/{multimodal_metrics/multimodal_contextual_relevancy → turn_contextual_relevancy}/schema.py +7 -1
- deepeval/metrics/turn_contextual_relevancy/template.py +161 -0
- deepeval/metrics/turn_contextual_relevancy/turn_contextual_relevancy.py +535 -0
- deepeval/metrics/{multimodal_metrics/multimodal_faithfulness → turn_faithfulness}/schema.py +11 -3
- deepeval/metrics/turn_faithfulness/template.py +218 -0
- deepeval/metrics/turn_faithfulness/turn_faithfulness.py +596 -0
- deepeval/metrics/turn_relevancy/template.py +2 -2
- deepeval/metrics/utils.py +39 -58
- deepeval/models/__init__.py +0 -12
- deepeval/models/base_model.py +16 -38
- deepeval/models/embedding_models/__init__.py +7 -0
- deepeval/models/embedding_models/azure_embedding_model.py +69 -32
- deepeval/models/embedding_models/local_embedding_model.py +39 -22
- deepeval/models/embedding_models/ollama_embedding_model.py +42 -18
- deepeval/models/embedding_models/openai_embedding_model.py +50 -15
- deepeval/models/llms/amazon_bedrock_model.py +1 -2
- deepeval/models/llms/anthropic_model.py +53 -20
- deepeval/models/llms/azure_model.py +140 -43
- deepeval/models/llms/deepseek_model.py +38 -23
- deepeval/models/llms/gemini_model.py +222 -103
- deepeval/models/llms/grok_model.py +39 -27
- deepeval/models/llms/kimi_model.py +39 -23
- deepeval/models/llms/litellm_model.py +103 -45
- deepeval/models/llms/local_model.py +35 -22
- deepeval/models/llms/ollama_model.py +129 -17
- deepeval/models/llms/openai_model.py +151 -50
- deepeval/models/llms/portkey_model.py +149 -0
- deepeval/models/llms/utils.py +5 -3
- deepeval/models/retry_policy.py +17 -14
- deepeval/models/utils.py +94 -4
- deepeval/optimizer/__init__.py +5 -0
- deepeval/optimizer/algorithms/__init__.py +6 -0
- deepeval/optimizer/algorithms/base.py +29 -0
- deepeval/optimizer/algorithms/configs.py +18 -0
- deepeval/optimizer/algorithms/copro/__init__.py +5 -0
- deepeval/optimizer/algorithms/copro/copro.py +836 -0
- deepeval/optimizer/algorithms/gepa/__init__.py +5 -0
- deepeval/optimizer/algorithms/gepa/gepa.py +737 -0
- deepeval/optimizer/algorithms/miprov2/__init__.py +17 -0
- deepeval/optimizer/algorithms/miprov2/bootstrapper.py +435 -0
- deepeval/optimizer/algorithms/miprov2/miprov2.py +752 -0
- deepeval/optimizer/algorithms/miprov2/proposer.py +301 -0
- deepeval/optimizer/algorithms/simba/__init__.py +5 -0
- deepeval/optimizer/algorithms/simba/simba.py +999 -0
- deepeval/optimizer/algorithms/simba/types.py +15 -0
- deepeval/optimizer/configs.py +31 -0
- deepeval/optimizer/policies.py +227 -0
- deepeval/optimizer/prompt_optimizer.py +263 -0
- deepeval/optimizer/rewriter/__init__.py +5 -0
- deepeval/optimizer/rewriter/rewriter.py +124 -0
- deepeval/optimizer/rewriter/utils.py +214 -0
- deepeval/optimizer/scorer/__init__.py +5 -0
- deepeval/optimizer/scorer/base.py +86 -0
- deepeval/optimizer/scorer/scorer.py +316 -0
- deepeval/optimizer/scorer/utils.py +30 -0
- deepeval/optimizer/types.py +148 -0
- deepeval/optimizer/utils.py +480 -0
- deepeval/prompt/prompt.py +7 -6
- deepeval/test_case/__init__.py +1 -3
- deepeval/test_case/api.py +12 -10
- deepeval/test_case/conversational_test_case.py +19 -1
- deepeval/test_case/llm_test_case.py +152 -1
- deepeval/test_case/utils.py +4 -8
- deepeval/test_run/api.py +15 -14
