datastock 0.0.35__py3-none-any.whl → 0.0.37__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -12,7 +12,8 @@ import matplotlib.colors as mcolors
12
12
  from . import _generic_check
13
13
  from . import _plot_text
14
14
  from . import _class1_compute
15
- from ._plot_as_array import _check_keyXYZ, _get_str_datadlab
15
+ from ._plot_as_array import _check_keyXYZ
16
+ from ._generic_utils_plot import _get_str_datadlab
16
17
 
17
18
 
18
19
  __all__ = ['plot_as_mobile_lines']
@@ -68,19 +69,20 @@ def plot_as_mobile_lines(
68
69
  inplace=None,
69
70
  ):
70
71
 
71
-
72
72
  # ------------
73
73
  # check inputs
74
74
 
75
- if bck:
76
- inplace = False
77
-
78
75
  # check key, inplace flag and extract sub-collection
79
- [keyX, keyY], inplace, coll2 = _generic_check._check_inplace(
80
- coll=coll,
81
- keys=[keyX, keyY],
82
- inplace=inplace,
76
+ lk = [kk for kk in [keyX, keyY, key_time, key_chan] if kk is not None]
77
+ coll2, key = coll.extract(
78
+ lk,
79
+ inc_monot=False,
80
+ inc_vectors=False,
81
+ inc_allrefs=False,
82
+ return_keys=True,
83
83
  )
84
+ keyX = [kk for kk in key if kk not in [keyY, key_time, key_chan]][0]
85
+ keyY = [kk for kk in key if kk not in [keyX, key_time, key_chan]][0]
84
86
  ndim = coll2._ddata[keyX]['data'].ndim
85
87
 
86
88
  # --------------
@@ -434,9 +436,10 @@ def _plot_as_mobile_lines2d(
434
436
  labx = f"{keyX} ({coll.ddata[keyX]['units']})"
435
437
  laby = f"{keyY} ({coll.ddata[keyY]['units']})"
436
438
 
437
- keych, chstr, datach, dch2, labch = _get_str_datadlab(
439
+ keych, chstr, dch2, labch = _get_str_datadlab(
438
440
  keyX=keych, nx=nch, islogX=islogch, coll=coll,
439
441
  )
442
+ datach = coll.ddata[keych]['data']
440
443
 
441
444
  # -----------------
442
445
  # prepare slicing
@@ -664,12 +667,14 @@ def _plot_as_mobile_lines3d(
664
667
  labx = f"{keyX} ({coll.ddata[keyX]['units']})"
665
668
  laby = f"{keyY} ({coll.ddata[keyY]['units']})"
666
669
 
667
- keyt, tstr, datat, dt2, labt = _get_str_datadlab(
670
+ keyt, tstr, dt2, labt = _get_str_datadlab(
668
671
  keyX=keyt, nx=nt, islogX=islogt, coll=coll,
669
672
  )
670
- keych, chstr, datach, dch2, labch = _get_str_datadlab(
673
+ datat = coll.ddata[keyt]['data']
674
+ keych, chstr, dch2, labch = _get_str_datadlab(
671
675
  keyX=keych, nx=nch, islogX=islogch, coll=coll,
672
676
  )
677
+ datach = coll.ddata[keych]['data']
673
678
 
674
679
  # -----------
675
680
  # background
@@ -957,4 +962,4 @@ def _plot_as_mobile_lines3d(
957
962
  bstr_dict=bstr_dict,
958
963
  )
959
964
 
960
- return coll, dax, dgroup
965
+ return coll, dax, dgroup
@@ -12,7 +12,8 @@ import matplotlib.colors as mcolors
12
12
  from . import _generic_check
13
13
  from . import _plot_text
14
14
  from . import _class1_compute
15
- from ._plot_as_array import _check_keyXYZ, _get_str_datadlab
15
+ from ._plot_as_array import _check_keyXYZ
16
+ from ._generic_utils_plot import _get_str_datadlab
16
17
 