- deepeval/test_run/cache.py +2 -0
- deepeval/test_run/test_run.py +9 -4
- deepeval/tracing/patchers.py +9 -4
- deepeval/tracing/tracing.py +2 -2
- deepeval/utils.py +89 -0
- {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/METADATA +1 -4
- {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/RECORD +134 -118
- deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/multimodal_answer_relevancy.py +0 -343
- deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/schema.py +0 -19
- deepeval/metrics/multimodal_metrics/multimodal_answer_relevancy/template.py +0 -122
- deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/multimodal_contextual_precision.py +0 -301
- deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/schema.py +0 -15
- deepeval/metrics/multimodal_metrics/multimodal_contextual_precision/template.py +0 -132
- deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/multimodal_contextual_recall.py +0 -285
- deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/schema.py +0 -15
- deepeval/metrics/multimodal_metrics/multimodal_contextual_recall/template.py +0 -112
- deepeval/metrics/multimodal_metrics/multimodal_contextual_relevancy/multimodal_contextual_relevancy.py +0 -282
- deepeval/metrics/multimodal_metrics/multimodal_contextual_relevancy/template.py +0 -102
- deepeval/metrics/multimodal_metrics/multimodal_faithfulness/__init__.py +0 -0
- deepeval/metrics/multimodal_metrics/multimodal_faithfulness/multimodal_faithfulness.py +0 -356
- deepeval/metrics/multimodal_metrics/multimodal_faithfulness/template.py +0 -175
- deepeval/metrics/multimodal_metrics/multimodal_tool_correctness/__init__.py +0 -0
- deepeval/metrics/multimodal_metrics/multimodal_tool_correctness/multimodal_tool_correctness.py +0 -290
- deepeval/models/mlllms/__init__.py +0 -4
- deepeval/models/mlllms/azure_model.py +0 -334
- deepeval/models/mlllms/gemini_model.py +0 -284
- deepeval/models/mlllms/ollama_model.py +0 -144
- deepeval/models/mlllms/openai_model.py +0 -258
- deepeval/test_case/mllm_test_case.py +0 -170
- /deepeval/metrics/{multimodal_metrics/multimodal_answer_relevancy → turn_contextual_precision}/__init__.py +0 -0
- /deepeval/metrics/{multimodal_metrics/multimodal_contextual_precision → turn_contextual_recall}/__init__.py +0 -0
- /deepeval/metrics/{multimodal_metrics/multimodal_contextual_recall → turn_contextual_relevancy}/__init__.py +0 -0
- /deepeval/metrics/{multimodal_metrics/multimodal_contextual_relevancy → turn_faithfulness}/__init__.py +0 -0
- {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/LICENSE.md +0 -0
- {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/WHEEL +0 -0
- {deepeval-3.7.3.dist-info → deepeval-3.7.5.dist-info}/entry_points.txt +0 -0
|
@@ -0,0 +1,535 @@
|
|
|
1
|
+
from typing import List, Optional, Union, Type, Tuple
|
|
2
|
+
import asyncio
|
|
3
|
+
|
|
4
|
+
from deepeval.test_case import ConversationalTestCase, TurnParams, Turn
|
|
5
|
+
from deepeval.metrics import BaseConversationalMetric
|
|
6
|
+
from deepeval.utils import (
|
|
7
|
+
get_or_create_event_loop,
|
|
8
|
+
prettify_list,
|
|
9
|
+
)
|
|
10
|
+
from deepeval.metrics.utils import (
|
|
11
|
+
construct_verbose_logs,
|
|
12
|
+
trimAndLoadJson,
|
|
13
|
+
check_conversational_test_case_params,
|
|
14
|
+
get_unit_interactions,
|
|
15
|
+
initialize_model,
|
|
16
|
+
)
|
|
17
|
+
from deepeval.models import DeepEvalBaseLLM
|
|
18
|
+
from deepeval.metrics.turn_contextual_relevancy.template import (
|
|
19
|
+
TurnContextualRelevancyTemplate,
|
|
20
|
+
)
|
|
21
|
+
from deepeval.metrics.indicator import metric_progress_indicator
|
|
22
|
+
from deepeval.metrics.turn_contextual_relevancy.schema import (
|
|
23
|
+
ContextualRelevancyVerdict,
|
|
24
|
+
ContextualRelevancyVerdicts,
|
|
25
|
+
ContextualRelevancyScoreReason,
|
|
26
|
+
InteractionContextualRelevancyScore,
|
|
27
|
+
)
|
|
28
|
+
from deepeval.metrics.api import metric_data_manager
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class TurnContextualRelevancyMetric(BaseConversationalMetric):
|
|
32
|
+
_required_test_case_params: List[TurnParams] = [
|
|
33
|
+
TurnParams.CONTENT,
|
|
34
|
+
TurnParams.RETRIEVAL_CONTEXT,
|
|
35
|
+
]
|
|
36
|
+
|
|
37
|
+
def __init__(
|
|
38
|
+
self,
|
|
39
|
+
threshold: float = 0.5,
|
|
40
|
+
model: Optional[Union[str, DeepEvalBaseLLM]] = None,
|
|
41
|
+
include_reason: bool = True,
|
|
42
|
+
async_mode: bool = True,
|
|
43
|
+
strict_mode: bool = False,
|
|
44
|
+
verbose_mode: bool = False,
|
|
45
|
+
evaluation_template: Type[
|
|
46
|
+
TurnContextualRelevancyTemplate
|
|
47
|
+
] = TurnContextualRelevancyTemplate,
|
|
48
|
+
):
|
|
49
|
+
self.threshold = 1 if strict_mode else threshold
|
|
50
|
+
self.model, self.using_native_model = initialize_model(model)
|
|
51
|
+
self.evaluation_model = self.model.get_model_name()
|
|
52
|
+
self.include_reason = include_reason
|
|
53
|
+
self.async_mode = async_mode
|
|
54
|
+
self.strict_mode = strict_mode
|
|
55
|
+
self.verbose_mode = verbose_mode
|
|
56
|
+
self.evaluation_template = evaluation_template
|
|
57
|
+
|
|
58
|
+
def measure(
|
|
59
|
+
self,
|
|
60
|
+
test_case: ConversationalTestCase,
|
|
61
|
+
_show_indicator: bool = True,
|
|
62
|
+
_in_component: bool = False,
|
|
63
|
+
_log_metric_to_confident: bool = True,
|
|
64
|
+
):
|
|
65
|
+
check_conversational_test_case_params(
|
|
66
|
+
test_case,
|
|
67
|
+
self._required_test_case_params,
|
|
68
|
+
self,
|
|
69
|
+
False,
|
|
70
|
+
self.model,
|
|
71
|
+
test_case.multimodal,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
multimodal = test_case.multimodal
|
|
75
|
+
|
|
76
|
+
self.evaluation_cost = 0 if self.using_native_model else None
|
|
77
|
+
with metric_progress_indicator(
|
|
78
|
+
self, _show_indicator=_show_indicator, _in_component=_in_component
|
|
79
|
+
):
|
|
80
|
+
if self.async_mode:
|
|
81
|
+
loop = get_or_create_event_loop()
|
|
82
|
+
loop.run_until_complete(
|
|
83
|
+
self.a_measure(
|
|
84
|
+
test_case,
|
|
85
|
+
_show_indicator=False,
|
|
86
|
+
_in_component=_in_component,
|
|
87
|
+
_log_metric_to_confident=_log_metric_to_confident,
|
|
88
|
+
)
|
|
89
|
+
)
|
|
90
|
+
else:
|
|
91
|
+
unit_interactions = get_unit_interactions(test_case.turns)
|
|
92
|
+
scores = self._get_contextual_relevancy_scores(
|
|
93
|
+
unit_interactions, multimodal
|
|
94
|
+
)
|
|
95
|
+
self.score = self._calculate_score(scores)
|
|
96
|
+
self.success = self.score >= self.threshold
|
|
97
|
+
self.reason = self._generate_reason(scores)
|
|
98
|
+