17
18
 
18
19
  __all__ = ['plot_as_profile1d']
@@ -47,12 +48,15 @@ def plot_as_profile1d(
47
48
  key=None,
48
49
  key_time=None,
49
50
  keyX=None,
51
+ dkeys=None,
50
52
  ind=None,
53
+ dscale=None,
54
+ dvminmax=None,
51
55
  vmin=None,
52
56
  vmax=None,
53
- cmap=None,
54
57
  ymin=None,
55
58
  ymax=None,
59
+ cmap=None,
56
60
  aspect=None,
57
61
  nmax=None,
58
62
  color_dict=None,
@@ -71,19 +75,30 @@ def plot_as_profile1d(
71
75
  dleg=None,
72
76
  connect=None,
73
77
  inplace=None,
78
+ # unused
79
+ **kwdargs,
74
80
  ):
75
81
 
76
82
 
77
83
  # ------------
78
84
  # check inputs
79
85
 
86
+ key = _generic_check._check_var(
87
+ key, 'key',
88
+ types=str,
89
+ allowed=list(coll.ddata.keys()),
90
+ )
91
+
80
92
  # check key, inplace flag and extract sub-collection
81
- key, inplace, coll2 = _generic_check._check_inplace(
82
- coll=coll,
83
- keys=None if key is None else [key],
84
- inplace=inplace,
93
+ lk = [kk for kk in [key, key_time, keyX] if kk is not None]
94
+ coll2, key = coll.extract(
95
+ lk,
96
+ inc_monot=False,
97
+ inc_vectors=False,
98
+ inc_allrefs=False,
99
+ return_keys=True,
85
100
  )
86
- key = key[0]
101
+ key = [kk for kk in key if kk not in [key_time, keyX]][0]
87
102
  ndim = coll2._ddata[key]['data'].ndim
88
103
 
89
104
  # --------------
@@ -565,14 +580,16 @@ def _plot_as_profile1d(
565
580
  # ----------------------
566
581
  # labels and data
567
582
 
568
- key_time, tstr, datat, dt2, labt = _get_str_datadlab(
583
+ key_time, tstr, dt2, labt = _get_str_datadlab(
569
584
  keyX=key_time, nx=nt, islogX=islogtime, coll=coll,
570
585
  )
586
+ datat = coll.ddata[key_time]['data']
571
587
 
572
588
  # keyX can be 2d !!!
573
- keyX, xstr, dataX, _, labX = _get_str_datadlab(
589
+ keyX, xstr, _, labX = _get_str_datadlab(
574
590
  keyX=keyX, nx=nx, islogX=None, coll=coll,
575
591
  )
592
+ dataX = coll.ddata[keyX]['data']
576
593
 
577
594
  # -----------------
578
595
  # prepare slicing
@@ -954,6 +971,4 @@ def _plot_as_profile1d(
954
971
  bstr_dict=bstr_dict,
955
972
  )
956
973
 
957
- return coll, dax, dgroup
958
-
959
-
974
+ return coll, dax, dgroup
datastock/_saveload.py CHANGED
@@ -185,6 +185,8 @@ def load(
185
185
  dout[k0] = list(dflat[k0])
186
186
  elif typ == 'str':
187
187
  dout[k0] = str(dflat[k0])
188
+ elif typ == 'chararray':
189
+ dout[k0] = dflat[k0]
188
190
  elif typ in ['int']:
189
191
  dout[k0] = int(dflat[k0])
190
192
  elif typ.startswith('int') and typ[3:].isnumeric():
@@ -56,6 +56,8 @@ def _add_ref(st=None, nc=None, nx=None, lnt=None):
56
56
  # add references (i.e.: store size of each dimension under a unique key)
57
57
  st.add_ref(key='nc', size=nc)
58
58
  st.add_ref(key='nx', size=nx)
59
+ st.add_ref(key='nne', size=11)
60
+ st.add_ref(key='nTe', size=21)
59
61
  for ii, nt in enumerate(lnt):
60
62
  st.add_ref(key=f'nt{ii}', size=nt)
61
63
 
@@ -63,8 +65,13 @@ def _add_ref(st=None, nc=None, nx=None, lnt=None):
63
65
  def _add_data(st=None, nc=None, nx=None, lnt=None):
64
66
 