verbose_steps = self._get_verbose_steps(scores)
|
|
99
|
+
self.verbose_logs = construct_verbose_logs(
|
|
100
|
+
self,
|
|
101
|
+
steps=[
|
|
102
|
+
*verbose_steps,
|
|
103
|
+
f"Final Score: {self.score}\n",
|
|
104
|
+
f"Final Reason: {self.reason}\n",
|
|
105
|
+
],
|
|
106
|
+
)
|
|
107
|
+
if _log_metric_to_confident:
|
|
108
|
+
metric_data_manager.post_metric_if_enabled(
|
|
109
|
+
self, test_case=test_case
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
return self.score
|
|
113
|
+
|
|
114
|
+
async def a_measure(
|
|
115
|
+
self,
|
|
116
|
+
test_case: ConversationalTestCase,
|
|
117
|
+
_show_indicator: bool = True,
|
|
118
|
+
_in_component: bool = False,
|
|
119
|
+
_log_metric_to_confident: bool = True,
|
|
120
|
+
) -> float:
|
|
121
|
+
check_conversational_test_case_params(
|
|
122
|
+
test_case,
|
|
123
|
+
self._required_test_case_params,
|
|
124
|
+
self,
|
|
125
|
+
False,
|
|
126
|
+
self.model,
|
|
127
|
+
test_case.multimodal,
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
multimodal = test_case.multimodal
|
|
131
|
+
|
|
132
|
+
self.evaluation_cost = 0 if self.using_native_model else None
|
|
133
|
+
with metric_progress_indicator(
|
|
134
|
+
self,
|
|
135
|
+
async_mode=True,
|
|
136
|
+
_show_indicator=_show_indicator,
|
|
137
|
+
_in_component=_in_component,
|
|
138
|
+
):
|
|
139
|
+
unit_interactions = get_unit_interactions(test_case.turns)
|
|
140
|
+
scores = await self._a_get_contextual_relevancy_scores(
|
|
141
|
+
unit_interactions, multimodal
|
|
142
|
+
)
|
|
143
|
+
self.score = self._calculate_score(scores)
|
|
144
|
+
self.success = self.score >= self.threshold
|
|
145
|
+
self.reason = await self._a_generate_reason(scores)
|
|
146
|
+
verbose_steps = self._get_verbose_steps(scores)
|
|
147
|
+
self.verbose_logs = construct_verbose_logs(
|
|
148
|
+
self,
|
|
149
|
+
steps=[
|
|
150
|
+
*verbose_steps,
|
|
151
|
+
f"Final Score: {self.score}\n",
|
|
152
|
+
f"Final Reason: {self.reason}\n",
|
|
153
|
+
],
|
|
154
|
+
)
|
|
155
|
+
if _log_metric_to_confident:
|
|
156
|
+
metric_data_manager.post_metric_if_enabled(
|
|
157
|
+
self, test_case=test_case
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
return self.score
|
|
161
|
+
|
|
162
|
+
async def _a_get_contextual_relevancy_scores(
|
|
163
|
+
self, unit_interactions: List[List[Turn]], multimodal: bool
|
|
164
|
+
):
|
|
165
|
+
async def get_interaction_score(unit_interaction: List[Turn]):
|
|
166
|
+
user_content = "User Message: "
|
|
167
|
+
retrieval_context = []
|
|
168
|
+
for turn in unit_interaction:
|
|
169
|
+
if turn.role == "user":
|
|
170
|
+
user_content += f"\n{turn.content} "
|
|
171
|
+
else:
|
|
172
|
+
retrieval_context.extend(turn.retrieval_context)
|
|
173
|
+
|
|
174
|
+
# Generate verdicts for each retrieval context
|
|
175
|
+
verdicts = await self._a_generate_verdicts(
|
|
176
|
+
user_content, retrieval_context, multimodal
|
|
177
|
+
)
|
|
178
|
+
score, reason = await self._a_get_interaction_score_and_reason(
|
|
179
|
+
user_content, verdicts, multimodal
|
|
180
|
+
)
|
|
181
|
+
interaction_score = InteractionContextualRelevancyScore(
|
|
182
|
+
score=score,
|
|
183
|
+
reason=reason,
|
|
184
|
+
verdicts=verdicts,
|
|
185
|
+
)
|
|
186
|
+
return interaction_score
|
|
187
|
+
|
|
188
|
+
final_scores = await asyncio.gather(
|
|
189
|
+
*[
|
|
190
|
+
get_interaction_score(unit_interaction)
|
|
191
|
+
for unit_interaction in unit_interactions
|
|
192
|
+
]
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
return final_scores
|
|
196
|
+
|
|
197
|
+
def _get_contextual_relevancy_scores(
|
|
198
|
+
self, unit_interactions: List[List[Turn]], multimodal: bool
|
|
199
|
+
):
|
|
200
|
+
interaction_scores = []
|
|
201
|
+
|
|
202
|
+
for unit_interaction in unit_interactions:
|
|
203
|
+
user_content = "User Message: "
|
|
204
|
+
retrieval_context = []
|
|
205
|
+
for turn in unit_interaction:
|
|
206
|
+
if turn.role == "user":
|
|
207
|
+
user_content += f"\n{turn.content} "
|
|
208
|
+
else:
|
|
209
|
+
retrieval_context.extend(turn.retrieval_context)
|
|
210
|
+
|
|
211
|
+
# Generate verdicts for each retrieval context
|
|
212
|
+
verdicts = self._generate_verdicts(
|
|
213
|
+
user_content, retrieval_context, multimodal
|
|
214
|
+
)
|
|
215
|
+
score, reason = self._get_interaction_score_and_reason(
|
|
216
|
+
user_content, verdicts, multimodal
|
|
217
|
+
)
|
|
218
|
+
interaction_score = InteractionContextualRelevancyScore(
|
|
219
|
+
score=score,
|
|
220
|
+
reason=reason,
|
|
221
|
+
verdicts=verdicts,
|
|
222
|
+
)
|
|
223
|
+
interaction_scores.append(interaction_score)
|
|
224
|
+
|
|
225
|
+
return interaction_scores
|
|
226
|
+
|
|
227
|
+
async def _a_generate_verdicts(
|
|
228
|
+
self, input: str, retrieval_context: List[str], multimodal: bool
|
|
229
|
+
) -> List[ContextualRelevancyVerdict]:
|
|
230
|
+
if len(retrieval_context) == 0:
|
|
231
|
+
return []
|
|
232
|
+
|
|
233
|
+
verdicts: List[ContextualRelevancyVerdict] = []
|
|
234
|
+
|
|
235
|
+
# Generate verdicts for each context node
|
|
236
|
+
for context in retrieval_context:
|
|
237
|
+
prompt = self.evaluation_template.generate_verdicts(
|
|
238
|
+
input=input,
|
|
239
|
+
context=context,
|
|
240
|
+
multimodal=multimodal,
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
if self.using_native_model:
|
|
244
|
+
res, cost = await self.model.a_generate(
|
|
245
|
+
prompt, schema=ContextualRelevancyVerdicts
|
|
246
|
+
)
|
|
247
|
+
self.evaluation_cost += cost
|
|
248
|
+
verdicts.extend([item for item in res.verdicts])
|
|
249
|
+
else:
|
|
250
|
+
try:
|
|
251
|
+
res: ContextualRelevancyVerdicts = (
|
|
252
|
+
await self.model.a_generate(
|
|
253
|
+
prompt, schema=ContextualRelevancyVerdicts
|
|
254
|
+
)
|
|
255
|
+
)
|
|
256
|
+
verdicts.extend([item for item in res.verdicts])
|
|
257
|
+
except TypeError:
|
|
258
|
+
res = await self.model.a_generate(prompt)
|
|
259
|
+
data = trimAndLoadJson(res, self)
|
|
260
|
+
verdicts.extend(
|
|
261
|
+
[
|
|
262
|
+
ContextualRelevancyVerdict(**item)
|
|
263
|
+
for item in data["verdicts"]
|
|
264
|
+
]
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
return verdicts
|
|
268
|
+
|
|
269
|
+
def _generate_verdicts(
|
|
270
|
+
self, input: str, retrieval_context: List[str], multimodal: bool
|
|
271
|
+
) -> List[ContextualRelevancyVerdict]:
|
|
272
|
+
if len(retrieval_context) == 0:
|
|
273
|
+
return []
|
|
274
|
+
|
|
275
|
+
verdicts: List[ContextualRelevancyVerdict] = []
|
|
276
|
+
|
|
277
|
+
# Generate verdicts for each context node
|
|