65
67
  x = np.linspace(1, 2, nx)
66
- y = np.exp((x - 0.5)**2)
68
+ y = np.exp(-(x - 1.5)**2//0.2**2)
67
69
  y[-5] = np.nan
70
+
71
+ ne = np.logspace(15, 21, 11)
72
+ Te = np.logspace(1, 5, 21)
73
+ pec = np.exp(-(ne[:, None] - 1e18)**2/1e5**2 - (Te[None, :] - 5e3)**2/3e3**2)
74
+
68
75
  lt = [np.linspace(1, 10, nt) for nt in lnt]
69
76
  lprof = [(1 + np.cos(t)[:, None]) * x[None, :] for t in lt]
70
77
  lprof[0][10, -5] = np.nan
@@ -88,6 +95,34 @@ def _add_data(st=None, nc=None, nx=None, lnt=None):
88
95
  ref='nx',
89
96
  )
90
97
 
98
+ # ne, Te and pec
99
+ st.add_data(
100
+ key='ne',
101
+ data=ne,
102
+ dim='density',
103
+ quant='ne',
104
+ units='1/m3',
105
+ ref='nne',
106
+ )
107
+
108
+ st.add_data(
109
+ key='Te',
110
+ data=Te,
111
+ dim='temperature',
112
+ quant='Te',
113
+ units='eV',
114
+ ref='nTe',
115
+ )
116
+
117
+ st.add_data(
118
+ key='pec',
119
+ data=pec,
120
+ dim='pec',
121
+ quant='pec',
122
+ units='ph/s/sr',
123
+ ref=('nne', 'nTe'),
124
+ )
125
+
91
126
  for ii, nt in enumerate(lnt):
92
127
  st.add_data(
93
128
  key=f't{ii}',
@@ -139,6 +174,17 @@ def _add_data(st=None, nc=None, nx=None, lnt=None):
139
174
  ref=('nc', 'nt0', 'nx'),
140
175
  )
141
176
 
177
+ # add 4d array
178
+ st.add_data(
179
+ key='4d',
180
+ data=(
181
+ np.arange(nc)[:, None, None, None]
182
+ + lprof[0][None, :, :, None] * lt[1][None, None, None, :]
183
+ ),
184
+ dim='blabla',
185
+ ref=('nc', 'nt0', 'nx', 'nt1'),
186
+ )
187
+
142
188
 
143
189
  def _add_obj(st=None, nc=None):
144
190
  for ii in range(nc):
@@ -259,7 +305,6 @@ class Test02_Manipulate():
259
305
  self.st.show()
260
306
  self.st.show_data()
261
307
  self.st.show_obj()
262
- self.st.show_interactive()
263
308
 
264
309
  # ------------------------
265
310
  # Interpolate
@@ -327,7 +372,7 @@ class Test02_Manipulate():
327
372
  safety_ratio=0.95,
328
373
  returnas=True,
329
374
  )
330
-
375
+
331
376
  if np.isscalar(ax):
332
377
  ax = [ax]
333
378
 
@@ -474,17 +519,45 @@ class Test02_Manipulate():
474
519
  # Plotting
475
520
  # ------------------------
476
521
 
477
- def test12_plot_as_array(self):
522
+ def test12_plot_as_array_1d(self):
478
523
  dax = self.st.plot_as_array(key='t0')
524
+ plt.close('all')
525
+ del dax
526
+
527
+ def test13_plot_as_array_2d(self):
479
528
  dax = self.st.plot_as_array(key='prof0')
480
- dax = self.st.plot_as_array(key='3d')
481
529
  plt.close('all')
530
+ del dax
531
+
532
+ def test14_plot_as_array_2d_log(self):
533
+ dax = self.st.plot_as_array(
534
+ key='pec', keyX='ne', keyY='Te',
535
+ dscale={'data': 'log'},
536
+ )
537
+ plt.close('all')
538
+ del dax
539
+
540
+ def test15_plot_as_array_3d(self):
541
+ dax = self.st.plot_as_array(key='3d', dvminmax={'keyX': {'min': 0}})
542
+ plt.close('all')
543
+ del dax
544
+
545
+ def test16_plot_as_array_3d_ZNonMonot(self):
546
+ dax = self.st.plot_as_array(key='3d', keyZ='y')
547
+ plt.close('all')
548
+ del dax
482
549
 