278
|
+
for context in retrieval_context:
|
|
279
|
+
prompt = self.evaluation_template.generate_verdicts(
|
|
280
|
+
input=input,
|
|
281
|
+
context=context,
|
|
282
|
+
multimodal=multimodal,
|
|
283
|
+
)
|
|
284
|
+
|
|
285
|
+
if self.using_native_model:
|
|
286
|
+
res, cost = self.model.generate(
|
|
287
|
+
prompt, schema=ContextualRelevancyVerdicts
|
|
288
|
+
)
|
|
289
|
+
self.evaluation_cost += cost
|
|
290
|
+
verdicts.extend([item for item in res.verdicts])
|
|
291
|
+
else:
|
|
292
|
+
try:
|
|
293
|
+
res: ContextualRelevancyVerdicts = self.model.generate(
|
|
294
|
+
prompt, schema=ContextualRelevancyVerdicts
|
|
295
|
+
)
|
|
296
|
+
verdicts.extend([item for item in res.verdicts])
|
|
297
|
+
except TypeError:
|
|
298
|
+
res = self.model.generate(prompt)
|
|
299
|
+
data = trimAndLoadJson(res, self)
|
|
300
|
+
verdicts.extend(
|
|
301
|
+
[
|
|
302
|
+
ContextualRelevancyVerdict(**item)
|
|
303
|
+
for item in data["verdicts"]
|
|
304
|
+
]
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
return verdicts
|
|
308
|
+
|
|
309
|
+
async def _a_get_interaction_score_and_reason(
|
|
310
|
+
self,
|
|
311
|
+
input: str,
|
|
312
|
+
verdicts: List[ContextualRelevancyVerdict],
|
|
313
|
+
multimodal: bool,
|
|
314
|
+
) -> Tuple[float, str]:
|
|
315
|
+
if len(verdicts) == 0:
|
|
316
|
+
return 1, None
|
|
317
|
+
|
|
318
|
+
score = self._calculate_interaction_score(verdicts)
|
|
319
|
+
reason = await self._a_get_interaction_reason(
|
|
320
|
+
input, score, verdicts, multimodal
|
|
321
|
+
)
|
|
322
|
+
return (
|
|
323
|
+
(0, reason)
|
|
324
|
+
if self.strict_mode and score < self.threshold
|
|
325
|
+
else (score, reason)
|
|
326
|
+
)
|
|
327
|
+
|
|
328
|
+
def _get_interaction_score_and_reason(
|
|
329
|
+
self,
|
|
330
|
+
input: str,
|
|
331
|
+
verdicts: List[ContextualRelevancyVerdict],
|
|
332
|
+
multimodal: bool,
|
|
333
|
+
) -> Tuple[float, str]:
|
|
334
|
+
if len(verdicts) == 0:
|
|
335
|
+
return 1, None
|
|
336
|
+
|
|
337
|
+
score = self._calculate_interaction_score(verdicts)
|
|
338
|
+
reason = self._get_interaction_reason(
|
|
339
|
+
input, score, verdicts, multimodal
|
|
340
|
+
)
|
|
341
|
+
return (
|
|
342
|
+
(0, reason)
|
|
343
|
+
if self.strict_mode and score < self.threshold
|
|
344
|
+
else (score, reason)
|
|
345
|
+
)
|
|
346
|
+
|
|
347
|
+
def _calculate_interaction_score(
|
|
348
|
+
self, verdicts: List[ContextualRelevancyVerdict]
|
|
349
|
+
) -> float:
|
|
350
|
+
number_of_verdicts = len(verdicts)
|
|
351
|
+
if number_of_verdicts == 0:
|
|
352
|
+
return 1
|
|
353
|
+
|
|
354
|
+
relevant_count = 0
|
|
355
|
+
for verdict in verdicts:
|
|
356
|
+
if verdict.verdict.strip().lower() == "yes":
|
|
357
|
+
relevant_count += 1
|
|
358
|
+
|
|
359
|
+
score = relevant_count / number_of_verdicts
|
|
360
|
+
return score
|
|
361
|
+
|
|
362
|
+
async def _a_get_interaction_reason(
|
|
363
|
+
self,
|
|
364
|
+
input: str,
|
|
365
|
+
score: float,
|
|
366
|
+
verdicts: List[ContextualRelevancyVerdict],
|
|
367
|
+
multimodal: bool,
|
|
368
|
+
) -> str:
|
|
369
|
+
if self.include_reason is False:
|
|
370
|
+
return None
|
|
371
|
+
|
|
372
|
+
# Separate relevant and irrelevant statements
|
|
373
|
+
irrelevant_statements = []
|
|
374
|
+
relevant_statements = []
|
|
375
|
+
|
|
376
|
+
for verdict in verdicts:
|
|
377
|
+
if verdict.verdict.strip().lower() == "yes":
|
|
378
|
+
relevant_statements.append(verdict.statement)
|
|
379
|
+
else:
|
|
380
|
+
# Include the reason for irrelevance
|
|
381
|
+
irrelevant_statements.append(
|
|
382
|
+
f"{verdict.statement}: {verdict.reason}"
|
|
383
|
+
)
|
|
384
|
+
|
|
385
|
+
prompt = self.evaluation_template.generate_reason(
|
|
386
|
+
input=input,
|
|
387
|
+
irrelevant_statements=irrelevant_statements,
|
|
388
|
+
relevant_statements=relevant_statements,
|
|
389
|
+
score=format(score, ".2f"),
|
|
390
|
+
multimodal=multimodal,
|
|
391
|
+
)
|
|
392
|
+
|
|
393
|
+
if self.using_native_model:
|
|
394
|
+
res, cost = await self.model.a_generate(
|
|
395
|
+
prompt, schema=ContextualRelevancyScoreReason
|
|
396
|
+
)
|
|
397
|
+
self.evaluation_cost += cost
|
|
398
|
+
return res.reason
|
|
399
|
+
else:
|
|
400
|
+
try:
|
|
401
|
+
res: ContextualRelevancyScoreReason = (
|
|
402
|
+
await self.model.a_generate(
|
|
403
|
+
prompt, schema=ContextualRelevancyScoreReason
|
|
404
|
+
)
|
|
405
|
+
)
|
|
406
|
+
return res.reason
|
|
407
|
+
except TypeError:
|
|
408
|
+
res = await self.model.a_generate(prompt)
|
|
409
|
+
data = trimAndLoadJson(res, self)
|
|
410
|
+
return data["reason"]
|
|
411
|
+
|
|
412
|
+
def _get_interaction_reason(
|
|
413
|
+
self,
|
|
414
|
+
input: str,
|
|
415
|
+
score: float,
|
|
416
|
+
verdicts: List[ContextualRelevancyVerdict],
|
|
417
|
+
multimodal: bool,
|
|
418
|
+
) -> str:
|
|
419
|
+
if self.include_reason is False:
|
|
420
|
+
return None
|
|
421
|
+
|
|
422
|
+
# Separate relevant and irrelevant statements
|
|
423
|
+
irrelevant_statements = []
|
|
424
|
+
relevant_statements = []
|
|
425
|
+
|
|
426
|
+
for verdict in verdicts:
|
|
427
|
+
if verdict.verdict.strip().lower() == "yes":
|
|
428
|
+
relevant_statements.append(verdict.statement)
|
|
429
|
+
else:
|
|
430
|
+
# Include the reason for irrelevance
|
|
431
|
+
irrelevant_statements.append(
|
|
432
|
+
f"{verdict.statement}: {verdict.reason}"
|
|
433
|
+
)
|
|
434
|
+
|
|
435
|
+
prompt = self.evaluation_template.generate_reason(
|
|
436
|
+
input=input,
|
|
437
|
+
irrelevant_statements=irrelevant_statements,
|
|
438
|
+
relevant_statements=relevant_statements,
|
|
439
|
+
score=format(score, ".2f"),
|
|
440
|
+
multimodal=multimodal,
|
|
441
|
+
)
|
|
442
|
+
|
|
443
|
+
if self.using_native_model:
|
|
444
|
+
res, cost = self.model.generate(
|
|
445
|
+
prompt, schema=ContextualRelevancyScoreReason
|
|
446
|
+
)
|
|
447
|
+
self.evaluation_cost += cost
|
|
448
|
+
return res.reason
|
|
449
|
+
else:
|
|
450
|
+
try:
|
|
451
|
+
res: ContextualRelevancyScoreReason = self.model.generate(
|
|
452
|
+
prompt, schema=ContextualRelevancyScoreReason
|
|
453
|
+
)
|
|
454
|
+
return res.reason
|
|
455
|
+
except TypeError:
|
|
456
|
+
res = self.model.generate(prompt)
|
|
457
|
+
data = trimAndLoadJson(res, self)
|
|
458
|
+
return data["reason"]
|
|
459
|
+
|
|
460
|
+
def _get_verbose_steps(
|
|
461
|
+
self, interaction_scores: List[InteractionContextualRelevancyScore]
|
|
462
|
+
):
|
|
463
|
+
steps = []
|
|
464
|
+
for index, interaction_score in enumerate(interaction_scores):
|
|
465
|
+
interaction_steps = [