483
- def test13_plot_BvsA_as_distribution(self):
484
- dax = self.st.plot_BvsA_as_distribution(keyA='prof0', keyB='prof0-bis')
550
+ def test17_plot_as_array_4d(self):
551
+ dax = self.st.plot_as_array(key='4d', dscale={'keyU': 'linear'})
485
552
  plt.close('all')
553
+ del dax
554
+
555
+ # def test18_plot_BvsA_as_distribution(self):
556
+ # dax = self.st.plot_BvsA_as_distribution(keyA='prof0', keyB='prof0-bis')
557
+ # plt.close('all')
558
+ # del dax
486
559
 
487
- def test14_plot_as_profile1d(self):
560
+ def test19_plot_as_profile1d(self):
488
561
  dax = self.st.plot_as_profile1d(
489
562
  key='prof0',
490
563
  key_time='t0',
@@ -492,31 +565,33 @@ class Test02_Manipulate():
492
565
  bck='lines',
493
566
  )
494
567
  plt.close('all')
568
+ del dax
495
569
 
496
- def test15_plot_as_mobile_lines(self):
570
+ # def test20_plot_as_mobile_lines(self):
497
571
 
498
- # 3d
499
- dax = self.st.plot_as_mobile_lines(
500
- keyX='3d',
501
- keyY='3d-bis',
502
- key_time='t0',
503
- key_chan='x',
504
- )
572
+ # # 3d
573
+ # dax = self.st.plot_as_mobile_lines(
574
+ # keyX='3d',
575
+ # keyY='3d-bis',
576
+ # key_time='t0',
577
+ # key_chan='x',
578
+ # )
505
579
 
506
- # 2d
507
- dax = self.st.plot_as_mobile_lines(
508
- keyX='prof2',
509
- keyY='prof2-bis',
510
- key_chan='nx',
511
- )
580
+ # # 2d
581
+ # dax = self.st.plot_as_mobile_lines(
582
+ # keyX='prof2',
583
+ # keyY='prof2-bis',
584
+ # key_chan='nx',
585
+ # )
512
586
 
513
- plt.close('all')
587
+ # plt.close('all')
588
+ # del dax
514
589
 
515
590
  # ------------------------
516
591
  # File handling
517
592
  # ------------------------
518
593
 
519
- def test16_copy_equal(self):
594
+ def test21_copy_equal(self):
520
595
  st2 = self.st.copy()
521
596
  assert st2 is not self.st
522
597
 
@@ -524,14 +599,14 @@ class Test02_Manipulate():
524
599
  if msg is not True:
525
600
  raise Exception(msg)
526
601
 
527
- def test17_get_nbytes(self):
602
+ def test22_get_nbytes(self):
528
603
  nb, dnb = self.st.get_nbytes()
529
604
 