|
|
466
|
+
f"Interaction {index + 1} \n",
|
|
467
|
+
f"Verdicts: {prettify_list(interaction_score.verdicts)} \n",
|
|
468
|
+
f"Score: {interaction_score.score} \n",
|
|
469
|
+
f"Reason: {interaction_score.reason} \n",
|
|
470
|
+
]
|
|
471
|
+
steps.extend(interaction_steps)
|
|
472
|
+
return steps
|
|
473
|
+
|
|
474
|
+
def _generate_reason(
|
|
475
|
+
self, scores: List[InteractionContextualRelevancyScore]
|
|
476
|
+
) -> str:
|
|
477
|
+
reasons = []
|
|
478
|
+
for score in scores:
|
|
479
|
+
reasons.append(score.reason)
|
|
480
|
+
|
|
481
|
+
prompt = self.evaluation_template.generate_final_reason(
|
|
482
|
+
self.score, self.success, reasons
|
|
483
|
+
)
|
|
484
|
+
|
|
485
|
+
if self.using_native_model:
|
|
486
|
+
res, cost = self.model.generate(prompt)
|
|
487
|
+
self.evaluation_cost += cost
|
|
488
|
+
return res
|
|
489
|
+
else:
|
|
490
|
+
res = self.model.generate(prompt)
|
|
491
|
+
return res
|
|
492
|
+
|
|
493
|
+
async def _a_generate_reason(
|
|
494
|
+
self, scores: List[InteractionContextualRelevancyScore]
|
|
495
|
+
) -> str:
|
|
496
|
+
reasons = []
|
|
497
|
+
for score in scores:
|
|
498
|
+
reasons.append(score.reason)
|
|
499
|
+
|
|
500
|
+
prompt = self.evaluation_template.generate_final_reason(
|
|
501
|
+
self.score, self.success, reasons
|
|
502
|
+
)
|
|
503
|
+
|
|
504
|
+
if self.using_native_model:
|
|
505
|
+
res, cost = await self.model.a_generate(prompt)
|
|
506
|
+
self.evaluation_cost += cost
|
|
507
|
+
return res
|
|
508
|
+
else:
|
|
509
|
+
res = await self.model.a_generate(prompt)
|
|
510
|
+
return res
|
|
511
|
+
|
|
512
|
+
def _calculate_score(
|
|
513
|
+
self, scores: List[InteractionContextualRelevancyScore]
|
|
514
|
+
) -> float:
|
|
515
|
+
number_of_scores = len(scores)
|
|
516
|
+
if number_of_scores == 0:
|
|
517
|
+
return 1
|
|
518
|
+
total_score = 0
|
|
519
|
+
for score in scores:
|
|
520
|
+
total_score += score.score
|
|
521
|
+
return total_score / number_of_scores
|
|
522
|
+
|
|
523
|
+
def is_successful(self) -> bool:
|
|
524
|
+
if self.error is not None:
|
|
525
|
+
self.success = False
|
|
526
|
+
else:
|
|
527
|
+
try:
|
|
528
|
+
self.success = self.score >= self.threshold
|
|
529
|
+
except:
|
|
530
|
+
self.success = False
|
|
531
|
+
return self.success
|
|
532
|
+
|
|
533
|
+
@property
|
|
534
|
+
def __name__(self):
|
|
535
|
+
return "Turn Contextual Relevancy"
|
|
@@ -1,10 +1,10 @@
|
|
|
1
|
-
from typing import List, Optional
|
|
1
|
+
from typing import List, Optional, Literal
|
|
2
2
|
from pydantic import BaseModel, Field
|
|
3
3
|
|
|
4
4
|
|
|
5
5
|
class FaithfulnessVerdict(BaseModel):
|
|
6
|
-
verdict: str
|
|
7
6
|
reason: Optional[str] = Field(default=None)
|
|
7
|
+
verdict: Literal["yes", "no", "idk"]
|
|
8
8
|
|
|
9
9
|
|
|
10
10
|
class Verdicts(BaseModel):
|
|
@@ -19,5 +19,13 @@ class Claims(BaseModel):
|
|
|
19
19
|
claims: List[str]
|
|
20
20
|
|
|
21
21
|
|
|
22
|
-
class
|
|
22
|
+
class FaithfulnessScoreReason(BaseModel):
|
|
23
23
|
reason: str
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class InteractionFaithfulnessScore(BaseModel):
|
|
27
|
+
score: float
|
|
28
|
+
reason: str
|
|
29
|
+
claims: List[str]
|
|
30
|
+
truths: List[str]
|
|
31
|
+
verdicts: List[FaithfulnessVerdict]
|