530
- def test18_saveload(self, verb=False):
605
+ def test23_saveload(self, verb=False):
531
606
  pfe = self.st.save(path=_PATH_OUTPUT, verb=verb, return_pfe=True)
532
607
  st2 = load(pfe, verb=verb)
533
608
  # Just to check the loaded version works fine
534
609
  msg = st2.__eq__(self.st, returnas=str)
535
610
  if msg is not True:
536
611
  raise Exception(msg)
537
- os.remove(pfe)
612
+ os.remove(pfe)
datastock/version.py CHANGED
@@ -1,2 +1,2 @@
1
1
  # Do not edit, pipeline versioning governed by git tags!
2
- __version__ = '0.0.35'
2
+ __version__ = '0.0.37'
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: datastock
3
- Version: 0.0.35
3
+ Version: 0.0.37
4
4
  Summary: A python library for generic class and data handling
5
5
  Home-page: https://github.com/ToFuProject/datastock
6
6
  Author: Didier VEZINET
@@ -0,0 +1,42 @@
1
+ _updateversion.py,sha256=OR6OJJozaHWzu7NWjKu5ERi0IyYqR61KrWvzf7kfoto,951
2
+ datastock/_DataCollection_utils.py,sha256=hHf6HvGKMmM-psx3fj9QcY1TEmKrAtTdkRokH7SFqoo,7143
3
+ datastock/__init__.py,sha256=i_Ijl-AM07n4zN52frWfbeGN1iB6v4e5oLzTuVIh_oM,217
4
+ datastock/_class.py,sha256=Az9PS3aSskiPMb1ekt78Y2ynBujYVc_cDjJxW9xH9g4,47
5
+ datastock/_class0.py,sha256=QULjNJke13jJrGLIeM7SWHZVziorDK_KCIlqq8LgS9U,5883
6
+ datastock/_class1.py,sha256=PVlY3_kZQk_Nm4RL-GcdAGWoR7O4_h60NCveg2zAYgI,27591
7
+ datastock/_class1_binning.py,sha256=LWHv2LIfgZfSFWYwqdcN0DKpNe6q7Go3sxfcJqmzTrI,28085
8
+ datastock/_class1_check.py,sha256=UrbNtikISmNiIT96NQmjfVbhyxXrFmEJrjB8Yq5XvvI,49956
9
+ datastock/_class1_compute.py,sha256=yHdG0afYc_YtjpR6RvMh7SeRtWEyuHZ5y9VOPRIYVDo,31671
10
+ datastock/_class1_domain.py,sha256=bkuCl29QO7C3RchC8qZyreU90QxmdDYNVYDmzuCLCUY,6252
11
+ datastock/_class1_interpolate.py,sha256=-nuljuZfu6VxC40ydZ3JcRBkjOswQfFd7I_Od9iTwjI,37543
12
+ datastock/_class1_show.py,sha256=J_CVhfxIYaicqtBoub6NvXwRHNmKHPnFTUt2cYb7I6M,9490
13
+ datastock/_class1_uniformize.py,sha256=NtriKnQAMhzdEAc766rgYWouz4GFEG1MVAVhu9VcaOk,26918
14
+ datastock/_class2.py,sha256=ag8bfEtAF1G_ET4ufpWh8uM609cVUUfhAO6L8L7hc14,45322
15
+ datastock/_class2_interactivity.py,sha256=YdM4cEjDrgh-bSsOzkkwtu-pqKoeqhSyfiZl2Udkl3E,16632
16
+ datastock/_class3.py,sha256=CH1oD_lTfVlcDp29L_iwzSfP78vX6_edDmZG9aSb1Ks,10848
17
+ datastock/_direct_calls.py,sha256=EHFwI2mGMDqGz8_Bv2BseMBX4J8dSdE_RcNX3pt0ZYY,1801
18
+ datastock/_export_dataframe.py,sha256=fy-uJR3EhDlHvd9ls1EQna_C8fyha1jCJLu1DTKTkdo,1576
19
+ datastock/_find_plateau.py,sha256=sqnAuy0361DXkqBb_Lo1MmIGjn35tnKFvcv6MW6hifs,2685
20
+ datastock/_generic_check.py,sha256=bxO453Q5WHyk7xUTRmEK8635ghiyqGMm3nqrcnCkmiI,24515
21
+ datastock/_generic_utils.py,sha256=iBsEQcVEoyN11-R5lMCZJzZUAksROkVD_gzKNvWXLvA,21381
22
+ datastock/_generic_utils_plot.py,sha256=xrWzeZFtdTAs-RO2DfpCRveJPqw_p4lRFtQuuAn1pD8,3709
23
+ datastock/_plot_BvsA_as_distribution.py,sha256=fpRhlbv3Bk96buANC46Brc9hdLxkOAsoKpE5A9pohG0,15389
24
+ datastock/_plot_BvsA_as_distribution_check.py,sha256=2LoM3mGHtPu87_qf37hLcFuknWfeSydU8WDqpVo1Sco,13086
25
+ datastock/_plot_as_array.py,sha256=DwumZrzfKmAUeUF_y6v33mVBH1mVDBAlIbZ-wHnvn5E,22707
26
+ datastock/_plot_as_array_1d.py,sha256=6J-95zRTH2RPn_3g8GzDLX8HAGiLU39awNYi-EB2t7o,6611
27
+ datastock/_plot_as_array_234d.py,sha256=k1AcKyseuObcte8yPm-FSn2g01rK-m_-japUA738IbA,21999
28
+ datastock/_plot_as_mobile_lines.py,sha256=QSmJZUMKrNa__SzUCJO96KpnQPoNB_qpjK_ZRJt11oY,23289
29
+ datastock/_plot_as_profile1d.py,sha256=ebOrzcV1m197Ua1CE04EV6mno_LryrumCpwGcrrDZ5Y,23740
30
+ datastock/_plot_correlations.py,sha256=ITOypu_AEoKl0ihxocV-JVTXIHqut6p9TfG-xZmQysc,10175
31
+ datastock/_plot_old_backup.py,sha256=XixTi2CiihKjtQP0TRycH0b25caWN1m35DgpsDeiWZE,21729
32
+ datastock/_plot_text.py,sha256=wQPqjfpLyIioS2JeOt3E9C9HgYUJ49YEoOgRuKYvAR8,3143
33
+ datastock/_saveload.py,sha256=NdOykvmeCaPhpk0EF5WQezYzpuZM2Ul101Nqc4I3dnY,11729
34
+ datastock/version.py,sha256=Nn5V6g5Fni_GmDG2991HOKltYIl-MPDURNj8ze_u6oQ,80
35
+ datastock/tests/__init__.py,sha256=teOo2xP0IO7PQMuMDmum61XVHe2TuxW3BiHiL73X8jQ,35
36
+ datastock/tests/test_01_DataStock.py,sha256=QJSmrVXD6wX-plfrFdLyZou20IYZGAKzartSi84BfC0,16982
37
+ datastock/tests/output/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
38
+ datastock-0.0.37.dist-info/LICENSE,sha256=V1uXqi3vxR0QhB4QdFyjkynl6jpN4wZmlB5EMYJk0NM,1068
39
+ datastock-0.0.37.dist-info/METADATA,sha256=QXFNu5BxSKujUX1jgwp84hVt3PnkpWP22OyEOUkbKf8,8666
40
+ datastock-0.0.37.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
41
+ datastock-0.0.37.dist-info/top_level.txt,sha256=BzJsLLK_zZw13WQCoMhC74qWVKalnVCjBxdPXvJn7HQ,25
42
+ datastock-0.0.37.dist-info/RECORD,,
@@ -1,39 +0,0 @@
1
- _updateversion.py,sha256=OR6OJJozaHWzu7NWjKu5ERi0IyYqR61KrWvzf7kfoto,951
2
- datastock/_DataCollection_utils.py,sha256=hHf6HvGKMmM-psx3fj9QcY1TEmKrAtTdkRokH7SFqoo,7143
3
- datastock/__init__.py,sha256=i_Ijl-AM07n4zN52frWfbeGN1iB6v4e5oLzTuVIh_oM,217
4
- datastock/_class.py,sha256=Az9PS3aSskiPMb1ekt78Y2ynBujYVc_cDjJxW9xH9g4,47
5
- datastock/_class0.py,sha256=QULjNJke13jJrGLIeM7SWHZVziorDK_KCIlqq8LgS9U,5883
6
- datastock/_class1.py,sha256=l4W0atz_Q-ykO45eONzDtXkwCkcPKwuf2EuD9Ztwak4,29435
7
- datastock/_class1_binning.py,sha256=LWHv2LIfgZfSFWYwqdcN0DKpNe6q7Go3sxfcJqmzTrI,28085
8
- datastock/_class1_check.py,sha256=QN0o5Z9XOZAUIoe-dXTVNmbkj3l_v7U4lawcn8N0Yrw,52436
9
- datastock/_class1_compute.py,sha256=9ka4MXqTb2Gwe8ZnZR31rd5QDc7-nxuhFqXpQSn_sss,28211
10
- datastock/_class1_domain.py,sha256=TudSRoLedzU2qGOU6R1_Lx99MuqJzG0rOZl8-HZZfTU,6252
11
- datastock/_class1_interpolate.py,sha256=TQqrkQPMjiU4prksUkKUWSsDk7fq36GpyxX0kXL0hQo,37567
12
- datastock/_class1_uniformize.py,sha256=mYpOltqTDDjTUU_oJrRWAovW3GtI_y2kGUcH4ebHhHk,26440
13
- datastock/_class2.py,sha256=duGFZPSBNZ0dxbZUPvv90ryG7wSW_dM-kynpa0YKcCw,46673
14
- datastock/_class2_interactivity.py,sha256=YdM4cEjDrgh-bSsOzkkwtu-pqKoeqhSyfiZl2Udkl3E,16632
15
- datastock/_class3.py,sha256=WKFQQ85zJB371zLiSFDQiPkZgfnUgo_jQpCP9YmShek,10642
16
- datastock/_direct_calls.py,sha256=EHFwI2mGMDqGz8_Bv2BseMBX4J8dSdE_RcNX3pt0ZYY,1801
17
- datastock/_export_dataframe.py,sha256=fy-uJR3EhDlHvd9ls1EQna_C8fyha1jCJLu1DTKTkdo,1576
18
- datastock/_find_plateau.py,sha256=sqnAuy0361DXkqBb_Lo1MmIGjn35tnKFvcv6MW6hifs,2685
19
- datastock/_generic_check.py,sha256=nfD4PIInb63uiwioknFf78dE5lGpgSxoOvT5BgP2nts,24443
20
- datastock/_generic_utils.py,sha256=1RTAcMHVTmBRyz0kvpIBemV-ULxluxA01zMssuafZdk,21243
21
- datastock/_generic_utils_plot.py,sha256=ZlfuuOrmZqnQLaIip6JADBZAAn67vXe3LsuzyAGSLCs,1811
22
- datastock/_plot_BvsA_as_distribution.py,sha256=fpRhlbv3Bk96buANC46Brc9hdLxkOAsoKpE5A9pohG0,15389
23
- datastock/_plot_BvsA_as_distribution_check.py,sha256=7OkzsxqXvJBe6uc_7IiZNwMYWryyI1vKUYYRCkPfz7Q,13002
24
- datastock/_plot_as_array.py,sha256=s3Jl0B_1gJ-SewSGfyjXrtzMG1utvcq-Vyb0Vmn-rzI,75861
25
- datastock/_plot_as_mobile_lines.py,sha256=c8StAA-msL_a333U3EHJILWDgo7siIZyDyEgMnJvK90,22972
26
- datastock/_plot_as_profile1d.py,sha256=rxMpLL-QMHqHiAYjH7gDXZOUkMVz3ps8SlUUVNXK8Bk,23332
27
- datastock/_plot_correlations.py,sha256=ITOypu_AEoKl0ihxocV-JVTXIHqut6p9TfG-xZmQysc,10175
28
- datastock/_plot_misc.py,sha256=XixTi2CiihKjtQP0TRycH0b25caWN1m35DgpsDeiWZE,21729
29
- datastock/_plot_text.py,sha256=wQPqjfpLyIioS2JeOt3E9C9HgYUJ49YEoOgRuKYvAR8,3143
30
- datastock/_saveload.py,sha256=Ycu8-OXeak4gqPOJMCE_oeBSZRqdxsqSJs84ZMK4UQg,11663
31
- datastock/version.py,sha256=JWom5rDDP8JlFAuwenGnCmVGuAm2c-R-MmDKzhTe6Y4,80
32
- datastock/tests/__init__.py,sha256=teOo2xP0IO7PQMuMDmum61XVHe2TuxW3BiHiL73X8jQ,35
33
- datastock/tests/test_01_DataStock.py,sha256=rIDlqIGGR6gCFtjAw66G9CF3-Mne95XF0eXtUU7wYfc,15260
34
- datastock/tests/output/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
- datastock-0.0.35.dist-info/LICENSE,sha256=V1uXqi3vxR0QhB4QdFyjkynl6jpN4wZmlB5EMYJk0NM,1068
36
- datastock-0.0.35.dist-info/METADATA,sha256=v5WsRB6IKtZYOwf-ue4c2MoPnds20yBKNOFnKtAXaos,8666
37
- datastock-0.0.35.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
38
- datastock-0.0.35.dist-info/top_level.txt,sha256=BzJsLLK_zZw13WQCoMhC74qWVKalnVCjBxdPXvJn7HQ,25
39
- datastock-0.0.35.dist-info/RECORD,,
File without changes